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Abstract: This study aimed to develop a novel predictive equation for calculating resting metabolic
rate (RMR) in women with lipedema. We recruited 119 women diagnosed with lipedema from
the Angiology Outpatient Clinic at Wroclaw Medical University, Poland. RMR was assessed using
indirect calorimetry, while body composition and anthropometric measurements were conducted
using standardized protocols. Due to multicollinearity among predictors, classical multiple regres-
sion was deemed inadequate for developing the new equation. Therefore, we employed machine
learning techniques, utilizing principal component analysis (PCA) for dimensionality reduction and
predictor selection. Regression models, including support vector regression (SVR), random forest
regression (RFR), and k-nearest neighbor (kNN) were evaluated in Python’s scikit-learn framework,
with hyperparameter tuning via GridSearchCV. Model performance was assessed through mean
absolute percentage error (MAPE) and cross-validation, complemented by Bland–Altman plots for
method comparison. A novel equation incorporating body composition parameters was developed,
addressing a gap in accurate RMR prediction methods. By incorporating measurements of body cir-
cumference and body composition parameters alongside traditional predictors, the model’s accuracy
was improved. The segmented regression model outperformed others, achieving an MAPE of 10.78%.
The proposed predictive equation for RMR offers a practical tool for personalized treatment planning
in patients with lipedema.

Keywords: predictive equation; resting metabolic rate; lipedema

1. Introduction

Precisely estimating the energy needs of individuals has numerous valuable clinical
applications. One evident application is in managing the weight of individuals, espe-
cially when they are dealing with obesity [1]. Lipedema is often misdiagnosed as obesity;
however, the two frequently co-occur. The majority of women with lipedema are also
overweight or have obesity [2,3]. Lipedema is a chronic progressive disease that primarily
affects women. It is characterized by an excessive accumulation of fat on the legs (without
involvement of the feet) and in one third of all patients, on the arms. The most common
clinical symptoms of lipedema include a disproportion between the upper and lower parts
of the body, spontaneous or palpation-induced pain, and easy bruising. The etiology of
the disease is still unknown, but several factors may be involved, such as genetic predis-
position, hormonal influence, changes in fat cells, microvascular dysfunction, capillary
damage, lymphatic disturbances, and inflammation [4–6]. The progression of lipedema
is linked with weight gain; therefore, weight management and obesity treatment are cru-
cial factors in the treatment of lipedema [7–9]. Lipedema is frequently confused with
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lymphedema, a condition directly linked to lymphatic system failure or damage to lym-
phatic vessels. Table 1 provides a comparison to help distinguish between lipedema and
lymphedema [2,5,6].

Table 1. Differences between lipedema and lymphedema.

Characteristic Lipedema Lymphedema

Gender Female Female and male

Onset Puberty, pregnancy,
menopause Childhood to elderly

Family history Common In some cases of
primary lymphedema

Areas affected Buttock, hips, legs,
sometimes arms Legs and feet, arms and hands

Symmetry Often Possible

Pain in the legs/arms Often Rare

Tenderness of legs/arms Often Rare

Easy bruising Often Absent

Pitting edema Absent Present

Affected feet Absent Present

Response to diet and exercises Absent Possible

Resting metabolic rate (RMR) is a crucial component in estimating overall energy
expenditure. RMR is the amount of energy, measured in calories, that the body requires at
rest in order to maintain basic physiological functions such as breathing, circulation, and
cell production. It represents the minimum amount of energy needed to sustain life when
the body is in a completely rested and fasting state. The body’s metabolism is the process
by which it converts food and nutrients into energy. RMR specifically refers to the energy
expended during these basic bodily functions while at rest. It does not take into account
the energy expended during physical activity or the thermic effect of food [10,11]. RMR
typically constitutes the majority, ranging from 60% to 75%, of the total energy expenditure
(TEE) [1]. Several factors influence an individual’s RMR, including body composition,
especially fat-free mass, age, gender, genetics, hormones, ethnicity, physical fitness, and a
range of related environmental factors, including diet [11,12].

Individuals with lipedema may have unique metabolic characteristics compared to
the general population. In our previous study, we demonstrated that commonly used equa-
tions for normal or overweight/obese patients have limited applicability in individuals
with lipedema. Our study revealed a low agreement of predictive equations compared to
actual RMR measured by an indirect calorimetry (IC) in lipedema patients (less than 60%).
The most frequently applied equations prove ineffective in clinical practice within this
specific population, primarily due to substantial individual variations among the women
studied [13]. We also concluded that IC is the most reliable tool for assessing RMR in
patients with lipedema. However, given its limited availability and high cost, there was a
necessity to propose a new equation for determining RMR in clinical practice when IC is
not accessible (e.g., in a dietitian’s office, health clinic, or hospital). Accurate knowledge of
RMR helps in calculating daily caloric needs, which is essential for weight management,
designing appropriate nutrition plans, and avoiding under- or overestimation of energy re-
quirements [14]. By having specific predictive equations for RMR in women with lipedema,
healthcare professionals can tailor treatment plans, including dietary recommendations
and exercise regimens, to better meet the metabolic needs of these individuals. Having
reliable predictive equations for RMR in women with lipedema can enhance the precision
of clinical assessments and research studies focused on metabolic aspects of lipedema. This
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can contribute to a deeper understanding of the condition and facilitate the development
of more effective interventions. Healthcare providers can use accurate predictive equations
for RMR to offer more personalized and effective care to women with lipedema. This in
turn may lead to better adherence to treatment plans and improved long-term outcomes.

The aim of this study was to derive a predictive equation for resting metabolic rate
(RMR) using a sample of 119 women with lipedema.

2. Materials and Methods
2.1. Study Population

The investigation included a total of 119 female participants recruited from the Angi-
ology Outpatient Clinic at Wroclaw Medical University in Poland. This cohort comprised
individuals diagnosed with lipedema based on typical clinical symptoms by an angiol-
ogist [15]. Exclusion criteria encompassed pregnancy, breastfeeding, a post-pregnancy
period of 6 months, various medical conditions such as lymphedema, edema associated
with chronic vein insufficiency or heart failure, diabetes mellitus, kidney or liver failure,
hormonally imbalanced thyroid disease, cancer, and the presence of implanted devices. The
research adhered to the Declaration of Helsinki and received approval from the Bioethics
Committee at Wroclaw Medical University, Poland (KB-456/2019). All participants pro-
vided written informed consent. The study commenced in January 2020 and concluded in
June 2021.

2.2. Body Composition and Anthropometry

The Tanita HR-001 growth meter (Tanita, Tokyo, Japan) was utilized for height assess-
ment, while the Tanita MC-780MA (Tanita, Japan) was employed for measuring weight and
various body composition parameters. Parameters including body fat percentage, body
fat (kg), lean body mass (kg), total body water (kg), and visceral fat level were recorded.
Participants were advised to abstain from food or drink for a minimum of 4 h, refrain from
vigorous physical activity for 12 h, and avoid diuretics for 6 h prior to the study. Body
mass index (BMI) was computed as the ratio of body weight (kg) to height (m) squared.
Measurements of waist, hip, thigh, calf, and ankle circumferences were conducted using a
standard tape measure, with accuracy to the nearest 1 cm.

2.3. RMR Measurement

Gas exchange was assessed using the FitMate WM device (Cosmed, Rome, Italy)
through indirect calorimetry (IC). IC, recognized as the gold standard for measuring resting
metabolic rate (RMR), involves quantifying oxygen consumption (VO2) and carbon dioxide
production (VCO2). The respiratory quotient (RQ), represented by the ratio of VCO2 to VO2
(VCO2/VO2), determines the substrate utilization. The calorimeter collects breath exchange
for gas analysis, allowing the determination of RMR using Weir’s equation (resting energy
expenditure (REE) (kcal/day) = [(VO2·3.941) + (VCO2·1.11)]·1440) [16].

Prior to the measurement, participants were instructed to abstain from food and drinks
(except water) for 8 h and vigorous exercise for 48 h. The assessment was conducted with
participants in the supine position in a ventilated, dimly lit room maintained at a moderate
temperature (22–26 ◦C) [17,18]. Participants were examined in the morning after 7–9 h of
sleep. A 15 min rest in a seated position preceded the measurement to optimize conditions.
Subsequently, participants donned a Fitmate WM face mask, and the measurement, lasting
10–20 min, was carried out in isolation to minimize external noise. Calibration of the
Fitmate WM device was performed before each RMR assessment. The progress of the
measurement was continuously monitored on the Fitmate WM screen. Participants were
briefed on the procedural details before the study commenced.

2.4. Statistical Analysis

Similarly to other studies, we assumed the RMR to be linearly dependent on predic-
tors. In such models, an assumption of non-multicollinearity of predictors should be met.
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Therefore, firstly multicollinearity was assessed using the variance inflation factor (VIF).
We adopted a VIF > 10 as the criterion of multicollinearity presence. The VIF analysis
revealed significant collinearity of all the predictors considered, as shown in Table 2.

Table 2. Variance inflation factor for all predictors.

Age Height Weight BMI LBM PBF MBF TBW VFL Waist Hips WHR

2.74 40.64 864.54 375.52 106.58 26.57 240.12 37.01 12.00 197.63 96.05 88.62

BMI, body mass index; LBM, lean body mass; PBF, percentage body fat; MBF, mass body fat; TBW, total body
water; VFL, visceral fat level; WHR, waist-hip ratio.

As a result, classical multiple regression could not be reliably performed. Conse-
quently, we resorted to employing machine learning (ML) methods instead. Multiple
regression as a machine learning algorithm typically demands a sufficiently large sample
(10 samples by predictor), and this requirement is contingent upon the number of explana-
tory variables. Given the insufficient data available (106 samples for 12 predictors) in our
case, we opted for dimensionality reduction using principal component analysis (PCA).
PCA is particularly effective when dealing with results linearly dependent on each variable
and for standardized data. To ascertain linear dependence, we standardized the data by
subtracting the mean and dividing by the standard deviation. The analysis revealed more
or less linear dependence, prompting us to perform classical PCA without any kernel
or rotation.

The determination of the number of principal components considered was guided
by scree plot (Figure 1). We opted to retain the first three principal components, since
collectively they accounted for 98.7% of the variance. This choice aligns with the outcome
obtained using Kaiser’s rule (i.e., to retain all components with eigenvalues above 1.0).
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Figure 1. Scree plot for PCA.

To clarify how each variable is depicted within a specific component using the square
cosine values (Cos2), we employed the “fviz_cos2” function from the fact extra package.
The outcomes are visually represented in Figure 2, where the chart illustrates the square
cosine (Cos2) values of variables concerning dimensions (Dim-1-2). A low value means
that that variable is badly represented by that component, while a high value is connected
to a good representation of the variable on that component [19]. The minimum value of a
square cosine is 0 and the maximum 1.
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Figure 2. Cos2 of variables to Dim-1-2.

Furthermore, we computed the quality of representation associated with each variable
and incorporated this information into the biplot to elucidate the interconnections among
variables and their significance (Figure 3). The details of the obtained principal compo-
nents are presented in Table 3. Statistical analysis was performed using R (version 4.3.1)
with packages (corrr [20], FactoMineR [21], factoextra [22]), Python (version 3.11.4) with
packages (NumPy [23], Pandas [24], matplotlib [25], seaborn [26], and Statistica (version
13.3.721.1).
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Table 3. Loadings of the first three principal components.

Parameter PC 1 PC 2 PC 3

Agest 0.2328 0.4479 0.3150

Heightst −0.2903 0.4934 −0.1447

Weightst 0.2936 −0.2250 −0.0650

BMIst 0.3674 −0.0695 −0.0215

LBMst 0.2726 −0.2927 −0.1423

PBFst 0.3374 0.0497 0.1300

MBFst 0.3294 −0.1349 −0.0030
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Table 3. Cont.

Parameter PC 1 PC 2 PC 3

TBWst 0.2066 −0.3635 −0.2148

VFLst 0.3174 0.0776 0.3330

Waistst 0.2962 0.0535 −0.3125

Hipsst 0.2795 −0.3113 0.2579

WHRst 0.1853 0.3951 −0.7189
PC, principal component; BMI, body mass index; LBM, lean body mass; PBF, percentage body fat; MBF, mass
of body fat; TBW, total body water; VFL, visceral fat level; WHR, waist-hip ratio. We denoted the standardized
variable “st” as a lower index.

2.4.1. Machine Learning Model

There is a lack of theories describing which regression model will be the best in each
situation; thus, we decided to create more than one model and choose the best one based
on the mean absolute percentage error (MAPE). The following regression models were
evaluated: soft vector regression (SVR), random forest regression (RFR), k-nearest neighbor
regression (kNN regression), ridge regression, and segmented regression (SR). Each model
was developed in a Python environment using the scikit-learn package [27].

2.4.2. Model Evaluation

The dataset was divided into two parts—a training dataset and a test dataset—with
each containing 90% and 10% of the original dataset, respectively (the splitting was done
randomly and only once for all datasets). Moreover, a cross-validation technique with
5 folds was employed to address the overfitting problem. The hyperparameters for each
model were chosen based on the results of the GridSearchCV function. Subsequently, the
model with the obtained hyperparameters was trained on the training dataset and then
evaluated on the test dataset using MAPE. As the model is intended for predicting RMR
in real cases, the MAPE was calculated based on non-standardized data. Each model was
compared based on the resulting MAPE, and the one with the least MAPE was selected.
Additionally, a Bland–Altman plot was generated for each model to check for similar trends
or biases between methods.

3. Results

Based on the body composition details, we observed that the majority of the study
population had overweight or obesity, particularly visceral obesity. The mean mass of body
fat constituted almost 35% of the total body weight, indicating a substantial amount of
body fat. The detailed anthropometric characteristics and body composition analysis of
the study groups at baseline are presented in Table 4. In the study group, the mean BMI
was 32.1 ± 8.5 kg/m2. Of the study population, 74.8% (89 individuals) were classified as
overweight/obese. The majority of women (57.1%, n = 68) fell into the obesity category,
defined by a BMI ≥ 30 kg/m2. The distribution of BMI in the study population is illustrated
in Figure 4.

Table 4. Clinical characteristics of the study groups at baseline.

Parameter Lipedema, n = 119
Mean ± SD

Age (years) 43.4 ± 13.4

Height (cm) 165.5 ± 6.8

Weight (kg) 87.5 ± 21.8

BMI (kg/m2) 32.1 ± 8.5

LBM (kg) 48.7 ± 19.8
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Table 4. Cont.

Parameter Lipedema, n = 119
Mean ± SD

PBF (%) 37.7 ± 7.3

MBF (kg) 34.4 ± 13.8

TBW (kg) 38.6 ± 6.5

VFL 12.7 ± 5.1

Waist (cm) 96.5 ± 17.5

Hips (cm) 115.6 ± 13.6

WHR 0.8 ± 0.1

RMR (kcal/day) 1685.8 ± 310.4
BMI, body mass index; LBM, lean body mass; PBF, percentage body fat; MBF, mass body fat; TBW, total body
water; VFL, visceral fat level; WHR, waist-hip ratio; RMR, resting metabolic rate.
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3.1. Soft Vector Regression (SVR)

Hyperparameters were determined through the utilization of GridSearchCV employ-
ing a fivefold cross-validation approach: C = 1, kernel = “poly,” degree = 1. The mean
absolute percentage error (MAPE), computed on the non-standardized test dataset, was
found to be 0.1189 (11.89%). The Bland–Altman plot revealed a tendency of the algorithm to
underestimate for lower values and overestimate for the highest values of resting metabolic
rate (RMR), as depicted in Figure 5.
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3.2. Random Forest Regression (RFR)

Hyperparameters were determined after utilizing GridSearchCV with fivefold
cross-validation: bootstrap = true, “max_depth” = 10, “max_features” = “sqrt”,
“min_samples_leaf” = 4, “min_samples_split” = 2, “n_estimators” = 200. The mean absolute
percentage error (MAPE), calculated on the non-standardized test dataset, was found to be
0.1424 (14.24%). The Bland–Altman plot (Figure 6) reveals a nearly negligible tendency of
the algorithm to underestimate for lower values and overestimate for the highest value of
resting metabolic rate (RMR). This observation may be attributed to the construction of the
RFR algorithm, which is based on the bagging method.
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3.3. k-Nearest Neighbor (kNN) Regression

Hyperparameters were determined after employing GridSearchCV with fivefold cross-
validation: “algorithm” = “auto”, “n_neighbors” = 6, “weights” = “uniform.” The mean
absolute percentage error (MAPE), computed on the non-standardized test dataset, was
found to be 0.1592 (15.92%). The Bland–Altman plot (Figure 7) indicates a tendency of
the algorithm to underestimate for lower values and overestimate for the highest value of
resting metabolic rate (RMR).
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3.4. Ridge Regression

Hyperparameters were determined following the application of GridSearchCV with
fivefold cross-validation: “alpha” = 0.0001, “solver” = “auto”, “tol” = 0.001. The mean abso-
lute percentage error (MAPE), assessed on the non-standardized test dataset, amounted to
0.1207 (12.07%). The Bland–Altman plot (Figure 8) illustrates a tendency of the algorithm to
underestimate for lower values and overestimate for the highest value of resting metabolic
rate (RMR).
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3.5. Segmented Regression (SR)

Due to the limited size of the dataset, the decision on how to split it was predetermined,
selecting the median (−0.0567) of RMR results. Subsequently, both datasets were parti-
tioned into training and test sets using the previously described criteria. For each part, the
support vector regression (SVR) method was applied with the following hyperparameters:

Part 1: C = 1.5, degree = 1, kernel = “poly”
Part 2: C = 1, degree = 1, kernel = “poly”
It is noteworthy that the splitting point was determined based on the measured results

within our dataset. In typical scenarios where prior knowledge of RMR is unavailable, a
defined methodology for splitting must be established. To address this, we propose the
introduction of a system of equations for RMR calculation, as calculating RMR formulas
independently may lead to overlapping results for a portion of the data.

RMRst = 0.04720 × PC1st + 0.0452 × PC2st + 0.0509 × PC3st − 0.600
if
0.0482 × PC1st + 0.0452 × PC2st + 0.0509 × PC3st − 0.600 ≤ −0.0567
RMRst = 0.2160 × PC1st + 0.2184 × PC2st + 0.2116 × PC3st + 0.4945 otherwise

Certainly, if we want to convert the equation to the original version and denote σy
as the standard deviation of y in the original dataset and xy as the mean of y, the original
RMR can be obtained from the following equation:

RMR = (0.0472 × PC1st + 0.0452 × PC2st + 0.0509 × PC3st − 0.6000) × σRMR + xRMR
if
0.0482 × PC1st + 0.0452 × PC2st + 0.0509 × PC3st − 0.6000 ≤ −0.0567
RMR = (0.2160 × PC1st + 0.2184 × PC2st + 0.2116 × PC3st + 0.4945) × σRMR + xRMR otherwise

The next step is to outline the process for obtaining standardized principal components.
By referring to the results presented in Table 3, one can derive the following:

PC1 = 0.2328 × Age − 0.2903 × height + 0.2936 × weight + 0.3674 × BMI +0.2726 × LBM + 0.3374 × PBF +
0.3294 × MBF + 0.2066 × TBW + 0.3174 × VFL + 0.2962 × waist + 0.2795 × hips + 0.1853 × WHR

PC2 = 0.4479 × age + 0.4934 × height − 0.2250 × weight − 0.0695 × BMI − 0.2927 × LBM + 0.0497 × PBF −
0.1349 × MBF − 0.3635 × TBW + 0.0776 × VFL + 0.0535 × waist − 0.3113 × hips + 0.3951 × WHR

PC3 = 0.3150 × age − 0.1447 × height − 0.0650 × weight − 0.0215 × BMI − 0.1423 × LBM + 0.1300 × PBF −
0.0030 × MBF − 0.2148 × TBW + 0.3330 × VFL − 0.3125 × waist + 0.2579 × hips − 0.7189 × WHR

Therefore, the calculation of standardized principal components proceeds as follows:
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PC1st = [0.2328 × age − 0.2903 × height + 0.2936 × weight + 0.3674 × BMI + 0.2726 × LBM + 0.3374 × PBF
+ 0.3294 × MBF + 0.2066 × TBW + 0.3174 × VFL + 0.2962 × waist + 0.2795 × hips + 0.1853 × WHR − xPC1]/σPC1

PC2st = [0.4479 × age + 0.4934 × height − 0.2250 × weight − 0.0695 × BMI − 0.2927 × LBM + 0.0497 × PBF
− 0.1349 × MBF − 0.3635 × TBW + 0.0776 × VFL + 0.0535 × waist − 0.3113 × hips + 0.3951 × WHR − xPC2]/σPC2

PC3st = [0.3150 × age − 0.1447 × height − 0.0650 × weight − 0.0215 × BMI − 0.1423 × LBM + 0.1300 × PBF
− 0.0030 × MBF − 0.2148 × TBW + 0.3330 × VFL − 0.3125 × waist + 0.2579 × hips − 0.7189 × WHR − xPC3]/σPC3

Table 5 presents the means and standard deviations needed for the above systems
of equations.

Table 5. Mean and standard deviation of RMR and first three principal components.

Parameter Mean SD

PC1 109.5763 34.5448

PC2 109.9039 34.5661

PC3 108.9802 34.5062

RMR 1693.5234 310.5558

The final equation is given by:

RMR = (0.0472 × PC1st + 0.0452 × PC2st + 0.0509 × PC3st − 0.600) × 310.5558 + 1693.5234
if
0.0482 × PC1st + 0.0452 × PC2st + 0.0509 × PC3st − 0.600 ≤ −0.0567
RMR = (0.2160 × PC1st + 0.2184 × PC2st + 0.2116 × PC3st + 0.4945) × 310.5558 + 1693.5234 otherwise

The particular variables can be obtained from the following equations:

PC1st = [0.2328 × age − 0.2903 × height + 0.2936 × weight + 0.3674 × BMI + 0.2726 × LBM + 0.3374
× PBF + 0.3294 × MBF + 0.2066 × TBW + 0.3174 × VFL + 0.2962 × waist + 0.2795 × hips + 0.1853 × WHR
− 109.5763]/34.5448

PC2st = [0.4479 × age + 0.4934 × height − 0.2250 × weight − 0.0695 × BMI − 0.2927 × LBM + 0.0497
× PBF − 0.1349 × MBF − 0.3635 × TBW + 0.0776 × VFL + 0.0535 × waist − 0.3113 × hips + 0.3951 × WHR
− 109.9039]/34.5661

PC3st = [0.3150 × age − 0.1447 × height − 0.0650 × weight − 0.0215 × BMI − 0.1423 × LBM + 0.1300
× PBF − 0.0030 × MBF − 0.2148 × TBW + 0.3330 × VFL − 0.3125 × waist + 0.2579 × hips − 0.7189 × WHR
− 108.9802]/34.5062

The aforementioned system of equations obviates the necessity for prior knowledge of
RMR and yields consistent results. Employing this equation produces an MAPE of 10.78,
representing the optimal outcome among all models. Furthermore, it is noteworthy that
the Bland–Altman plots exhibit a similar trend to that observed in the previous case, albeit
on a reduced scale (Figure 9).
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4. Discussion

This study aimed to develop a predictive equation for resting metabolic rate (RMR)
specifically tailored to women with lipedema, a chronic progressive disease characterized
by abnormal fat accumulation. The importance of accurately estimating RMR lies in its role
in determining overall energy expenditure, which is crucial for managing weight, especially
in conditions like lipedema, where weight gain is linked to disease progression [8,9]. Our
recent study identified a low-carbohydrate, high-fat diet with anti-inflammatory properties
as the most effective treatment [28]. However, the precise calculation of resting metabolic
rate and the energy value of the diet remains unknown. In clinical practice, the Mifflin
et al. [29] equation is commonly applied, specifically tailored for overweight/obese patients,
while the Harris–Benedict [30] equation is used for patients with normal body weight.
However, our previous study demonstrated that these equations lack accuracy for females
with lipedema, showing significant individual differences when compared to the actual
resting metabolic rate measured by indirect calorimetry. Consequently, we have concluded
that the development of a new equation dedicated to this patient group is necessary due to
the inaccessibility of indirect calorimetry in hospitals and outpatient clinics [13]. Lipedema
patients exhibit distinct differences from individuals with overweight or alimentary obesity,
resulting in unique nutritional requirements. In comparison to individuals with obesity,
lipedema patients show an increased adipocyte area. The number of macrophages exhibits
a significant elevation in both the skin and fat of the lipedema group compared to those
with obesity. Furthermore, there is an observed augmentation in dermal vessels in the non-
obese lipedema group when contrasted with the obese group [31]. Additionally, particular
authors strongly advocate for the development of new resting metabolic rate prediction
equations that extend beyond the Caucasian race, considering different anthropometric
characteristics, genetic backgrounds, lifestyle factors, and nutritional habits in diverse
populations [10].

The newly created and validated equation for predicting resting metabolic rate in
individuals with lipedema addresses a significant gap in accurate yet straightforward RMR
prediction techniques. This new equation offers an easy and widely applicable alternative
to indirect calorimetry, which is both expensive and not widely accessible. The robust
correlation observed between the RMR measured through indirect calorimetry and the
RMR predicted by the equation developed in this study enhances the practical utility of
our new equation.

The current study signifies the development of an RMR prediction equation that
incorporates body composition parameters, including lean body mass, body fat mass, total
body water, and visceral fat level. Acknowledging the disproportion between the upper
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and lower parts of the body, a typical characteristic of lipedema patients, we have also
incorporated waist, hips, and waist-to-hip ratio (WHR) to enhance the accuracy of the
new equation. This is in addition to including height, weight, body mass index (BMI),
and age in the typical predictive model [29,30]. Kfir et al. [32] emphasized the significance
of incorporating body composition elements into the RMR equation. In their study, a
newly proposed model incorporated sex, age, fat mass (FM), and fat-free mass (FFM). Their
research highlighted a substantial disparity between commonly used prediction equations
and measured RMR, advocating for the development of a more accurate equation that
incorporates both fat mass (FM) and fat-free mass (FFM). The findings from the study
conducted by Almajwal et al. [12] further substantiate the observation that incorporating
body composition variables such as TBW (total body water), FFM (fat-free mass), and
FM (fat mass) is valuable in the development of a new equation. Oliveira et al. [33] also
emphasized the significance of incorporating various variables, including weight, height,
FFM (fat-free mass), FM (fat mass), and AC (abdominal circumference), in their new
equation designed for the severely obese female population.

Our findings align with the study conducted by Thom et al. [34], which reported a
correlation between increasing age, height, and BMI with the underestimation of RMR.
Additionally, they observed that the overall accuracy of the equations for predicting RMR
was limited at the individual level, especially among women with both low and high RMR.
Importantly, the technique used in our study significantly reduced the overestimation of
RMR, highlighting its substantial value in improving accuracy. Flack et al. [35] observed
the accuracy of all tested equations (including the Harris–Benedict and Mifflin equations)
declined as fat-free mass (FFM) increased. This study supports the idea that individual
variations in FFM contribute to variability in both resting metabolic rate (RMR) and RMR
prediction accuracy among individuals. Model evaluation based on the mean absolute
percentage error (MAPE) revealed that the segmented regression model outperformed
the others, with an MAPE of 10.78%. The segmentation approach considered a split point
based on the median RMR value, addressing potential overlapping results in real-case
scenarios. The resulting equation, combining principal components and specific conditions
for different RMR calculation formulas, demonstrated consistency and accuracy.

RMR predictions are crucial for tailoring effective treatment plans, including person-
alized dietary recommendations and exercise regimens, for women with lipedema. The
proposed predictive equation, considering the unique metabolic characteristics of lipedema
patients, provides a valuable tool in clinical practice, where indirect calorimetry may be
inaccessible. Moreover, the study acknowledges the limitations, such as the necessity of
prior knowledge for splitting datasets in the segmented regression model. Despite this
limitation, the consistent performance of the proposed equation and its alignment with
Bland–Altman plots support its reliability.

5. Conclusions

In conclusion, this study contributes to the advancement of personalized care for
women with lipedema by offering a reliable predictive equation for RMR. The integration
of machine learning techniques and segmentation approaches addresses the challenges
posed by limited sample size and complex relationships among variables. Future research
may explore the application of these findings in larger cohorts and diverse populations,
further enhancing the understanding and management of lipedema.
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