
Citation: Bianchi, E.; Martin-Dussaud,

P. Causal Structure in Spin Foams.

Universe 2024, 10, 181. https://

doi.org/10.3390/universe10040181

Academic Editor: Parampreet Singh

Received: 18 March 2024

Revised: 10 April 2024

Accepted: 10 April 2024

Published: 14 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Causal Structure in Spin Foams
Eugenio Bianchi 1,2,∗ and Pierre Martin-Dussaud 3

1 Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA
2 Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
3 Basic Research Community for Physics e.V., Mariannenstraße 89, 04315 Leipzig, Germany
* Correspondence: ebianchi@psu.edu

Abstract: The metric field of general relativity is almost fully determined by its causal structure.
Yet, in spin foam models of quantum gravity, the role played by the causal structure is still largely
unexplored. The goal of this paper is to clarify how causality is encoded in such models. The quest
unveils the physical meaning of the orientation of the two-complex and its role as a dynamical
variable. We propose a causal version of the EPRL spin foam model and discuss the role of the causal
structure in the reconstruction of a semiclassical space–time geometry.
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1. Introduction

The information carried by a space–time metric is mainly of a causal nature. Indeed,
Malament’s theorem states that the causal relations between the points of a 4D manifold
fully determine the metric, up to a conformal factor given at each point [1–3]. In quantum
models of space–time, the role of the metric is usually played by more fundamental objects,
like spins and intertwiners in spin foam models [4–6] for the dynamics of loop quantum
gravity [7–9]. There, it is less evident to see how causality enters the scene: how is it
encoded? The question is of importance to understand more generally whether causality is
a fundamental or an emergent property of space–time. Aspects of the causal structure of
a quantum space–time are at the roots of the spin foam formalism [10–12] and have been
studied in [13–33].

Our investigation proceeds as follows: In Section 2, we recall what is meant by
causality over a Lorentzian manifold, and we show how it survives over a simplicial
complex; in Section 3, we show how the causal structure can be represented on the dual
skeleton; in Section 4, we show how the causal structure is determined by the dynamics
of Regge calculus [34]; in Section 5, we elucidate the role of causality at the level of the
path integral over geometries; in Section 6, we investigate the case of discrete BF theory; in
Section 7, we propose a causal version of the Engle–Pereira–Rovelli–Livine (EPRL) spin
foam model [35]; and finally, in Section 8, we discuss how the proposed causal EPRL model
relates to previous proposals for implementing causality such as the Livine–Oriti vertex [16]
and the Engle vertex [36,37].

2. Discrete Causal Structure

The geometry of a Lorentzian manifold is fully encoded in the metric g. The signature
of g is either (−,+,+,+) or (+,−,−,−). It is generally held that this freedom is a pure
convention, with no physical consequences. However, for the rest of our work, it is useful
to let this choice be open and write the signature as (η,−η,−η,−η) with η ∈ {−1,+1}.

The causal structure of g can be decomposed into two sub-notions that we call bare
causality1 and time orientability (see [3] for a standard reference).

Universe 2024, 10, 181. https://doi.org/10.3390/universe10040181 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe10040181
https://doi.org/10.3390/universe10040181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0001-7847-9929
https://orcid.org/0000-0002-9213-8036
https://doi.org/10.3390/universe10040181
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe10040181?type=check_update&version=2


Universe 2024, 10, 181 2 of 26

2.1. Bare Causality

We call “bare causality” the property of each tangent space at any point of the manifold,
and it is partitioned into three classes of tangent vectors: time-like, space-like and null.
Formally, the classes are equivalence classes for the following relation:

u ∼ v ⇐⇒ sign g(u, u) = sign g(v, v), (1)

where u and v are tangent vectors. The three equivalent classes are named

sign g(u, u) =


η time-like
0 null
−η space-like.

(2)

The definition of bare causality is local in the sense that it makes sense at each point of the
manifold, but it can also be formulated as a global property. The “bare-causal structure” of
a Lorentzian space–time consists in the possibility to say, given any two points, whether
they are space-like, time-like, or null separated. To be clear with the definitions, two points
are time-like separated if they can be joined by a smooth curve whose tangent vectors are
time-like all along. It is important that the curve is smooth because otherwise one could
turn around sharply and draw a time-like curve between any two points.

2.2. Time Orientability

On top of bare causality, one can define a notion of “time orientability”. At a local
level, time orientability is the property of time-like vectors to be divided into two classes:
past and future. Formally, the two classes are equivalence classes of time-like vectors for
the following relation:

u ∼ v ⇐⇒ sign g(u, v) = sign g(v, v). (3)

In the case of bare causality, the information contained in the metric g alone enables distin-
guishing one from another of the three classes of time, null and space without ambiguity.
This is not the case for time orientability: the two classes defined by (3) are perfectly sym-
metric. Thus, the denomination “past” or “future” is arbitrary as long as no external arrow
of time is imposed additionally. So we can pick a reference vector u0 (the arrow of time),
label the two classes by ω ∈ {−1,+1} and say that the time-like vector v is in the class ω if

sign g(u0, v) = ω η. (4)

To fix the language, we declare that ω = +1 is the future, so that u0 is future-pointing.
As done previously, the local definition of time orientation can be turned into a global

one by requiring continuity across the classes at different points. Then, space–time is said
to be time orientable if it is possible to continuously define a division of time-like vectors
in past and future classes. It is then possible to say that a point lies in the future of some
other. As a consequence, one can define the causal future I+(p) and the causal past I−(p) of
a point p. Again, the arrow of time, i.e., the labeling of “past” or “future,” is conventional,
e.g., attached to a specific choice of reference vector u0, but it is not a geometric property of
the metric.

Time orientability is conceptually different from bare causality. However, any Lorentzian
metric locally defines light-cones with both a bare-causal and a time-orientable structure. So
the conceptual difference is often overlooked, and the term “causality” is used indifferently
to discuss either notions or both. Yet, it is important to have the distinction clear in mind,
especially when moving to quantum models, because we expect the Lorentzian metric to
make way for new objects, while the underlying physical notions may survive.
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2.3. Discrete Bare Causality

At a discrete level, consider a Lorentzian 4-simplicial complex ∆, i.e., a set of Minkowskian
4-simplices nicely glued together [34]2. It is again possible to define the notions of bare
causality and time orientability, both at a local and at a global level.

Each 4-simplex σ comes with an embedding in Minkowski space–time. It is bounded
by five tetrahedra, each with a unique normal 4-vector N of unit norm and directed
outward. A priori, N can be time-like, space-like, or null. Two nearby 4-simplices share
exactly one common tetrahedron T. The two 4-simplices are said to be time-like separated
if N (computed with respect to any of the two 4-simplices) is time-like. A similar definition
holds for space-like and null separation.

Unfortunately, this local notion of bare causality fails to extend straightforwardly
to distant 4-simplices. Indeed, one could be tempted to say that two distant 4-simplices
are time-like separated if there exists a sequence of time-like-separated nearby tetrahedra
in-between. However, this definition fails because, for instance, two space-like separated
nearby tetrahedra could be connected by a common time-like-separated nearby tetrahedron.
In the previous continuous case, the smoothness of the time-like curve was preventing
such a pathology, but this is not possible anymore in the discrete case. The difficulty can be
circumvented by first introducing a local notion of time orientability.

2.4. Discrete Time Orientability

A tetrahedron is said to be space-like if it is embedded within a space-like hyperplane.
In this case, its 4-normal N is time-like. Time orientability is the property that the space-like
boundary tetrahedra of a 4-simplex can be divided into two classes by the following relation:

T1 ∼ T2 ⇐⇒ sign(N1 · N2) = sign(N1 · N1), (5)

where the dot denotes the Minkowskian scalar product. A choice of time orientation
indicates which class is called past or future (relative to the 4-simplex).

At a global level, we say that ∆ is time orientable if there exists a consistent choice of
time orientation for each 4-simplex, so that each space-like tetrahedron has an opposite
time orientation relative to each of the two 4-simplices that bounds it: if a tetrahedron is in
the future of a 4-simplex, it should be in the past of another.

Given two 4-simplices, σ1 and σ2, sharing a space-like tetrahedron T, we say that σ2 is
in the future of σ1 if T is in the future of σ1 (hence in the past of σ2). This definition allows
us to define straightforwardly a notion of causal future and causal past of a 4-simplex: σ2
is in the future of σ1 if there exists a future-oriented chain of 4-simplices in-between. This
definition encompasses the notion of time-like separation for distant 4-simplices that was
initially looked for. Thus, both bare causality and time orientability are defined locally and
globally in the discrete setting.

3. Causality on the Dual Skeleton

The previously defined discrete causal structure can be easily represented on ∆∗
1 ,

the dual 1-skeleton of ∆. The 1-skeleton ∆∗
1 is built from ∆ by replacing each 4-simplex by

a vertex, each tetrahedron by an edge and forgetting about triangles, segments and points
of ∆.

Bare causality discriminates between space-like and time-like edges3, while time
orientability provides an orientation to the time-like edges. Overall, causality is then
represented by

1. An arrow from past to future on time-like edges,
2. No arrow on space-like edges.

In the following, we assume that all tetrahedra are space-like, which implies that all
N are time-like. Dually, it means that all the edges of ∆∗

1 carry an arrow. This simplifying
assumption is made in many of the formulations of spin foams. It is important to note that
this condition automatically implements some implicit assumptions about the fundamental
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causal structure of space–time. Indeed, this assumption erases any local notion of bare
causality: all nearby 4-simplices are time-like separated. Thus, at the most local level,
the primacy is granted to time orientability. The notion of bare causality only emerges at a
more global level as follows: given two distant vertices, if one is not in the past of the other,
then they are said to be space-like separated.

3.1. Dual Causal Set

In mathematical terms, ∆∗
1 is a 5-valent simple oriented graph4. Assuming it is also

acyclic5, its transitive closure defines a poset (partially ordered set). The elements of the poset
are the vertices of ∆∗

1 , and the partial order ≤ comes from a unique extension of the set of
arrows with the following properties:

1. Reflexivity: v ≤ v (by convention).
2. Anti-symmetry: v1 ≤ v2 and v2 ≤ v1 imply v1 = v2.
3. Transitivity: v1 ≤ v2 and v2 ≤ v3 imply v1 ≤ v3.

In most reasonable cases, the poset of ∆∗
1 is locally finite, meaning that for any pair of

vertices (v1, v2), the so-called causal diamond {v | v1 ≤ v ≤ v2} is a finite set. Such a poset
is a causal set, as defined originally in [39].

We have shown, without much surprise, that the discretization of a Lorentzian mani-
fold naturally carries a causal set structure. Causal set theory takes the causal set structure
as a starting point. Then, the question naturally poses itself as to whether or not it is possi-
ble to reconstruct ∆∗

1 from its associated causal set only. Given a causal set, one can derive
a notion of neighborhood by declaring that two vertices x and y, such that x ≤ y, are next
to each other if there is no z ̸= x, y such that x ≤ z ≤ y. In other words, the neighborhood
relations are obtained by a transitive reduction of the causal set, i.e., a graph with the fewest
possible arrows and the same “reachability relations” as the causal set. Interestingly, for a
finite directed acyclic graph, such a transitive reduction is unique. However, the transitive
reduction of the transitive closure is not the identity. Thus, it is not possible to recover ∆∗

1
from the causal set by transitive reduction. In other words, the notions of neighborhood
for causal set theory and for discrete Lorentzian geometry, as described over ∆∗

1 , are not
the same.

Similarly, the conformal factor, which is an important piece of information of the
metric, can arise in several different ways. In causal set theory, it emerges by counting the
number of vertices within a given causal diamond [39,40]. In discrete Lorentzian geometry,
it can be given by the Lorentzian volume of the 4-simplices, which requires additional
input, not deducible from the causal set alone. For instance, the additional information
can be provided by coloring each vertex with a real number (the 4-simplex volume), by
coloring each edge with the volume of the corresponding tetrahedron or by introducing
faces and coloring them with the area of the corresponding triangles. The latter option is of
course relevant for spin foam models as discussed also in [16,29,30,41].

To work algebraically with the causal structure, it will soon appear convenient to
express the orientation of the edges as follows. Given a vertex v, we define the orientation
of an edge6 e ∈ v with respect to v as

εv(e)
def
=

{
−1 if e is incoming,

1 if e is outgoing.
(6)

This convention is similar to the earlier choice in Equation (4) to call ω = 1 the future. We
define a causal structure on the 1-skeleton as an assignment of an orientation εv(e) to each
pair (v, e) such that e ∈ v under the constraint.
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In Equation (6), a global convention was chosen to attribute a numerical value to
‘incoming’ and ‘outgoing’. This convention can be made local by introducing at each vertex
v a variable µv ∈ {−1, 1} and defining instead

εv(e)
def
=

{
−µv if e is incoming

µv if e is outgoing.
(7)

In this case, the constraint becomes

µv1 εv1(e) = −µv2 εv2(e), (8)

which is more similar to what can be found in [16].

εv1(e) = −εv2(e), (9)

where v1 and v2 are the two endpoints of e. The latter condition expresses the fact that an
incoming edge, with respect to one vertex, is outgoing with respect to the other.

3.2. Causal Wedges

We have seen that the causality of ∆ can be read on the edges of ∆∗
1 . Now, we are

going to show that it can also be read equivalently on the wedges of the dual 2-skeleton ∆∗
2 .

To proceed, let us go back to the 4-simplicial complex ∆. A pair w = (t, σ) such that t ∈ σ is
called a wedge. Given a wedge w, there exists exactly two tetrahedra T1, T2 ∈ σ that share t,
to which are associated the normals N1 and N2. The dihedral angle of w is defined as

θw
def
= sign(N1 · N2) cosh−1(|N1 · N2|). (10)

This definition is a natural extension of the notion of the dihedral angle from Euclidean to
Minkowskian geometry. Its absolute value |θw| depends only on the absolute value of the
scalar product |N1 · N2| of the normals. On the other hand, its sign depends on the relative
time orientation of the two normals

sign(θw) =

{
+η if N1 and N2 are co-chronal,

−η if N1 and N2 are anti-chronal.
(11)

When the normals are co-chronal (resp. anti-chronal), the wedge is said to be thick (resp.
thin). At the level of the wedges, causality shows up as follows: a thick wedge encloses a
time-like region, while a thin wedge encloses a space-like region (Figure 1). The thin/thick
distinction provides an orientation of the wedges. However, this orientation does not extend
to triangles because several wedges of the same triangle may not have the same orientation.

N2N1 N1

N2

Figure 1. (Left): thick wedge, co-chronal normals. (Right): thin wedge, anti-chronal normals.

This notion translates easily on the dual complex. A pair of a face and a vertex ( f , v)
with f ∈ v defines a (dual) wedge on the 2-skeleton ∆∗

2 . There exists two unique edges e1
and e2 such that e1, e2 ∈ f and e1, e2 ∈ v. The wedge is thick if e1 and e2 are both incoming
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or both outgoing. It is thin otherwise. Algebraically, the wedge orientation can be defined
as

εv( f ) def
=

{
+η if thick,

−η if thin.
(12)

It is then easy to show that
εv( f ) = η εv(e1)εv(e2). (13)

As we have presented it, the wedge orientation is a byproduct of the edge orientation.
However, is it possible to go the other way around and to compute the εv(e) as a function
of the εv( f ), i.e., to invert Equation (13)? The short answer is no, but not much information
is actually missing to do this inversion.

Around the same vertex v, Equation (13) defines a system of 10 equations (one per face)
with five unknowns (one per edge), so we may fear it to be over-constrained. However,
the rank of the system (13) is only four. Indeed, given the orientation εv( f ) for any four
wedges that do not form a cycle, one can deduce the orientation of the other six. A cycle is a
sequence of faces that closes, bounding a 3D angle. Rather than a formal definition, this
notion is best understood through few examples on the links of the vertex graph7 (Figure 2).
Then, it is easy to show that the product of orientations along any cycle of wedges is

∏
f∈cycle

εv( f ) = η#cycle, (14)

where #cycle is the number of faces f in the cycle. Since any set of five wedges around v
contains a cycle, then a four-wedge orientation is indeed sufficient to fix them all. Hence,
the system (13) is actually under-constrained of exactly one dimension.

Figure 2. (Left) (Red): Two examples of sets of 4 wedges which form cycles. (Right) (Blues): Two
examples of sets of 4 wedges which do not form cycles.

Given a vertex v, denote the surrounding edges by ei, with i ∈ {1, ..., 5}, and ac-
cordingly the surrounding faces by fij. To make the system invertible, let us add one
independent equation by defining the orientation of the vertex v as follows:

εv
def
= ∏

j
εv(ej). (15)

Then, the set of Equation (13) augmented by (15), with unknowns εv(e), is invertible, and
one can show that

εv(ei) = εv ∏
k ̸=i

εv( fik). (16)

Thus, we see that we can recover the orientation of the edges from the orientation of the
wedges, up to a vertex orientation.

Let us now consider a skeleton with many vertices. Can we deduce the orientation of
the edges of the 1-skeleton from the orientation on the wedges of the 2-skeleton? From the
previous analysis with a single vertex, we know that it will be possible to invert the system
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of equations if one considers in addition one orientation εv per vertex. However, the set of
εv is itself constrained because of the gluing condition (9), which now reads

εv1 ∏
f |e∈ f

εv1( f ) = −εv2 ∏
f |e∈ f

εv2( f ) . (17)

This constraint eliminates almost all the degrees of freedom introduced by εv, so that there
remains finally only the freedom to fix the orientation of a single vertex in the whole
skeleton. The orientation of all others can be deduced from it and the εv( f ). Indeed, assume
that you have a 2-skeleton where all the εv( f ) have been fixed (satisfying the constraint
along cycles). Then, if you fix only one εv, the orientation of the edges around v are fixed,
and this “orientation fixing” will then propagate everywhere else, so the full set of εv will
ultimately be fixed. Reversing the orientation of one εv, will reverse the entire skeleton,
which corresponds to the time-reversal symmetry.

We have previously shown that the causal structure of discrete general relativity can
be encoded in the dual 1-skeleton with oriented edges. Now, we have just seen that the
causal structure of a 2-skeleton can be described as the assignation of εv( f ) to each wedge
under the cycle constraint (14) and a global orientation ε, which can be regarded as a global
arrow of time.

4. Lorentzian Regge Calculus

So far, we only focused on the kinematical aspects of causality. Now, we will see how
causality shows up in the dynamics [34].

4.1. Lorentzian Regge Action

Following [16], we extend the formulae of [42] to the 4-dimensional case, the Lorentzian
Regge action is a sum over the triangles t:

SR
def
= ∑

t
Atδt, (18)

with At the area of the triangle t and δt the deficit angle defined as a sum over the 4-simplices
σ surrounding t:

δt
def
= ∑

σ|t∈σ

θtσ, (19)

with the dihedral angle defined by equation (10). The order of the two sums can be
exchanged:

SR = ∑
σ

∑
t|t∈σ

Atθtσ. (20)

To derive the equations of motion by variational calculus, one should tell which are the
independent variables of which SR is a function of. In the original Regge calculus, it
is shown that if the action is considered as a function of the lengths ls of the segments
s, the resulting equations of motions become Einstein equations in the continuous limit.
However, this is not the only possible choice.

4.2. First-Order Regge Calculus

Barrett has proposed a formulation where the independent variables are both the
lengths ls and the angles θtσ [43]. This choice of variables mimics the Palatini formulation,
which takes the metric and the torsion-less connection as primary fields of the Einstein–
Hilbert action. Compared to the original Regge calculus, the introduction of θtσ extends the
total number of variables. In order to recover the equations of motion, it is then necessary
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to add constraints to the action, which is done with a Lagrange multiplier µσ per each
4-simplex σ. One obtains

S[ls, θtσ, µσ] = ∑
σ

∑
t|t∈σ

At(ls)θtσ + ∑
σ

µσ det γσ (21)

where γσ is the 5 × 5 matrix whose elements are the Minkowskian scalar products between
the normals to the boundary tetrahedra:

[γσ]ij = Ni · Nj = sign(θij) cosh θij, (22)

where Ni is the (unit outward) normal to the ith boundary tetrahedron of σ and θij is
the dihedral angle between the tetrahedra i and j. The Lagrange multiplier imposes the
constraint

det γσ = 0 (23)

which implements the closure of the normals, i.e.,

∑
i

Vi Ni = 0, (24)

with Vi the volume of the ith tetrahedron.

4.3. Causal Structure from Dynamics

This choice of variables for the action makes it clear how causality plays its role in the
dynamics. Indeed, as explained previously, the causal structure is encoded on the wedges
as the sign of the dihedral angle between two neighbouring tetrahedra. This information
can be directly obtained from the sign of the variable θtσ. However, any configuration of
signs of θtσ does not define an allowed causal structure, as it must also satisfy the cycle
constraint (14). So, an assignment of θtσ defines an orientation structure but not necessarily a
causal structure.

Moreover, it is also possible to obtain causal information from the lengths ls. First
of all, the sign of ls tells whether the segment is space-like or time-like. Here, we are
assuming that the segments are all space-like. Nevertheless, it is still possible to extract
additional causal information. If some geometrical constraints are satisfied (generalisation
of the triangular inequalities), then it is possible to reconstruct uniquely the geometry of
a 4-simplex from the lengths of its segments. Then, there exists a formula expressing the
dihedral angle as a function of the lengths ls. This second derivation of the dihedral angle
does not necessarily match with θtσ because θtσ and ls are taken as independent variables
in the first-order Regge calculus. So, the variables θtσ and ls define independently two
coexisting notions of causal structure on the wedges.

Of course, the two notions of causal structure must match when the equations of
motion are imposed. In particular, the cycle constraint appears as a corollary of the
equations of motion. Indeed, the constraint det γσ = 0 implies the existence of a vector v
such that ∑i γijvi = 0. Then, the equation of motion obtained by varying θij yields

At = κσµσvivj sinh θij (25)

for some κσ ∈ R (see [43]). Since At > 0,

sign θij = sign(κσµσ) sign vi sign vj (26)

which implies the constraints (14). This shows that the equations of motion impose the
structure of the wedges to be causal. This result should be stressed. In the standard metric
formulation of general relativity, the causal structure is already well defined at the level
of the kinematics because any metric defines a causal structure. In the first-order Regge
calculus, we see that the causal structure does not necessarily exist at the kinematical level,
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but the equations of motion impose the cycle constraint, which selects a surface of variables
where every configuration has a well-defined causal structure.

5. Causal Path Integral

So far, the analysis has been purely classical, although discrete. When going to the
quantum regime of gravity, it is reasonable to expect that the generic state of the metric field
is a superposition of classical configurations. In particular, there might not be a definite
causal structure. Several causal histories may interfere and thus generate in principle
observable effects. A theory of quantum gravity should be able to predict these effects
through the computation of transition amplitudes between different states of space.

Let us clarify the main ideas by proceeding heuristically, although a precise mathemati-
cal formulation may be more difficult to achieve. The standard procedure starts by foliating
the space–time manifold into constant-time slices: M ∼= Σ ×R. The classical states are
3-metrics h defined over Σ. At the quantum level, the 3-metric is an operator ĥ, with eigen-
states |h⟩ whose eigenvalues are the classical 3-metrics h. The sum-over-histories approach
to quantum gravity [44–46] proposes to compute the transition amplitude between the
state |h0⟩ at time t0 and the state |h1⟩ at time t1 as a path integral:

⟨h1|h0⟩ =
∫
[Dg] e

i
h̄ S[g] , (27)

where [Dg] is a measure on the set of 4-metrics g over Σ × [t0, t1], such that the restriction
of g to the slice t = t0 (resp. t = t1) is h0 (resp. h1) and S[g] is the Einstein–Hilbert action
evaluated on such a metric.

5.1. General Boundary Formulation

The previous and standard formulation is not ideal because it relies upon a slicing
of space–time into constant-time leaves, which may already fix too much structure for
a general treatment of causality. Better suited for our purpose is the general boundary
formulation developed by Oeckl in [47]. Consider a region of space–time M with boundary
Σ. A 4-metric g on M induces a 3-metric h on Σ. The crux of a quantum theory of space–time
is the computation of the metric propagator:

ZM(h) =
∫
[Dg] e

i
h̄ S[g] (28)

where the integral is carried over all the 4-metrics g bounded by h. The standard formula-
tion (Equation (27)) is recovered when Σ is made of two disconnected components (past
and future). In general, the boundary will have space-like, time-like and possibly null
components. Here, we restrict attention to a finite space–time region with a boundary
consisting of two space-like components. This lens-shaped space–time region is foliated by
finite space-like leaves that meet at a fixed 2-dimensional corner.

5.2. Regge Path Integral

As a way towards the actual computation of the metric propagator, one can discretise
the previous formula. Consider a 4-simplicial complex ∆. Its boundary is a 3-simplicial
complex Σ. Working with the Regge action, the metric propagator is a function of the
length of the segments of Σ, and it reads as follows:

A∆(lΣ) =
∫
[dls] e

i
h̄ SR [ls ]. (29)

The integral is done over the lengths ls of all the segments s in the bulk of ∆. Note that each
integral could also be replaced by a sum with a cut-off in order to ensure a finite value to
the propagator, but it does not seem useful in our quest for causality.
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Using the first-order Regge calculus, the propagator reads:

A∆(lΣ, θΣ, µΣ) =
∫
[dls][dθtσ][dµσ]∏

σ

e
i
h̄ (∑t|t∈σ Atθtσ+µσ det γσ) . (30)

The integration over µσ can be formally carried over, which gives a δ-function that fixes the
constraint:

A∆(lΣ, θΣ) =
∫
[dls][dθtσ]∏

σ

δ(det γσ) e
i
h̄ ∑t|t∈σ Atθtσ . (31)

5.3. Causal Structure of the Boundary

A causal structure on ∆ induces a causal structure on its boundary Σ. It indicates
for each tetrahedron of the boundary whether it shall be regarded as future or past. It
can be represented on the boundary of the dual 2-skeleton ∆∗

2 , which is a 4-valent graph.
The induced causal structure consists of assigning a sign to each node, depending on
whether the edge attached to it is pointing inside or outside the bulk. Conventionally, we
take the sign to be positive for an outward edge (future tetrahedron) and negative for an
inward edge (past tetrahedron). An example is shown in Figure 3. It is important to notice
that fixing a causal structure on the boundary does not in general impose a single causal
history in the bulk: many different histories may share the same causal boundary.

+ +

– +

+ +

– –

+
–

–

– +
–

+

+
–

+
–
+ +

–
–

+

Figure 3. Example of causal structure on a boundary graph. (Left): encoded on the nodes. (Right): en-
coded on the links.

The causal information of the boundary can also be encoded on the links. To each
link, one associates the product of the sign of the endpoints (Figure 3). For a 4-valent
graph, there are twice as many links as there are nodes. But despite the double number of
variables, this encoding is not injective but 2-to-1. Physically, by encoding causality on the
links, we only provide information about bare causality, while encoding over the nodes
also gives a time orientation.

A random assignment of signs to links only defines a causal structure on the boundary
if it enables consistent assigning of signs to the nodes. This happens if, and only if, the signs
on the links satisfy the constraint that their product around any loop of the graph is 1.
The latter constraint is implied by the cycle condition (14) in the bulk. In fact, when two
edges crossing the boundary share a common vertex, the sign of the wedge matches the
sign of the link between the two corresponding nodes. More generally, the sign of the link
is equal to the product of the signs of the wedges around the corresponding face in the
bulk, which can be written as

ε l = ∏
v∈ f

εv( f ), (32)

where f is the face that intersects the boundary along the link l.

5.4. Causal Amplitude

The metric propagator is a function of the boundary variables. In concrete situations,
the bare-causal structure of the boundary may be fixed by an assignment of link orientations
ε l . In this case, the range of integration on the angles θtσ in Equation (31) must be restricted
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for the wedges that belong to faces intersecting the boundary. This restriction consists of
implementing the constraint (32). For instance, consider a link l bounding a face f (dual to
t) with only one vertex v (dual to σ). If ε l = 1 (resp. ε l = −1), then the integration over θtσ
shall be carried over R+ (resp. R−), instead of R.

For the θtσ in the bulk, the integration is still done over all R. We can rewrite the
amplitude (31) as

A∆(lΣ, rΣ, εΣ) = ∑
[εtσ ]

∫
[dls][drtσ]∏

σ

δ(det γσ) e
i
h̄ ∑t|t∈σ Atεtσrtσ , (33)

where the sum is done over all possible orientations εtσ of wedges in the bulk, compatible
with the bare causality of the boundary εΣ, and the integration in r is performed over R+.
Thus, the path integral is summing over both configurations that satisfy and do not satisfy
the cycle condition (14).

To be more precise, at each vertex, the surrounding wedge orientations can satisfy
the cycle condition for η = 1, η = −1 or none of them. The two first cases correspond to
the possibility of locally defining a light cone. These light cones are only local because the
value of the signature η may disagree from one 4-simplex to another. There is a global
causal structure only when the signature is the same for all 4-simplices. Thus, the sum over
orientations can be decomposed into several terms:

∑
[εtσ ]

= ∑
[εtσ ]

causal η=1

+ ∑
[εtσ ]

causal η=−1

+ ∑
[ησ ]

signature
changes

∑
[εtσ ]
local

light-cones

+ ∑
[εtσ ]

spurious

(34)

The latter terms gather “non-causal” or “spurious” configurations in the sense that there is
at least one 4-simplex for which the set of wedge orientations εtσ do not define a consistent
local light cone. The presence of such non-causal histories contributing to the amplitude is
the consequence of the peculiar choice of variables of the first-order Regge calculus using
both the lengths ls and the dihedral angles θtσ. In the standard Regge calculus, only the
lengths ls are used; thus, the path integral is only summing over causal configurations.

However, in the classical limit, when h̄ → 0, the configurations that contribute the
most are the stationary points of the action, which satisfy the classical equations of motion
and thus, as seen previously, have a proper causal structure. So the causal configurations
are selected in the classical limit. These configurations can be partitioned in two subsets
depending on the choice of signature η ∈ {−1, 1} for which the cycle condition (14)
is satisfied.

In this framework, the existence of a consistent causal structure is an emerging feature
of space–time. It originates from orientation degrees of freedom located on the wedges.
At the quantum level, only a minority of configurations define proper light cones. The un-
veiling of this structure offers the possibility of defining alternative amplitudes by fixing
some of the degrees of freedom.

For instance, one could keep in (33) only the terms [εtσ] that satisfy the cycle condition
(14). One could also further restrict the sum by imposing a choice of signature η. Eventually,
one could keep only a single term that has a fixed causal structure.

The suggestion of considering such restrictions in the range of the path integral was
initially suggested by Teitelboim [48] and first applied to spin foams by Livine and Oriti [16].
In the context of the standard formulation (equation (27)), h0 is regarded as “past” and h1
as “future”. So Teitelboim proposed to restrict the range of integration over the 4-metrics
g for which the proper time from the first to the second slice is positive. Working in the
ADM formalism, it amounts to restricting the range of integration of the lapse N to positive
values only. The resulting “causal amplitude” is not anymore gauge-invariant, i.e., it is not
a solution of the Hamiltonian constraint.

However, Teitelboim argued that such a restriction could be worth considering by
drawing an analogy with the propagator of the free relativistic particle. Indeed, the ampli-
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tude (33) can be seen as the analog of the Hadamard propagator, which is a symmetrized
2-point correlation function solving the Klein–Gordon equation. However, to compute
the transition probability between two positions and times, one must use the Feynman
propagator, which is the time-ordered Green function of the Klein–Gordon equation. Both
propagators can be computed using the path integral method. It is then shown that they
differ by a different range of integration. In the Feynman propagator, one only sums over
these trajectories to evolve forward in time (time-ordered), which appears as a restriction
to the range of the path integral giving the Hadamard function.

In a nutshell, the choice of including the causal terms or not depends on what we want
to compute: a projector on the physical Hilbert space or an evolution operator.

6. BF Theory

As a first step toward spin foams, let us consider discrete BF theory. It is a topological
theory, so we do not expect any causal structure to arise, but it makes use of an orientation
structure that is worth looking at as a warm-up.

6.1. Discrete BF Theory

Following [49], the discretization of BF theory is done over a 2-complex C. The vari-
ables are one group element ge ∈ G per edge e ∈ C. Then, the amplitude is defined as

ZC
def
=
∫
[dge]∏

f
δ
(

U f (ge)
)

. (35)

There is one integral per edge, dge is the Haar measure over G, δ is the Dirac δ-function
over G and the product is carried over all the faces f of C. Moreover, we define the circular
product

U f (ge)
def
=

⟲

∏
e∈ f

ge, (36)

where the product is made over the edges e surrounding f . Although sometimes over-
looked, we want to draw attention to the orientation structure that is required to define
correctly the circular product. We need the following additional structure over C:

1. a distinguished edge to each face that serves as a starting point in the product;
2. an orientation to each face that tells the order of the following edges.

Although this structure is required to define U f , δ(U f ) does not actually depend on it,
due to the invariance of the δ-function under inversion and cyclic permutation.

It is common to rewrite ZC by splitting the δ-function into a sum over the irreducible
representations (irreps) of G:

δ(U) = ∑
ρ

dim ρ Tr ρ(U) (37)

Then, for each edge, the integral over the group element g can be rewritten as a sum over
intertwiners, which formally reads

∫
dg

⟲⊗
f∈e

ρ f (g) = ∑
ι

ιι∗. (38)

Again, the definition of the circular tensor product requires us to introduce an addi-
tional structure:

3. a distinguished face to each edge that serves as a starting point in the tensor product;
4. an orientation of the faces around each edge, which can be thought of as an arrow on

the edge (with the right-hand convention to turn around for instance).
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Of course, ZC remains blind to this structure. The amplitude finally becomes:

ZC = ∑
ρ

∑
ι

∏
f

dim ρ f ∏
v

Av. (39)

The sum in ρ (resp. ι) is made over all the possible labeling of the faces (resp. edges)
by irreps (resp. intertwiners). The vertex amplitude Av is a function of the irreps ρ f and
intertwiners ιe attached to the faces and edges surrounding a vertex v.

The four orientation structures just introduced enter the computation of Av. These
structures lie on the edges and faces of the 2-complex. Motivated by our analysis in the
previous sections, we want to investigate the idea that causality of spin foams could arise
from the breaking of the invariance of ZC with respect to the orientation of C.

6.2. Ponzano–Regge Model

To proceed concretely, let us consider the simple example of the Ponzano–Regge
model [50], for which C is dual to a 3-dimensional simplicial complex ∆, and G = SU(2).
In this case, the irreps are labeled by spins j ∈ N/2, and there is no sum over the intertwin-
ers (because it is unique). The vertex amplitude can be nicely represented pictorially as a
graph where each node stands for an adjacent edge and each link for a face in-between.
The vertex graph takes typically the following form:

+

–

+

–

j1

j2 j3

j5

j6 j4

(40)

The arrows on the links are induced by the orientation of the faces, and the signs on the
nodes are induced by the orientation of the edges (+ for incoming). Any combination of
arrows and signs can be found, but the topology of the graph is the same for every vertex.
The labels j on the links are inherited from the irreps on the faces.
The graphical calculus is defined by the following rules:

1. To each link l, associate a variable ml that will be summed over;
2. The 3jm-Wigner symbol8 is associated with the following nodes:

(
j1 j2 j3

m1 m2 m3

)
=

+

j3
j2

j1 =

–

j1
j2

j3 (41)

The sign on the node indicates the sense in which the attached links shall be read.
3. If an arrow is reversed, replace in the formula above ml with −ml and multiply by

(−1)jl−ml , like

+

j3
j2

j1 = (−1)j3−m3

(
j1 j2 j3

m1 m2 −m3

)
(42)
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or

–

j1
j2

j3 = (−1)j1−m1

(
j1 j2 j3

−m1 m2 m3

)
(43)

A positive (resp. negative) node with an incoming (resp. outgoing) link corresponds
to a counter-alignment of the face and the edge.

4. Multiply all factors and sum over all ml from −jl to jl (integer steps).

As an example, graph (40) evaluates to

Av = ∑
mi

(−1)j4−m4+j1−m1

(
j1 j2 j3

m1 m2 m3

)
×
(

j4 j5 j3
m4 −m5 m3

)(
j6 j2 j4

m6 m2 −m4

)(
j6 j5 j1

m6 −m5 −m1

)
(44)

The power of graphical calculus is apparent when comparing this cumbersome formula to
diagram (40). Up to a sign, the vertex amplitude equals the 6j-symbol:

Av = ±
{

j1 j2 j3
j4 j5 j6

}
. (45)

The sign ± is a function of the spins ji, and it depends on the orientation of the links and
nodes. It matters when several vertices are glued together.

The importance of the Ponzano–Regge model was historically revealed by its semi-
classical limit, which makes it a good candidate for 3D Euclidean quantum gravity [50].
Indeed, the vertex amplitude admits a graphical representation as a tetrahedron depicted
in (40). This shape initially expresses the invariance of the 6j-symbol under the action of
the tetrahedral group. But it turns out that it also carries a deeper geometric meaning when
the labels ji are interpreted as the edge lengths of the tetrahedron. Denoting V the volume
of this tetrahedron, one can prove the following behavior for the vertex amplitude Av(λji)
when λ → ∞: {

λj1 λj2 λj3
λj4 λj5 λj6

}
∼ 1

4
√

3πλ3V

(
eiS + e−iS

)
(46)

with the action

S def
= ∑

i

(
λji +

1
2

)
ξi +

π

4
(47)

with ξi the exterior dihedral angle along the edge i [52].
Graphical calculus also clarifies how the orientation enters the computation of the

vertex amplitude. The invariance of the total amplitude ZC under changes of orientation of
the edges and faces is checked in Appendix A. To be precise, the invariance is only true
for faces and edges, which lie in the bulk of C. In general, C is bounded by some 3-valent
graph Γ over which an orientation is induced by C. The total amplitude ZC is sensitive
to the orientation of Γ. The case is similar to the amplitude defined by Equation (33).
Although topological in the bulk, BF theory is non-trivial on the boundary. The boundary
orientation provides a prototype of boundary causal structure.

A change in boundary orientation affects the value of ZC in a simple way:

• A flip of a link orientation brings a global factor (−1)2j if the two endpoints carry
opposite signs, none otherwise.

• A flip of a node orientation brings an overall factor (−1)j1+j2+j3 .

As for Feynman diagrams, this simple way of modifying the causal structure of the
boundary can be understood as a crossing symmetry.
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6.3. Causal Ponzano–Regge Model

Now, we want to go further and suggest a way to break the orientation invariance
in the bulk of the Ponzano–Regge model. A proposal of this kind can be found in [22],
starting from a formulation of causality in terms of the flux variables of the discretized BF
theory. Here, we adopt a different strategy, using the spin representation, motivated by the
semi-classical limit. It exemplifies the strategy that will be adopted in the next section for
the EPRL model [35].

Consider Hj, the spin-j irreducible representation of SU(2), with the canonical basis
|jm⟩. The coherent states are defined as

|j, z⟩ def
= u(z)|j,−j⟩ (48)

with u : C2 → SU(2) a (well-chosen) surjective map. Then, the intertwiner can be written
as the state

|ι⟩ = 1
N

∫
dg g ·

3⊗
i=1

|ji, zi⟩ (49)

with N = N(ji, zi) such that ⟨ι|ι⟩ = 1. Up to a global phase, the vertex amplitude is

Av =
1
N

∫
SU(2)

[dgn]∏
l

Kl(gtl , gsl ). (50)

tl and sl are, respectively, the source and the target of l. The wedge amplitude is defined as

K(gt, gs)
def
= ⟨j, zt|g−1

t gs|j, zs⟩ = ⟨zt|g−1
t gs|zs⟩2j. (51)

For the purpose of studying the semi-classical limit, it is convenient to write the wedge
amplitude as

K(gt, gs) = e2j(log r+iθ) (52)

with r ∈ R+ and θ ∈ (−π, π].
Now, to introduce a notion of causality, we can force some orientation structure to

appear artificially: this is done here by writing the identity

K(gt, gs) = ∑
ε∈{1,−1}

Θ(εθ) e2j(log r+iθ), (53)

where Θ is the step function and we are summing over the signs ε. We then define the
causal wedge amplitude as

Kε(gt, gs)
def
= Θ(εθ) e2j(log r+iθ). (54)

for some choice of ε, which can be understood as a choice of wedge orientation. Given
one orientation ε l per wedge l, the causal vertex amplitude Aε

v is defined by replacing the
wedge amplitude Kl by its causal alternative Kε l

l in Equation (50). The BF vertex amplitude
is recovered as

Av = ∑
[ε l ]

Aε l
v , (55)

where the sum is made over all possible sign assignations to the wedges. There is a total of
26 such configurations. This sum introduces a partition of the range of integration of (50)
into as many sectors. In the semi-classical limit, only two sectors survive, as it appears in
(46). Since the exterior dihedral angles of any tetrahedron are always such that sin ξ ≤ 0,
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the two sectors are when ε l are either all positive or all negative. Starting with the causal
vertex amplitude with all ε l negative thus leads to the asymptotic limit

A−
v ∼ 1

4
√

3πV
eiS. (56)

This provides a toy model for the appearance of causality, which we will apply to the
EPRL model.

6.4. {15j} BF Theory

Before moving to the EPRL model, let us look at BF theory in 4 dimensions. The main
difference with respect to the 3d case comes from the fact that ∆ is a 4-dimensional simplicial
complex; thus, the amplitude ZC includes a sum over the intertwiners. The graphical
representation of the intertwiners requires the introduction of an additional structure:

5. at each edge, the surrounding faces are partitioned into two sets of two (there exist
three such partitions);

6. these two sets are ordered (e.g., called left and right).

Then, the vertex amplitude is represented by a pentagram like

–
–

j1

j2

j3

j4

j5

j6
j7

j8
j9

j10

ι1+ +

ι2
–

–

ι3
+

+ ι4

ι5
+

+

(57)

ι ∈ N/2 labels the intertwiners. It is surrounded by two positive (resp. negative) nodes,
when the edge is incoming (resp. outgoing). When the nodes are positive (resp. negative),
the arrow goes from the right set to the left set (resp. the other way around). One can
check with the rules above that the overall amplitude ZC is insensitive to the additional
structure introduced. The same procedure as before can be used to define the causal vertex
amplitude Aε

v.
To sum up, discrete BF theory is defined over a 2-complex C with several auxiliary

orientation structures. The value of the partition function ZC is sensitive to the boundary
values of these structures but not in the bulk. However, we have made a proposal to select
a causal structure in the bulk as well.

7. EPRL Model and Its Causal Structure

General relativity can be formulated in a language close to the one of BF theory.
The essential difference is that GR has local degrees of freedom, which mathematically
arise from the implementation of constraints on the BF variables. Spin foam models build
upon this insight and consist of a weak implementation of these constraints in the discrete
BF theory.

The appearance of the local degrees of freedom shows up in the breaking of the
topological invariance of BF theory. The question then arises if these constraints induce
also a causal structure on the 2-complex. The analysis of the previous sections suggests
that such a causal structure can arise as an orientation structure on the edges or the wedges.



Universe 2024, 10, 181 17 of 26

Imposing constraints on these orientations then breaks the bulk orientation invariance of BF
theory discussed above. In this section, we propose such a construction for the EPRL model.

7.1. Lorentzian EPRL Model

The EPRL model [35], as formulated in [53], is defined over a 2-complex C by the
following partition function:

ZC =
∫

SU(2)
[dhw] ∏

f
δ(U f )∏

v
Av(hw). (58)

The integral is made over the variables hw ∈ SU(2) associated with each wedge w in the
bulk of C. ZC is a function of the variables hl ∈ SU(2) associated with each link of the
boundary graph Γ. Similarly to BF theory, the precise definition requires an additional
structure on C:

1. a starting wedge per each face;
2. an orientation per each face;
3. an orientation to each wedge, i.e., each wedge w has a source edge sw and a target

edge tw;
4. a distinguished edge Ev per each vertex v.

Then, U f is defined as the circular product

U f (hw)
def
=

⟲

∏
w∈ f

hw (59)

that starts with the starting wedge of f , circulates in the sense given by the orientation
of f , and each hw is inverted when the orientation of the wedge does not match with the
orientation of the face. Besides, the vertex amplitude is

Av(hw) =
∫

SL2(C)
[dge] δ(gEv) ∏

w∈v
K(hw, gsw g−1

tw
) (60)

where there is one integration over SL2(C) per each edge surrounding v. The δ(gEv) is only
here to make the integral finite, but the value of Av is actually independent of the choice of
Ev. The wedge amplitude K is a function over SU(2)× SL2(C) given by

K(h, g) = ∑
j
(2j + 1)2

∫
SU(2)

dk χj(hk) χγj,j(kg), (61)

with χj and χp,k, respectively, the characters of SU(2) and SL2(C) and γ ∈ R the Barbero–
Immirzi parameter.

The success of the EPRL model lies in its semi-classical limit, which was studied
in [32,54] for a 2-complex C made of a single vertex dual to a Lorentzian 4-simplex σ. In this
case, the partition function reduces to a single vertex amplitude Av(hw), function of one
SU(2) element hw per each of the 10 links of the boundary graph. The boundary of σ is
made of 5 tetrahedra, which can be described by the areas j and the normals n⃗ to their
faces. Then, the kinematics of loop quantum gravity prescribes a construction of a coherent
state Ψj,⃗n(hw) that is “peaked” on the boundary geometry of σ. In the limit of large areas,
λ → ∞, 〈

Ψλj,⃗n

∣∣∣Av

〉
def
=
∫

SU(2)
[dhw]Ψ∗

j,⃗n(hw)Av(hw)

∼ 1
λ12

(
NσeiλSR + NPσe−iλSR

) (62)
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with Nσ, NPσ ∈ R and SR is the Lorentzian Regge action of σ. This result takes a form
similar to (46) for the semiclassical limit of the Ponzano–Regge model.

The EPRL model is blind to the bulk orientation structure that has been introduced to
define it. Indeed, changing the starting wedge or the orientation of a face f changes the
value of U f but not of δ(U f ). Moreover, reversing the orientation of a wedge w changes
both U f and Av. In U f , it replaces hw with h−1

w . In Av, it interchanges sw and tw, and so
K(hw, gsw g−1

tw
) becomes K(hw, gtw g−1

sw ), which is easily shown to be equal to K(h−1
w , gsw g−1

tw
).

A change in variables hw −→ h−1
w within the integral finally proves that the value of ZC

remains unchanged.
The model is nevertheless sensitive to the orientation structure on the boundary. This

structure consists only of the orientation of the links on the boundary over which the
variables hl live. In the light of our preceding analysis, we expect this structure to carry
causal information.

7.2. Causal Structures in the EPRL Model

Analogously to our previous toy model for BF theory, one can break the orientation
invariance in the bulk as follows. First, one performs the integral over k ∈ SU(2) in (61),
which yields

K(h, g) = ∑
j,m,n

(2j + 1)Dj
mn(h)Dγj,j

jmjn(g). (63)

One can switch from the magnetic basis |jm⟩ to the overcomplete coherent state basis |j, z⟩
by introducing a resolution of the identity

1j =
2j + 1

π

∫
Γ

Ω(z)
∥z∥4 |j, z⟩⟨j, z| (64)

with the measure
Ω(z) def

=
i
2
(z0dz1 − z1dz0) ∧ (z∗0dz∗1 − z∗1dz∗0) . (65)

Here, Γ is the image of a path CP1 → C2 that crosses each vector line of C2 once and only
once9. One gets

K(h, g) = ∑
j

(2j + 1)3

π2

∫
Γ′×Γ′′

Ω(z′)Ω(z′′)
∥z′∥4∥z′′∥4

〈
j, z′
∣∣h†∣∣j, z′′

〉〈
γj, j, j, z′′

∣∣Dγj,j(g)
∣∣γj, j, j, z′

〉
. (66)

Following [32,54], the SL2(C) matrix element appearing above can be expressed in terms
of an auxiliary CP1 as

〈
γj, j, j, z′′

∣∣Dγj,j(g)
∣∣γj, j, j, z′

〉
=

2j + 1
π

∫
Γ

Ω(ζ)

∥ζ∥4 A eiSγ , (67)

where

A =
⟨ζ|z′′∗⟩2j〈z′∗∣∣gTζ

〉2je2ij(arg z′′1−arg z′1)

∥z′∥2j∥z′′∥2j∥ζ∥2j−2∥gTζ∥2j+2 (68)

and the wedge action

Sγ = γj log
∥gTζ∥2

∥ζ∥2 . (69)

In the semi-classical, the wedge action becomes proportional to the wedge dihedral angle.
This suggests defining the causal wedge amplitude as

Kε(h, g) = ∑
j

(2j + 1)4

π3

∫ Ω(ζ)Ω(z′)Ω(z′′)
∥ζ∥4∥z′∥4∥z′′∥4

〈
z′
∣∣h†∣∣z′′〉2j Θ(εSγ)A eiSγ . (70)
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The causal vertex amplitude Aε
v is then defined by replacing K with Kε in Equation (60),

for some choice of ε on each wedge. This defines a causal EPRL model.
The epithet ‘causal’ can be further motivated by showing indeed that the extra variable

ε ∈ {1,−1} encodes a causal structure on the wedges, as described previously.
First, the usual vertex amplitude is recovered by summing over all possible sign

assignations to wedges:
Av = ∑

[εw ]

Aε
v. (71)

There are 210 terms in the sum. If one interprets ε as wedge orientations, then a configuration
only properly defines a causal structure if the cycle condition (14) is fulfilled. So, one can
properly call Aε

v a “causal vertex amplitude” when the configuration [εw] satisfies (14),
for either choice of signature η ∈ {−1, 1}.

Secondly, assuming that the [εw] indeed defines a proper causal structure, the word
“causal” for Aε

v is only deserved if, in the asymptotic limit, ε really captures the causal ori-
entation of the boundary state. More precisely, given a Lorentzian 4-simplex, it determines
a set of ε̃ for each wedge, such that ε̃w = sign θw, where θw is the dihedral angle of the
wedge w. Then, its boundary coherent state Ψj,⃗n, when contracted with Aε̃

v, should have
the expected classical limit, i.e., 〈

Ψλj,⃗n

∣∣∣Aε̃
v

〉
∼ 1

λ12 NσeiλSR (72)

One can check that this is the case. Indeed,
〈

Ψλj,⃗n

∣∣∣Av

〉
is an integral over the variables

g, z, z′. The sum (71) introduces a partition of the range of integration in a number of sectors
[εw] characterized by εwSγ(xw) > 0, where xw stands for all the variables g, z, z′ on the
wedge w. In the asymptotic limit, the two terms of (62) arise from two stationary points
that are related by a parity transformation. The asymptotic analysis of [54] shows that
one of them, denoted σ, is such that ε̃wSγ(xσ

w) > 0. Then, the other, denoted Pσ, satisfies

Sγ(xPσ
w ) = −Sγ(xσ

w), so that Pσ and σ are in opposite sectors. By construction,
〈

Ψλj,⃗n

∣∣∣Aε̃
v

〉
selects only the sector of σ.

Our analysis suggests interpreting the two saddle points of the semi-classical limit
as related by a switch in signature convention η. This interpretation differs from the one
of [54] where the two configurations were presented as arising from two parity-related
4-simplices. It also differs from the interpretation of [36,37] as two sectors of the Plebanski
formulation intertwined with dynamical orientations. All these interpretations are related,
but it is not completely clear in which precise sense.

The asymptotic behavior (72) is the only criterion that constrains the definition of the
causal wedge amplitude. So, the dichotomy operated by Θ(εSγ) is to some extent arbitrary,
and other functions could work as well. Another choice of Kε would define a different
quantum theory with the same classical limit. Our choice appears to us as the simplest one.
Its technical properties will be discussed in a second article.

To summarize, the EPRL amplitude can be understood as the sum of three contribu-
tions:

Av = ∑
[εw ]

causal η=1

Aε
v + ∑

[εw ]
causal η=−1

Aε
v + ∑

[εw ]
spurious

Aε
v (73)

The two first terms correspond to configurations of εw that satisfy the causal constraint (14),
respectively, for the choice of signature η = 1 and η = −1. The last term contains all other
configurations of εw. That both signatures enter in the amplitude is not surprising because
both choices are allowed at the classical level. The two terms of the asymptotics in (62) can
then be understood as arising from two different choices of signature. This again is to be
expected because the Einstein–Hilbert action is such that

SEH [−gµν] = −SEH [gµν], (74)
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so that reverting the signature sends S to −S.
Barrett et al. [55] have also shown that the amplitude is not exponentially suppressed

when the boundary is compatible with a Euclidean geometry in the bulk. In such a case,
the group element g at the critical point belongs to SU(2) so that the wedge action (69)
vanishes. Thus, the Euclidean configurations cannot be identified with a configuration of
wedge orientations using our prescription.

When considering a full spin foam, we obtain the following decomposition

ZC = ∑
[εw ]

causal η=1

Zεw
C + ∑

[εw ]
causal η=−1

Zεw
C + ∑

[ηv ]
signature
changes

∑
[εw ]
local

light-cones

Zεw
C + ∑

[εw ]
spurious

Zεw
C . (75)

It then becomes an option to only consider some terms in the sum and thus partially or
completely fix the causal structure in the bulk. The discussion of Section 5 still holds.
The choice to consider the Feynman-like propagator or Hadamard-like function then
depends on what is meant to be computed: a causal propagator or a projector on the
physical Hilbert space. This conclusion answers some questions that were raised previously
in the context of loop quantum cosmology [56,57].

The causal EPRL model is not a new model but rather an interpretation of different
components of the standard vertex amplitude in terms of causal structures. This inter-
pretation is motivated a priori by the understanding that discrete causal structures can be
encoded on wedges and a posteriori by the asymptotics of the causal vertex.

8. Relation to Earlier Proposals

We discuss how the proposal of the previous section relates to earlier results.

8.1. Livine–Oriti Barrett–Crane Causal Model

Our approach is closely related to an earlier proposal on the implementation of
causality by Livine and Oriti [16]. In the context of the Barrett–Crane model, the wedge
amplitude is

Kp(x1, x2) =
2 sin(β(x1, x2) p/2)

p sinh β(x1, x2)
, (76)

where x1 and x2 can be understood as the normals to two boundary tetrahedra and β(x1, x2)
is the Lorentzian angle in-between (see appendix B for a complete definition of the symbols).
The Livine–Oriti proposal consists of expanding the sine as

Kp(x1, x2) =
1

p sinh β(x1, x2)
∑

ε=±1
ε eiεβ(x1,x2) p/2, (77)

interpreting ε as an orientation on the wedges and selecting one of the two sectors only.
The implementation of causality discussed in this paper can be understood as a direct gen-
eralization of the Livine–Oriti proposal to the EPRL model. The non-trivial step introduced
here is in the identification of how to introduce the splitting in (70).

8.2. Divergence and Spikes

The EPRL model and the Ponzano–Regge model both suffer from infrared divergences.
In the latter case, the simplest example is provided by a triangulation ∆ made of four
tetrahedra subdividing a bigger tetrahedron. The dual 2-complex has 4 vertices and
10 faces. The four interior faces enclose a bubble. The partition function is given by

ZC = ∑
ji

(
∏

f
(2j f + 1)

)
Av1 Av2 Av3 Av4 . (78)
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The sum is made over the spins ji attached to the interior faces. The spins of the other faces
are not summed over because they are fixed by the boundary conditions. The range of the
sum for each interior face is a priori restricted by its neighboring faces according to the
Clebsh–Gordan conditions. But the existence of a bubble implies that the sums are actually
unbounded. This would not be a problem if the vertex amplitude Av was decreasing fast
enough for large spins, but such is not the case.

In the asymptotic limit, Av consists of two conjugate terms like

Av ∼ A+
v + A−

v , (79)

as shown in Equation (46). The sign ± can be seen as an orientation of the tetrahedron dual
to v. Thus,

Av1 Av2 Av3 Av4 ∼ ∑
εi

Aε1
v1 Aε2

v2 Aε3
v3 Aε4

v4 , (80)

where the sum is carried over all possible sign assignations to the four vertices. In [58], it
is suggested that only some of the terms in this sum, dubbed “spikes”, contribute to the
divergence. The spikes are specific configurations among those for which the light cones
are locally well-defined but with signature switches between the vertices. In other words,
a wise selection of vertex orientation can cure the model from divergences. It is suggested
that a similar behavior could cure the EPRL model as well.

Our proposed causal EPRL model (70) satisfies the requirements identified in [58].
However, there are two main differences with respect to their proposal: (i) We fix the
orientation at the level of wedges, which is a finer scale than that of tetrahedra. (ii)
The orientation is fixed in the definition of the amplitude, while theirs only holds in the
asymptotic limit.

8.3. Engle’s Proper Vertex

The EPRL model has been criticized on the basis of its asymptotics, featuring the
so-called cosine problem [59–61]. The presence of two critical points is expected to cause
problems when several vertices are considered [62]. Engle has argued that the origin of this
phenomenon is the fact that the EPRL model is built from discrete BF theory by imposing
the simplicity constraint, but the latter is not strong enough as it admits three sectors out of
the five of the Plebanski formulation [36,37]. The proposal of a proper vertex [37] includes
further constraints that restrict the model to the Einstein–Hilbert sector only. This is done
by introducing in each wedge amplitude a spectral projector that concretely acts as a step
function Θ. As a result, only one of the two terms in (62) is selected.

Our proposed causal vertex (70) shares a similar feature in that it amounts to the
introduction of a step function Θ on each wedge10. Yet, let us remark that the motivations
are different. While Engle’s proper vertex is motivated by the restriction to the Einstein–
Hilbert sectors, and therefore to address the cosine problem, we are motivated by our
analysis of the causal structure. It would be interesting to investigate thoroughly the
relation between the sectors of Plebanski, the signature convention and the orientation
of space–time, following the analysis of Immirzi in [30]. Our analysis suggests that the
appearence of the cosine in the asymptotics is a feature of the projector for the Hamiltonian
constraint. Instead, when the spin foam model is used as a causal propagator (as in
Teitelboim’s approach [16,48]), one selects only one class of causal configurations and finds
only the contributions of the form eiλSR in the asymptotics.

9. Conclusions

The metric field of general relativity is almost fully determined by its causal structure.
In this paper, we have investigated the role played by the causal structure in spin foam
quantum gravity. We can summarise our main points as follows:

− The notion of causality in general relativity encompasses two related but conceptually
different notions: bare causality and time orientability.
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− There is a natural way to translate these notions to a simplicial complex.
− The causal structure can be implemented on the dual 1-skeleton (edges). It can be seen

as the combination of a causal set with a neighborhood relation.
− It can also be encoded on the dual 2-skeleton (wedges) with a degeneracy of 2 that

corresponds to a global time-reversal symmetry.
− Starting from the set of all possible wedge orientations, the Lorentzian Regge action

determines equations of motion whose solutions fix a proper causal structure.
− The metric propagator can be written as a sum over all possible wedge orientations.

By fixing the causal structure from the beginning, one defines a causal metric propaga-
tor, similar to the Feynman propagator.

− Discrete BF theory naturally carries an orientation structure on the edges and faces,
although it is blind to it in the bulk.

− Discrete BF theory is sensitive to the orientation on the boundary. There are simple
rules of crossing symmetry to go from one orientation to another.

− There is a simple way to break the orientation invariance in the bulk, which provides
a toy model to study causality in spin foam models (70).

− The EPRL amplitude can be regarded as a sum over all possible configurations of
wedge orientations εw, which provide additional dynamical variables encoding the
causal structure. Only a subset of it corresponds to properly causal configurations.

− The causal EPRL vertex shares common traits with the Livine–Oriti causal version of
the Barrett–Crane model and with Engle’s proper vertex.

− Whether one should use the causal or the full EPRL amplitude depends on what one
wants to compute: a projector on the physical Hilbert space or a causal propagator.
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Appendix A. Orientation Invariance of the Ponzano–Regge Model

The Ponzano–Regge model is defined over a 2-complex C. To write the partition
function like (39), it is necessary to introduce an orientation structure on the edges and
faces. However, the value of ZC is independent of this structure in the bulk. This can be
checked as follows.

Consider an edge. Its orientation plays a role in the amplitudes of the two vertices that
terminate the edge. Graphically, the contribution of the edge is

+–

j1

j2

j3

j1
j2

j3 (A1)

The face orientation, represented by the arrows, is actually irrelevant to the property that
we are proving. What matters is that an edge spawns two nodes, one positive and one
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negative. Reversing the orientation amounts to switching the signs of both nodes. With the
above rules, it is easy to check that

–
+

j1

j2

j3

j1
j2

j3

=
+–

j1

j2

j3

j1
j2

j3

(A2)

which proves the invariance under a change in edge orientation.
Now, consider a face. Its orientation plays a role in the amplitudes of all the vertices

around the face. For instance, in the case of a face labeled by j and surrounded by three
vertices, its orientation appears as an arrow on the j-link of three vertex amplitudes, like

+
– +

–

+
–

j

j j
f

(A3)

Reversing the orientation of the face amounts to reversing the arrow on each of the links
around. Now, using the above rules, it is easy to show that

1. Reversing the arrow of a link in-between two positive or two negative nodes amounts
to multiplying by (−1)2j.

2. Reversing the arrow of a link in-between a positive and a negative link does not
change the vertex amplitude.

Overall, one gets a factor (−1)2j for each link surrounded by nodes of the same sign.
To conclude, we need to prove the lemma that the number of such links around a face is
always even. Indeed, choose a face and call V the number of vertices around and D (resp.
S) the number of links around that have endpoint nodes with different (resp. the same)
signs. We have S + D = V. Then, notice that there are in total as many positive as negative
nodes, so that the product of the signs of the nodes around a face is (−1)V . The same
quantity can be computed differently as (−1)D. This shows that V and D have the same
parity, which implies that S is even and proves the lemma. As a conclusion, ZC is indeed
invariant under a change in face orientation.

Appendix B. Causal Barrett–Crane Model

In this appendix, we review the Livine–Oriti causal version of the Lorentzian Barrett–
Crane spin foam [16].

Appendix B.1. Lorentzian Barrett–Crane

The Lorentzian Barrett–Crane model was introduced in [12]. The 2-complex C is dual
to a 4-dimensional simplicial complex ∆, and each face f is labeled by a positive number
p f ∈ R+. As formulated in [16]11, the partition function reads

ZC =
∫
R+

[dp f ] ∏
f

p2
f ∏

e
Ae ∏

v
Av. (A4)
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The integral is carried over the labels p f for each face. The edge amplitude is given by

Ae =
∫
(H+)2

dx1dx2 ∏
f∈e

Kp f (x1, x2). (A5)

The integration is carried over variables x1, x2 ∈ H+ of the upper hyperboloid and the
so-called kernel

Kp(x1, x2) =
2 sin(β(x1, x2) p/2)

p sinh β(x1, x2)
(A6)

with β(x1, x2) the Lorentzian angle between x1 and x2:

β(x1, x2)
def
= cosh−1(x1 · x2) ≥ 0. (A7)

Surrounding a vertex v, the edges are labeled with an index i ∈ {1, ..., 5}, and the faces are
consistently labeled with a couple of such indices. Then, the vertex amplitude is computed
as

Av =
∫
(H+)5

[dxe] δ(x5 − 1) ∏
(ij)

Kpij(xi, xj). (A8)

It is striking to realize that the formulae are expressed without any reference to the ori-
entation of C. In this sense, the Lorentzian Barrett–Crane model is completely blind to
the causal structure to the extent that it does not even take care of the causal structure on
the boundary.

Appendix B.2. Livine–Oriti Causal Model

The latter fact was recognised as unsatisfactory by Livine and Oriti in [16]. Rewriting
the kernel as

Kp(x1, x2) =
1

p sinh β(x1, x2)
∑

ε=±1
ε eiεβ(x1,x2) p/2 (A9)

we see that the Lorentzian Barrett–Crane gives the amplitude:

Z(∆) = ∑
ε f

∫
(H+)5

[dxe] δ(x5 − 1)

(
∏
f∈v

ε f

p f sinh β f

)
ei ∑ f ε f β f p f /2. (A10)

where the sum is carried over all possible sign assignations to the faces f around the vertex
v. The p f are related to the area of the boundary triangle by

p f = λA f . (A11)

In the semi-classical limit, when λ −→ ∞, the sum over ε f and the integral over xe in (A10)
are dominated by only two terms for which the variables describe the two only possible
4-simplices, which have p f as areas up to degenerate contributions.

The coexistence of two terms in the asymptotic limit can be interpreted as a time-
reversal symmetry of the model. So Livine and Oriti proposed to change the vertex
amplitude of the Barrett–Crane model by truncating the sum over ε f to keep only the term
that matches the causal structure of the dual 4-simplicial complex. This defines a causal
amplitude with only one term in the asymptotic limit. When ∆ consists of many 4-simplices,
the same truncation leads to the selection of a single causal structure on ∆.

Notes
1 The denomination is ours. Surprisingly, it seems that this notion does not carry a specific name in the literature. It is usually

simply called “causality”, but here we need a specific name to be accurate.
2 We leave the rigorous definition of “nicely glued together” unspecified here as it does not affect directly our investigation. See [32]

for details and its relation to twisted geometries [38].
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3 We deliberately ignore the null case, which does not seem to shed much light on our investigation.
4 A directed graph is given by a set of vertices and a set of ordered pairs of vertices (arrows). It is considered simple if there are no

arrows from a vertex to itself. It is considered oriented if there is at most one arrow between any two vertices.
5 A directed graph is acyclic if it has no directed cycles, which means, in causal language, no closed time-like curves. If we do

assume the presence of directed cycles, then the construction of the poset is still possible but subtler because the anti-symmetry
implies the contraction of such cycles, so that more combinatorial information is lost.

6 We denote indifferently e ∈ v or v ∈ e when the vertex v is an endpoint of the edge e.
7 Given a vertex, the vertex graph associates a node to each edge and a link to each wedge in-between. In graph theory, the word

“edge” is usually used instead of “link”. But, we stick to a common convention in loop quantum gravity (see [7]) where “edge” is
reserved to the bulk of 2-complexes and “link” is used for the boundary.

8 We refer to [51] for an introduction to the mathematical material used in this section.
9 More abstractly, it can be regarded as a section of the Hopf bundle.

10 Note that, a priori, it is not clear that the restrictions introduced in the two proposals match away from the semi-classical limit.
In fact, Engle’s proper vertex introduces a step-function Θ on each wedge, which depends on data on the full 4-simplex, while
the step function Θ in (70) is local on the wedge but includes the wedge orientations εw as additional dynamical variables.

11 Note that in [16], the expressions are directly on the triangulation instead of the dual picture.
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