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Abstract: In modern warfare, frequency-hopping communication serves as the primary method for
battlefield information transmission, with its significance continuously growing. Fighting for the
control of electromagnetic power on the battlefield has become an important factor affecting the
outcome of war. As communication electronic warfare evolves, jammers employing deep neural
networks (DNNs) to decode frequency-hopping communication parameters for smart jamming
pose a significant threat to communicators. This paper proposes a method to generate adversarial
samples of frequency-hopping communication signals using adaptive whitening and feature gradient
smoothing. This method targets the DNN cognitive link of the jammer, aiming to reduce modulation
recognition accuracy and counteract smart interference. First, the frequency-hopping signal is
adaptively whitened. Subsequently, rich spatiotemporal features are extracted from the hidden
layer after inputting the signal into the deep neural network model for gradient calculation. The
signal’s average feature gradient replaces the single-point gradient for iteration, enhancing anti-
disturbance capabilities. Simulation results show that, compared with the existing gradient symbol
attack algorithm, the attack success rate and migration rate of the adversarial samples generated by
this method are greatly improved in both white box and black box scenarios.

Keywords: frequency-hopping communication; modulation recognition; deep neural network;
adaptive whitening; feature gradient; adversarial example

1. Introduction

In recent years, with the rapid development of electronic countermeasure technology,
jamming means have become complex and diverse, which puts forward higher require-
ments for the reliability of communication. Owing to its excellent performance, frequency-
hopping communication has become widely utilized and is regarded as a secure method
in military applications for hostile environments [1]. However, the emergence of targeted
interference has highlighted the limitations of traditional frequency-hopping techniques.
To enhance the anti-interference ability of wireless communication systems [2], this paper
studies the anti-interference strategy based on Game Theory in frequency-hopping com-
munication to deal with the interference attack in frequency-hopping communication and
puts forward new ideas to solve the interference countermeasure problem, which is of
great significance to improve the anti-interference ability of frequency-hopping communi-
cation systems.

As an important research topic in the field of digital signal processing, modulation
recognition of communication signals has shown great potential in military and civil
fields. In the military field, modulation recognition provides an important technical means
for obtaining enemy intelligence in electromagnetic countermeasures and selecting the
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best jamming and suppression method. Accurately identifying the modulation mode of
frequency-hopping signals can provide strong support for military information warfare
by, for example, judging the attributes of enemy and our own targets and jamming enemy
signals [3]. Generally, after successfully intercepting enemy communication signals, it is
undoubtedly a crucial task in communication countermeasure technology to determine the
number levels and extract the feature level of the obtained mixed modulation signals and
use the extracted features for further modulation recognition.

Traditional modulation recognition methods usually rely on manually designed fea-
tures and complex signal processing algorithms, including maximum likelihood estimation
based on hypothesis testing [4] and feature extraction based on pattern recognition [5].
These methods tend to perform poorly in the face of complex and variable frequency-
hopping signals. In recent years, modulation recognition technology based on deep learning
(DL) has attracted the close attention of researchers. Compared with traditional methods,
modulation signal recognition based on DL does not need to rely on prior knowledge and
can automatically extract features from data and classify them, so it not only has high
classification accuracy but also stronger generalization ability in the face of large-scale
data training. Mohamed A and others used a convolutional filter to use the basic convo-
lutional neural network Alex Net and a residual neural network for compatibility with a
constellation diagram, which significantly improved the accuracy of signal modulation clas-
sification [6]. Lihong Guang et al. removed noise from a two-dimensional time–frequency
map of a frequency-hopping signal by adaptive Wiener filtering and accurately extracted
the time–frequency map of each hop signal by using the algorithm in image processing,
which achieved the accurate recognition of the modulation mode of the frequency-hopping
signal and achieved good results at −4 db [7]. At present, DNNs are widely used in auto-
matic modulation recognition (AMR) to complete signal detection and demodulation [8],
which greatly improves the accuracy of modulation recognition. In communication coun-
termeasures, a jammer can accurately identify the modulation mode being used in a target
communication system and decode the frequency-hopping signal by training a DNN to
more effectively interfere with and destroy the enemy’s communication link.

Although deep learning modulation recognition technology has brought great con-
venience to people, its anti-interference performance has been questioned since 2013. In
2013, Szegedy et al. [9] found adversarial examples that can attack the neural network
model—examples that can make the machine learning model misjudge or misclassify by
perturbing the normal examples slightly and imperceptibly. The study indicates that deep
neural network (DNN) models are typically characterized by their high complexity and
sensitivity, which enable them to detect minute variations within the input space. Exploit-
ing this characteristic, it is possible to enhance resistance to attacks by introducing precisely
calibrated minor perturbations to the original samples. This method constructs adversarial
examples that can provoke incorrect classifications by the model, thereby demonstrating a
critical vulnerability in its predictive accuracy. Goodfellow et al. [10] proposed the fast gra-
dient sign method (FGSM) in 2014. They added adversarial noise to the linear model and
observed that when processing high-dimensional data input, the linear model was more
vulnerable to the interference of adversarial examples, which overturned the theoretical
explanation that the existence of adversarial examples was because the model was highly
nonlinear. Kurakin et al. [11] introduced the iterative fast gradient sign method (I-FGSM),
building on prior work. This approach incrementally introduces perturbations through
multiple iterations and reprojects the currently generated adversarial samples back into a
predefined constraint set. Classification outcomes indicate that most of these adversarial
examples are misclassified, thereby demonstrating the efficacy of adversarial attacks on
neural network classifiers in practical scenarios. Dong et al. [12] proposed a momentum
iterative fast gradient sign method (MI-FGSM) to enhance resistance against sample attacks.
This method integrates momentum into the gradient and gets rid of the bad local maximum
in the iteration process to generate more mobile adversarial examples. Mardy et al. [13]
proposed projected gradient descent (PGD), which is different from the clipping operation
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of I-FGSM. It limits the size of a disturbance by projecting the results of each iteration to
the ∈−l∞ field of pure input.

At present, research on adversarial examples is mainly focused on image and audio.
In the field of communication signals, communicators can add adversarial examples with
specific disturbances to modulated signals. These adversarial examples can attack the
modem of a communication system so that the DNN model of the reconnaissance party
cannot correctly demodulate the signal or cause wrong decoding results, which significantly
improves the ability of the communicators to resist smart interference. Therefore, this paper
proposes a frequency-hopping modulation signal adversarial example attack method based
on adaptive whitening and feature gradient smoothing to reduce the recognition rate of
the modulation signal in the DNN model. The main contributions of this paper can be
summarized as follows:

1. Experiments show that the conventional method of generating countermeasure sam-
ples has shortcomings when attacking the frequency-hopping modulation recognition
model, and, according to the particularity of the frequency-hopping signal and the rich
space–time characteristics of the hidden layer of the model, a countermeasure sample
generation method AWFGS-MIFGSM suitable for the field of frequency-hopping
signal modulation recognition is proposed.

2. The method initially considers that frequency-hopping signals are non-stationary
signals whose frequencies change non-linearly over time. This typical time-varying
characteristic results in a relatively concentrated energy distribution within a short
time frame. To address this, the acquired frequency-hopping signals undergo an
adaptive whitening process. This treatment enables a more uniform distribution of
energy across frequencies, eliminates correlations between signals, and simplifies the
generation of adversarial samples.

3. This method uses the high-dimensional spatial features of the hidden layer of the
target model to calculate the gradient to launch the attack, which ensures that the
amount of characteristic information of the spectrum signal sample is rich enough.
Considering that single-point gradient information might be unreliable due to loss
function surface oscillations, the characteristic gradient is smoothed using surround-
ing sample data to identify the optimal direction for countering disturbances and
improving adversarial sample transfer.

Section 2 of this paper introduces the basic principle of adversarial samples and
adversarial attack based on DNN modulation recognition. In Section 3, the system model
and the generation method of countermeasure samples based on adaptive whitening and
feature gradient smoothing are described and analyzed. In Section 4, the experimental
setup is explained, and a series of experiments are described from the perspective of white
box attack and black box attack, and the experimental results are analyzed. Finally, we
discuss and conclude this work in Section 5.

2. Related Literature Review
2.1. Adversarial Example Attack

Adversarial examples refer to the special samples formed by artificially adding subtle
disturbances that are difficult to detect by the naked eye or that are visible to the naked
eye after processing but that do not affect the overall system in the original data set. These
disturbances are not random disturbances in the learning process but artificially constructed
disturbances that can deceive the neural network model, as shown in Formula (1):

min
δ

||δ||2 s.t. C(x + δ) = I; x + δ ∈ [0, 1]m (1)

where δ represents the added disturbance, C represents the neural network classifier, x
represents the original image, and I represents the specified class. Since the minimum



Electronics 2024, 13, 1784 4 of 20

value of ||δ||2 is not easy to calculate, the loss function is introduced to change Formula (1)
to Formula (2):

min
δ

C|δ|+ J(X + δ, I) s.t. X + δ ∈ [0, 1]m (2)

where J is the loss function, which is realized by calculating the cross entropy.
Adversarial samples possess strong camouflage capability, exploiting model vulnera-

bilities to launch targeted attacks that mislead the model into categorizing these samples
into incorrect categories with high confidence. The impact of an adversarial example on
modulation recognition is illustrated in Figure 1. By introducing counter disturbance,
the signal originally identified as a sine wave with 97.85% confidence is misclassified
as a square wave with 99.92% confidence. This demonstrates that despite the incorrect
classification results, the waveforms of the two signals are nearly identical.
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Figure 1. Example of modulated signal adversarial example.

Below are descriptions of the four most commonly used methods to generate adver-
sarial examples.

2.1.1. FGSM

FGSM is an efficient and fast adversarial example generation method proposed by
Goodfellow [10] that is committed to generating adversarial examples close to original
images. The generation formula is shown in Formula (3):

xadv = x − ε·sign(∇xL(θ, x, t)) (3)

where ∇x is the gradient of loss function L to input x, ε is the parameter controlling the
size of the disturbance, and t is the target category of the attack, that is, a single gradient
iteration is performed in the direction of reducing the loss function corresponding to model
category t. When the intention is to launch a no-target attack, the above formula is simply
updated as follows:

xadv = x + ε·sign(∇xL(θ, x, y)) (4)

where y is the correct category corresponding to the input sample x. The biggest feature
of FGSM is its efficient running speed, so it is often widely used in scenarios that need
to generate many adversarial examples, such as confrontation training. However, its
disadvantage is that the overall performance of the generated adversarial samples is
somewhat poor.
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2.1.2. I-FGSM

I-FGSM [11] can be regarded as a multiple-iteration version of FGSM. The original
FGSM only adds a single-step disturbance along the direction of gradient increase, while
I-FGSM makes a multi-step small disturbance along the direction of gradient increase
through iteration and cuts the iteration results after each iteration update to ensure that
they are kept within the valid interval (for example, it is usually the [0, 1] or [0, 255] interval
for image data). Compared with FGSM, I-FGSM can construct more accurate disturbances,
but the amount of calculation is increased. This method can be expressed as follows:

xi+1
adv = clipx,α(xi

adv − ε·sign(∇xL(θ, x, t))) (5)

where the subscript i denotes the number of iteration rounds, clipx,α(xadv) = min[1, x + α,
max(0, x − ε, xadv)].

2.1.3. MI-FGSM

MI-FGSM [12] attack incorporates momentum into the I-FGSM attack by introducing
a small number of gradients generated by the current step while retaining some gradients
from the previous step to stabilize the update direction and avoid falling into the local
extremum. The improvement of this method is the accumulation of the velocity vector in
the gradient direction by using momentum. The formula is as follows:

gt+1 = µ·gt +
∇x J(xt

adv, y)∣∣∣∣∇x J(xtadv, y)
∣∣∣∣

1
(6)

xi+1
adv = xi

adv + α·sign(gt+1) (7)

First, xt
adv is input to classifier f to obtain gradient ∇x J(xt

adv, y); then, the velocity
vector is accumulated in the gradient direction through Formula (6) to update gt+1, and
xi+1

adv is updated by applying the symbol gradient in Formula (7), finally generating
disturbance F. Compared with FGSM and I-FGSM, MI-FGSM gives higher mobility of
adversarial examples.

2.1.4. PGD

Compared with the one-step confrontation of FGSM, PGD [13] adopts the strategy
of small-step and multi-step. PGD initializes with uniform random noise to project the
gradient and clips the disturbance to a specified range after each iteration. The attack
process is shown in Formula (8):

xadv
t+1 = projx,ε(xadv

t + α · sign(∇x J(xadv
t , y, θ))) (8)

where projx,ε(·) is the projection operation.

2.2. Modulation Recognition Adversarial Example Attack Based on a DNN

Modulation recognition can be regarded as a classification problem involving N
modulation modes. The signal received by the communication receiver can be expressed
as y = αej(2πω+φ)x + σ, where x is the signal modulated by the transmitter according to
a specific modulation scheme, α transmits the impulse response of the wireless channel,
ω is the frequency offset, φ is the phase offset, and σ indicates additive white Gaussian
noise (AWGN). The purpose of any modulation classifier is to identify the modulation type
P(x ∈ N|y) of the signal given the received signal y.

Modulation recognition can be categorized into classical and DL-based methods,
depending on the use of deep learning algorithms. DL-based modulation recognition
automates feature extraction and classification by feeding preprocessed signals directly into
the network, significantly reducing the time needed to manually analyze communication
signal characteristics. This advantage makes the method better adapted to future situations
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following the development of wireless communication where the amount of information
may increase significantly, and it has higher recognition accuracy. The process is shown in
Figure 2.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 22 
 

 

Compared with the one-step confrontation of FGSM, PGD [13] adopts the strategy of 

small-step and multi-step. PGD initializes with uniform random noise to project the gra-

dient and clips the disturbance to a specified range after each iteration. The attack process 

is shown in formula (8): 

1 ,proj ( ( ( , , )))adv adv adv

t x t x tx x sign J x y  + = +    (8) 

where 
, ( )xproj  is the projection operation. 

2.2. Modulation Recognition Adversarial Example Attack Based on a DNN 

Modulation recognition can be regarded as a classification problem involving N 

modulation modes. The signal received by the communication receiver can be expressed 

as 
(2 + )e jy x  = + , where x is the signal modulated by the transmitter according to 

a specific modulation scheme,   transmits the impulse response of the wireless channel, 

  is the frequency offset,   is the phase offset, and σ indicates additive white Gaussian 

noise (AWGN). The purpose of any modulation classifier is to identify the modulation 

type ( N | y)P x  of the signal given the received signal y . 

Modulation recognition can be categorized into classical and DL-based methods, de-

pending on the use of deep learning algorithms. DL-based modulation recognition auto-

mates feature extraction and classification by feeding preprocessed signals directly into 

the network, significantly reducing the time needed to manually analyze communication 

signal characteristics. This advantage makes the method better adapted to future situa-

tions following the development of wireless communication where the amount of infor-

mation may increase significantly, and it has higher recognition accuracy. The process is 

shown in Figure 2. 

Signal to be 
identified

Data 
preprocessing

Modulation 
recognition 

scheme

I/Q,

HOC,

Spectrum,

SPWVD images,

Amplitude,

Constellation 

images,

Ambiguity 

function images,

Etc.

Training 
network

DNN

RNN

CNN

 

 

Figure 2. Modulation recognition process based on DL. 

DNNs are central to DL-based modulation recognition technology. They process sig-

nal characterization results, analyzing preprocessed and extracted signal data to infer and 

output the modulation mode. O’Shea et al. [14] achieved the recognition and classification 

of three analog modulation signals and eight digital modulation signals based on a DNN 

model for the first time, and the accuracy rate reached 80%, proving the feasibility of ap-

plying DNNs to radio data recognition under the condition of a low signal-to-noise ratio. 

Ali et al. [15] employed IQ samples, constellations, and high-order cumulants to train 

sparse self-coding for modulation recognition, confirming the DNN’s effectiveness in 

AWGN and flat fading channels via simulations. Xie et al. [16] used high-order cumulants 

to extract different features of each signal type to train a DNN for modulation recognition. 

When the signal-to-noise ratio was −5 dB and −2dB, the overall recognition accuracy of the 

Figure 2. Modulation recognition process based on DL.

DNNs are central to DL-based modulation recognition technology. They process signal
characterization results, analyzing preprocessed and extracted signal data to infer and
output the modulation mode. O’Shea et al. [14] achieved the recognition and classification
of three analog modulation signals and eight digital modulation signals based on a DNN
model for the first time, and the accuracy rate reached 80%, proving the feasibility of
applying DNNs to radio data recognition under the condition of a low signal-to-noise ratio.
Ali et al. [15] employed IQ samples, constellations, and high-order cumulants to train sparse
self-coding for modulation recognition, confirming the DNN’s effectiveness in AWGN and
flat fading channels via simulations. Xie et al. [16] used high-order cumulants to extract
different features of each signal type to train a DNN for modulation recognition. When the
signal-to-noise ratio was −5 dB and −2dB, the overall recognition accuracy of the algorithm
exceeded 99%. At present, research on the modulation recognition of communication
signals mainly focuses on fixed-frequency signals, and there is a big gap in research
on the modulation recognition of frequency-hopping signals at home and abroad. For
frequency-hopping modulation signal recognition, reference [17] introduced an algorithm
that extracted instantaneous features and high-order cumulants from spread spectrum
and conventional signals, enhancing recognition accuracy and reliability. Reference [18]
developed a method using time–frequency energy spectrum texture features for modulation
recognition, employing a support vector machine classifier for training and classification.

Although DNNs have many advantages in the field of signal modulation recognition,
there are also some problems and challenges, such as the large amount of data demands
and lack of model generalization ability; the deep learning model is also more sensitive to
targeted adversary attacks. Small and intentional disturbances may lead to classification
errors in the model, which seriously affect the reliability and security of signal recognition.

Research on countermeasure samples for modulation recognition started late. In recent
years, the academic community has gradually turned its attention to research on counter-
measure sample attack methods based on modulation classification. In 2018, Sadeghi [19]
and others took the lead in research on countering sample attacks against the modulation
recognition model of communication signals based on DL. The research results show that
the modulation recognition model based on a DNN automatic encoder is vulnerable to
interference. The paper further expounds on how attackers can effectively counterattacks.
In 2020, Zhao [20] and others studied and tested counterattack in the process of signal
recognition, successfully reduced the recognition accuracy of the model through experi-
ments, and verified the generalization ability of the model. In 2021, Lin et al. [21] analyzed
the effects of various gradient-based counterattack methods on modulation recognition;
the experimental results showed that when the disturbance intensity was set to 0.001, the
prediction accuracy could be reduced by 50%.
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At present, the primary goal of counterattacks in modulation recognition is to improve
attack performance, but research in the field of communication is still in its infancy, lacking
the theoretical interpretation of counter samples. Most of the existing explanations are
limited to a hypothetical interpretation and do not fully analyze the characteristics of the
communication signal. Furthermore, current methods inadequately address the characteris-
tics and gradient reliability of modulation signals, leading to issues like poor counterattack
performance and limited black box adaptability. Improving the processing of the modu-
lation signal’s characteristic gradient can significantly enhance both the effectiveness of
attacks and the model’s security.

3. Anti Attack Method Based on Adaptive Whitening and Feature Gradient Smoothing
3.1. System Model

In the wireless communication environment, both the transmitter and receiver of
frequency-hopping signals use the same communication protocol. During the commu-
nication process, the sender first modulates the frequency-hopping signal onto a carrier
using a particular method to create a frequency-hopping modulation signal, which is then
transmitted over the channel. The receiver needs to use the same modulation method as the
sender to demodulate and reconstruct the received modulated signal and finally complete
the communication process. Considering the existence of the reconnaissance party in
the communication process, this party intercepts the communication signal and uses the
intelligent DNN model to identify the modulation type of the signal, aiming to capture the
content of the frequency-hopping signal. The system model is shown in Figure 3.
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To avoid this situation, the communication party needs to add adversarial examples
to the communication signal on the premise of ensuring that its own communication is
not affected as much as possible. This is done to flexibly attack the reconnaissance party
deploying the DNN model and interfere with and mislead the identification results of the
DNN model of the reconnaissance party so that the reconnaissance party cannot correctly
identify the modulation type or demodulate and recover the intercepted signal, achieving
the purpose of anti-reconnaissance. In this paper, an anti-attack method based on adaptive
whitening and feature gradient smoothing (AWFGS) is proposed. Initially, the obtained
frequency-hopping signal is adaptively whitened to enhance the useful features of the
signal and facilitate subsequent feature extraction. Subsequently, the hidden layer feature
extracted by the DNN model is used as the attack object, which significantly improves
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the attack accuracy and produces more refined adversarial examples, and the generated
countermeasure samples have higher mobility.

3.2. Adaptive Whitening

Blind source separation refers to the process of recovering the source signal only by
using the observed signal according to the statistical characteristics of the signal without
any prior knowledge of the source signal and transmission channel. It has important
applications in wireless communication and voice signal and digital image processing [22].
As a necessary preprocessing step of blind source separation, whitening can identify the
mixing matrix and directly realize the blind separation of non-stationary signals.

Currently, the whitening algorithm can be divided into a batch algorithm and an adap-
tive algorithm. The batch processing algorithm has good robustness, but it cannot meet
the requirements of the system for real-time signal processing. The adaptive whitening
algorithm, which is less complex, supports the online processing of mixed signals with
effective real-time performance and has therefore been widely adopted and researched [23].
Therefore, when whitening the original signal, the whitening algorithm with an adaptive
form [22] is often used. Since signal processing often involves processing signals with
different characteristics and statistical properties, and these signals may have different dis-
tributions in time and frequency domains, adaptive whitening can better process different
types and properties of signal data by adjusting the characteristics and statistical properties
of the signal to preprocess the data, thus enhancing the overall effectiveness and quality
of signal processing. Moreover, in feature extraction and pattern recognition, adaptive
whitening can enhance the useful features in the signal, which is helpful for subsequent
pattern recognition, classification, or prediction. Its structure is shown in Figure 4 [24].
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W ∈ Rn×m is the whitening matrix with full rank, and the output whitening vector
y(k) meets the following characteristics:

E
{

y(k)yT(k)
}
= WE

{
x(t)x(t)T

}
WT = I (9)

Rxx = E
{

x(k)x(k)T
}
= Vx HxVT

x (10)

where x(k) is the observation signal, I is the identity matrix, Rxx is the autocorrelation
matrix of signal x(k), and Vx and Hx are the eigenvector matrix and eigenvalue matrix of
Rxx, respectively.

The adaptive whitening algorithm has excellent tracking performance and conditions
for real-time signal processing. Its estimation of the whitening matrix W(k) can be obtained
by minimizing the cost function of Equation (11):
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J(k) = −1
2
{log[det(WT(k)W(k))]−

n

∑
i=1

E(y2
i (k))} (11)

where det(Z) represents the determinant operation on matrix Z. On the derivation of the
instantaneous estimation of W(k) over J(k), there are the following:

∂J(k)
∂W(k)

= −
[

I − y(k)yT(k)
]
W(k) (12)

Based on Equation (12), the updated formula of whitening matrix W(k) in the adaptive
algorithm can be obtained as follows:

W(k + 1) = W(k)− µ
∂J(k)

∂W(k)
= W(k) + µ[I − y(k)yT(k)]W(k) (13)

where y(k) = Wx(k) is the whitening signal and µ is the step size parameter. In or-
der to ensure convergence, its value should meet 0 < µ < 2√

λx−max(1+
√

λy−max)
, where

λx−max and λy−max respectively represent the maximum eigenvalues of matrices Rxx and
Ryy = E

{
y(k)yT(k)

}
.

Different from the waveform of constant-frequency continuous signals, the waveform
of frequency-hopping signals shows significant discontinuity, which leads to the inaccurate
extraction of frequency-hopping signal features directly using the original signal and then
affects the subsequent signal processing. However, gradient features are generally repre-
sented by high-dimensional data with high correlations and much redundant information,
which not only increases the difficulty of data processing and model training but also
reduces the amount of information on features, resulting in some gradient features being
affected by abrupt points in the signal when representing modulated signals, making gra-
dient calculation unstable. To solve the above problems, an adaptive whitening algorithm
is introduced to minimize the interference between frequencies, effectively remove the
correlation between data, improve the independence of sample features, and facilitate the
accurate feature extraction of subsequent models. Additionally, the reduction in correlation
reduces the dependence of the model on specific features, so the adversarial examples
remain effective between different models, that is, there is a higher attack success rate
between different models.

3.3. Feature Gradient Smoothing

Reference [25] pointed out that the local non-smoothness of the loss surface impairs
the transferability of generated adversary samples. To solve this problem, this study used
the local average gradient instead of the original gradient to generate countermeasure
samples, as shown in Figure 5.

Source model a was used to generate countermeasure samples to attack target model
B. gA and GA respectively represent the gradient of a corresponding point on the loss
function surface of the two models. It can be seen that the loss function curve of model a
showed an obvious oscillation phenomenon, which made the direction difference between
gA and gB larger, which meant that the countermeasure samples generated on gA could
not effectively attack model B, and the migration of countermeasure samples was low.
If the gradient smoothing process was applied to model a, the local average gradient
GA was obtained to replace the original gA-generated countermeasure samples to attack
model B. Since the directions of GA and gB were closer, the migration of countermeasure
samples could be higher, and the attack performance for model B was stronger, that is,〈∧

GA,
∧
gB

〉
>

〈∧
gA,

∧
gB

〉
.
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In this study, we approximated the mathematical expectation of the gradient in the
neighborhood by sampling n times in the neighborhood of the sample xs:

Eε′(xs) =
1
N

n

∑
i=1

fL(xi
s; θ) (14)

where Eε′(xs) is the average value of characteristics in the xs neighborhood and ε′ is the
upper boundary of the xs neighborhood, set as ε′ = βε, where β is the super parameter.

At present, although modulated signals based on gradient have destructiveness
against attacks, they also have a series of limitations and challenges. Compared with
high-dimensional data such as pictures, the amount of information in the spectrum signal
sample is smaller, and the high-dimensional vector of the middle layer of the deep learning
model can magnify the key features of the input sample. If the middle layer features
extracted by the DNN model are used as the attack object, and the average gradient of
its neighborhood is used to replace its single-point gradient, the surface oscillation of the
loss function can be effectively smoothed, the accuracy of the attack can be improved,
and a more refined modulated signal can be generated against the sample. In addition,
for the same type of modulated signal samples, after different DNN models are trained,
the output characteristics of the intermediate layer usually show some similarity, and the
characteristics of the samples are transferable. Therefore, the disturbance generated by the
counterattacks based on the characteristics of the middle layer should have better mobility.

3.4. Description of Attack Methods

Algorithm 1 introduces the process of generating countermeasure samples based
on adaptive whitening and feature gradient smoothing. Firstly, the signal samples are
adaptively whitened before the original signal input model, so that the sample features
extracted after the input model are more effective, and the gradient can be calculated by
using the rich space–time features in the hidden layer of the DNN model. Then, n samples
are taken within a certain domain of the current data point xadv

n , n xadv
n samples are input

into the intercepted hidden layer model fL, Eε‘(xadv
n ) is calculated according to Formula (14),

and then the mathematical expectation Eε‘(x) of the gradient in the neighborhood of the
data point is used to replace the gradient value of the point for subsequent iterations
to reduce unstable factors, avoiding the algorithm falling into local extreme points and
effectively smoothing the oscillation of the loss function surface. Then, a new loss function
JL is constructed by Formula (15), and the characteristic gradient is calculated and the
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attenuation factor gn is updated. Finally, xadv
n+1 is continuously updated to obtain the

required countermeasure sample xadv. The complete block diagram of the algorithm is
shown in Figure 6.

Algorithm 1 AWFGS-MIFGSM adversarial example attacks

Input: Raw modulated signal sample xS, Truncate hidden layer model fL, New loss function JL,
Norm constraint p, Momentum decay factor µ, Disturbance size ε, Sampling times N, Iterations T,
Attenuation factor gn, Neighborhood range size β.
Output: Optimize adversarial example xadv.

1: Iteration step α = ε/T, neighborhood boundary ε′ = β · ε

2: g0 = 0, xadv
0 = xS

3: For t = 0 to T − 1 do

4: (xadv
n )whitened is obtained by adaptive whitening of xadv

n

5: Take N samples randomly for ε′ neighborhood of (xadv
n )whitened

6: Input N samples into the hidden layer model fL and obtain Eε′ (xadv
n )whitened according to

Formula (13)

7: Calculate new loss function JL(xadv
n ; θ) =

∣∣∣∣∣∣Eε′ (xadv
n )whitened

∣∣∣∣∣∣
p

8: Calculate characteristic gradient, update gn+1

gn+1 = µ·gn +
∇xadv

n
JL(xadv

m ,θ)

||∇xadv
n JL(xadv

m ,θ)||1

9: Update xadv
n+1 = Clipε

{
xadv

n + α · sign(g n+1)}

10: End for

11: Obtain optimized adversarial example xadv
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After obtaining the original signal sample feature (xS)whitened after whitening, the
average feature information is obtained. Different loss functions can be designed by using
different p (p = 0, 1, . . . , ∞) norms to constrain the features, as shown in Formula (15).
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JL(xS, θ) =||Eε′(xs)||p (15)

To verify the effectiveness of the experimental method, AWFGS is introduced into
MI-FGSM to obtain the momentum iteration fast gradient sign method AWFGS-MIFGSM,
which is based on adaptive whitening and feature gradient smoothing. The pseudo-code
of the algorithm is shown in Algorithm 1.

3.5. Analysis of Attack Methods

1. In machine learning, input data typically consist of various measurements, and there
is a significant correlation between adjacent sampling points. If unprocessed data
are fed into the network, this creates excessive redundancy and lowers the network’s
training efficiency. A whitening operation before feature extraction can decrease data
correlation and streamline the feature extraction process. Subsequently, the gradient
calculated from these processed features is used to attack the DNN model. This ap-
proach enhances the mobility of the generated adversarial examples, increasing their
attack success rate across different models. The reduction in correlation diminishes
the model’s reliance on specific features, thereby increasing the likelihood that an
adversarial example will be effective across various models.

2. Most of the attacks based on label gradients are methods that attackers try to maximize
the gradient of the loss function with respect to the input data so that the model
can produce a false classification of the adversarial example. In this process, the
optimization goal is to maximize the classification loss. Adjusting the input data thus
generates classification errors in the adversarial examples. The proposed algorithm
does not use the classification loss as the optimization goal but uses extensive high-
dimensional feature data in the DNN hidden layer to design adversarial examples,
which not only makes the obtained sample signal features richer but also produces
finer disturbances.

3. At present, most of the methods that have been used to combat sample attacks use
the single-point data gradient value on the optimized path. Because the surface
oscillation of the loss function leads to the unreliability of the single-point gradient
information, the method proposed in this paper helps the model make full use of
the data point neighborhood gradient information by whitening and neighborhood
sampling, making the gradient direction on the loss function of the source model and
the attack model closer so that the disturbance generated by this has better mobility
and the success rate of black box attacks is higher.

4. Experimental Results and Analysis
4.1. Experimental Setup

All experiments were calculated on NVIDIA GeForce GTX 1650 GPU and implemented
by Tensorflow2.8 and cuda12.1.

4.1.1. Data Set

In this study, the frequency-hopping modulation signal was generated by MATLAB
R2024a software simulation as the experimental data set. The data set covered four common
modulation methods of frequency-hopping signals and simulated the Gaussian white noise
in the real channel environment, which better restored the signals collected by the real
communication. Using this data set, the recognition of the model for the basic modulation
type signals and noise interference environment could be compared. The four modulation
modes of the data set were divided into two digital modulation modes (QPSK and MFSK)
and two analog modulation modes (AM and SSB). The frequency-hopping signal sampling
rate was 40 KHz, the hopping speed was set to 500 hop/s, and eight frequency-hopping
points were set, 250 points for each hopping. With the background of Gaussian white
noise, the signal-to-noise ratio ranged from −20 dB to 18 dB, with an interval of 2 dB.
The frequency-hopping signal of each modulation type generated 300 samples under each
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signal-to-noise ratio, including 24,000 signal samples in total. The data set was divided into
a 70% training set, 20% verification set, and 10% test set.

4.1.2. DNN Model

Considering the characteristics of signal samples, model parameters, recognition
effects under normal conditions, and other factors, ResNet, CLDNN, and LSTM were
selected as modulation recognition models in this study. Each model was trained 500 times,
and the learning rate was set to 0.001. If the training loss of the test set did not decrease for
five consecutive times, the learning rate was halved.

4.1.3. Hyperparameter Settings

During the model training phase, to ensure the training’s efficiency and consistency,
the number of iterations, learning rate, and other hyperparameters were kept consistent. To
set the maximum disturbance reference [19], PNR (perturbation-to-noise ratio) controlled ε
under different signal-to-noise ratios, iteration times M = 10, the momentum attenuation
factor µ = 0.7, the step size of adaptive whitening was set to 0.001, sampling times N in the
neighborhood was 30, and the neighborhood range size β was 11.

4.1.4. Evaluation Index

To effectively evaluate the AWFGS-MIFGSM method, three evaluation metrics—total
attack time, attack success rate, and black box migration rate—were defined for the gener-
ated countermeasure samples.

The total attack time was represented by the time required by different algorithms
in the white box scenario to complete the white box targetless attack on all samples on
the model.

The attack success rate was expressed by the model recognition accuracy (MRA). The
lower the recognition accuracy rate, the higher the attack success rate against the sample. If
the total number of test samples was m and the number of samples successfully identified
by the model was n, then the MRA was as follows:

MRA =
N
M

× 100% (16)

Black box mobility (BBM) refers to the ratio between the number of samples that can
deceive both the white box model and the black box model in the countermeasure samples
and the number of successful deceptions of the white box model. Let the number of samples
that successfully deceive the white box model be Dw, and the number of samples that can
also deceive the black box model among the samples that deceive the white box model be
Db. Then, BBM is as follows:

BBM =
Db
Dw

(17)

4.2. Analysis of Results in Different Experimental Environments

In this study, the data set was tested with three models, and the modulation recognition
accuracy of the three models was obtained, as shown in Figure 7. With the increase in
the signal-to-noise ratio, the accuracy of the three models showed an upward trend and
then tended to be stable. When the signal-to-noise ratio was negative because the noise
power exceeded the signal power, the characteristics of the signal waveform itself were
distorted, so the recognition rates of the three models were generally lower than those
under the positive signal-to-noise ratio. When the signal-to-noise ratio was greater than
2 dB, the recognition effect was the best, and the curve tended to be stable. The recognition
accuracies of CLDNN and ResNet were close at 2–18 dB.
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4.2.1. Analysis of White Box Environment Experiment

The core purpose of generating adversarial examples was to cause the recognition
model to misclassify the original samples. Based on this feature, this method only attacked
the samples correctly classified in the original samples when carrying out white box attacks.
In addition, considering the characteristics of modulated signals with different signal-to-
noise ratios, it was also necessary to attack one by one for different signal-to-noise ratios
when performing a counter sample attack.

Figure 8 shows the modulation recognition accuracy of the three models after gen-
erating adversarial examples from FGSM, I-FGSM, MI-FGSM and the algorithm AWFGS-
MIFGSM proposed in this paper under the condition of no target in the white box. A com-
parison showed the following:

1. The white box no-target attack was relatively simple. Under low SNR, each attack
method could make the recognition rate of the model reach less than 25%, but, under
high SNR, the FGSM attack effect was the worst, and the accuracy rate of the model
only decreased by about 35% at 10 dB, which was significantly weaker than other
attack methods. The reason may be that FGSM covers single-step attacks, and the gra-
dient direction of the generated disturbance was inaccurate for the nonlinear model.

2. MI-FGSM introduces momentum into I-FGSM to correct the gradient. Theoretically,
the attack effect should be better than that of I-FGSM. However, in the LSTM and
ResNet models, the attack effect of the two models was almost the same under low
SNR. In the CLDNN model, the attack effect was not as good as that of I-FGSM when
it was more than −2 dB. On the one hand, the difference in the model structure had
an impact on the output. On the other hand, the amount of information in a single
signal sample may have been too small, so there was no qualitative change to the
gradient correction, or even the opposite effect.

3. PGD is recognized as the most effective first-order attack in the industry. It can be seen
from the algorithm that PGD randomly added some noise to the attack destination
samples and projected the gradient obtained in each iteration, which could retain
more useful disturbance information. As a result, the attack effect was significantly
better than that of FGSM, I-FGSM, and MI-FGSM, and the model recognition rate
could be reduced to about 40%.

4. At 10 dB, the recognition rate of the CLDNN model, LSTM model, and ResNet model
decreased by 71%, 66%, and 69%, respectively. However, at low SNR, the recognition
rate of the CLDNN and LSTM models was slightly higher than that of the other attack
methods. On the one hand, whitening and gradient smoothing may cause the method
to generate more diversified countermeasure samples. At low SNR, this diversity may
make it easier for countermeasure samples to escape from the detection or recognition
system, thereby improving the recognition rate. On the other hand, the CLDNN
and LSTM models may have certain robustness when processing sequence data, and
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this method “corrects” some noise in the original signal to some extent at low SNR,
making it easier to identify at low SNR.
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From the previous analysis, the attack effect of FGSM was the worst, but, due to its
one-step calculation characteristics, it took the least time to generate adversarial examples.
I-FGSM, MI-FGSM, and PGD were all iterative attacks. With the same number of iterations,
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it took a relatively long time to generate adversarial examples, but the difference was
not significant. Because the proposed algorithm AWFGS-MIFGSM needed to sample
samples and calculate the feature gradient smoothing, it took the longest time to generate
adversblearial examples, but the attack success rate was the highest (see Table 1).

Table 1. The time consumption of the three models to generate countermeasure samples under the
white box no-target attack.

DNN Model
ATS (min)

FGSM I-FGSM MI-FGSM PGD AWFGS-MIFGSM

CLDNN 1.05 7.13 7.35 8.08 9.23
LSTM 0.91 7.31 7.47 7.44 48.09

ResNet 1.21 2.79 2.85 3.19 15.26

4.2.2. Experimental Analysis of Black Box Environment

In the real electronic warfare environment, the information related to the target model
is often unknown to the communicators, that is, it is usually the case of a black box
attack. At this time, the adversarial examples generated by the communicators must have
good mobility.

Different from the traditional attack method of using an alternative model to replace
the target black box model, to better verify the transferability of countermeasure sam-
ples, this study directly migrated the countermeasure samples generated in the CLDNN
white box attack to the LSTM and ResNet models to execute the black box attack. The
experimental results are shown in Figure 9.
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As can be seen from Figure 9, due to the unknown black box information, the effect of
all the anti-attack methods was reduced to varying degrees, but the attack performance of
the method proposed in this paper remained optimal whether in low SNR or high SNR.
It can be seen from Figure 9a that for the black box model of LSTM, the attack methods
that could significantly reduce the recognition rate of the CLDNN model migrated to the
LSTM model, and the attack effect was significantly worse. At 10 dB, FGSM, I-FGSM, and
MI-FGSM only reduced the recognition rate of the LSTM model by about 13%. Although
PGD achieved good results in the white box attack, its attack effect in the black box model
was also unsatisfactory. In contrast, the attack method proposed in this paper still had a
good effect. At 10dB, the recognition rate of the LSTM model was reduced by 37%.
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It can also be seen from Figure 9b that the adversarial examples generated by the attack
method based on adaptive whitening and feature gradient smoothing still had a strong
attack effect when migrated to the ResNet black box model. At 10 dB, FGSM, I-FGSM, and
MI-FGSM only reduced the recognition rate of the ResNet model by about 31%. The PGD
method only reduced the recognition rate of the ResNet model by 36%. The recognition
rate of the RESNET model was reduced by 51% by the proposed method.

Figure 10 shows the proportion of the counter samples that successfully attacked
the white box model but also successfully attacked the black box model, that is, the
comparison of black box mobility. It is evident that the black box mobility of the adversarial
examples generated by the AWFGS-MIFGSM method was higher than that generated by
the traditional method, whether using the LSTM model or the ResNet model, which shows
that the adversarial example attack method proposed in this paper has superior attack
migration performance, significantly improving the robustness of adversarial examples.
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4.2.3. Experimental Performance Analysis under Mixed Signal-to-Noise Ratio

In the actual battlefield environment, the signal-to-noise ratio of the received frequency-
hopping signal is not fixed. In order to better verify the attack performance of the method
proposed in this paper under a mixed signal-to-noise ratio, the data set was processed as
follows: 3000 samples were randomly extracted from each type of signal, and the training
set and verification set were formed according to 4:1. The above three models of ResNet,
CLDNN, and LSTM were trained, and the test set was composed of 10% of all test samples
divided by 4.1. A comparison of the recognition results of the three models in the white
box environment is shown in Table 2.

Table 2. Comparison of average recognition accuracy of three models under mixed SNR.

DNN
Model

Recognition Accuracy under Different Attack Modes (%)

No Attack FGSM I-FGSM MI-FGSM PGD AWFGS-
MIFGSM

ResNet 82.08 39.77 34.43 33.61 28.67 23.66
CLDNN 84.17 42.67 31.57 34.66 26.50 27.75

LSTM 77.24 35.25 28.58 29.17 28.15 28.26



Electronics 2024, 13, 1784 18 of 20

It can be seen from the results in Table 2 that for the mixed signal-to-noise ratio data,
the three models had good recognition performance for frequency-hopping modulated
signals under conventional conditions, and the average recognition accuracy was more
than 77%. The FGSM, I-FGSM, and MI-FGSM attack methods significantly reduced the
recognition rate of the model, and the PGD method had a better attack effect than the first
three methods in the three models, but the attack effect of the AWFGS-MIFGSM method
proposed in this paper was stronger than that of PGD method in the ResNet model, and was
almost the same as that of the PGD method in the CLDNN and ResNet models, indicating
that this method still had strong attack performance for mixed signal-to-noise ratio data.

4.2.4. Hyperparameters Analysis

The control variable method was used to study the hyperparameters. Therefore,
except for the number of samples in neighborhood N and the size of neighborhood β, other
parameters remained unchanged. At the same time, all signal samples under 10 dB were
extracted from the original data set, and 600 signal samples with a signal-to-noise ratio
of 10 dB were randomly selected from the training set to form a new test set, which was
subjected to white box non-target attack.

First, the neighborhood size β was analyzed and the sampling times N were set in the
neighborhood to 30. The experimental results are shown in Figure 11. It can be seen from
the figure that when β = 0, the recognition accuracy was the highest and the attack effect
was the worst. When increasing the value of β, the recognition rate of the model continued
to decline until β = 11, when the curve reached the inflection point, but the recognition rate
increased. According to this, when the neighborhood size β was set to 11 in the experiment,
the attack effect was the best.
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We then analyzed the sampling times N within a specified neighborhood, setting the
neighborhood range size to β = 11. The experimental results are shown in Figure 12. It
can be seen from the figure that when N = 0, the recognition accuracy was the highest
and the attack effect was the worst. When increasing the value of N, the recognition rate
of the model continued to decline until N = 30, when the curve reached the inflection
point, and the recognition rate tended to be stable. Considering that the larger N, the
greater the computational overhead and time cost of the experiment, N was set to 30 in
the experiment.
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