
Citation: Yu, Q.; Liu, A.; Yang, X.;

Diao, W. An Improved Lightweight

Deep Learning Model and

Implementation for Track Fastener

Defect Detection with Unmanned

Aerial Vehicles. Electronics 2024, 13,

1781. https://doi.org/10.3390/

electronics13091781

Academic Editor: Mahmut

Reyhanoglu

Received: 4 April 2024

Revised: 26 April 2024

Accepted: 1 May 2024

Published: 5 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Improved Lightweight Deep Learning Model and
Implementation for Track Fastener Defect Detection with
Unmanned Aerial Vehicles
Qi Yu, Ao Liu *, Xinxin Yang * and Weimin Diao

School of Electronic Information Engineering, Beihang University, Beijing 100191, China;
16231012@buaa.edu.cn (Q.Y.); diaoweimin@buaa.edu.cn (W.D.)
* Correspondence: buaaliuao@buaa.edu.cn (A.L.); yangxx@buaa.edu.cn (X.Y.)

Abstract: Track fastener defect detection is an essential component in ensuring railway safety opera-
tions. Traditional manual inspection methods no longer meet the requirements of modern railways.
The use of deep learning image processing techniques for classifying and recognizing abnormal
fasteners is faster, more accurate, and more intelligent. With the widespread use of unmanned aerial
vehicles (UAVs), conducting railway inspections using lightweight, low-power devices carried by
UAVs has become a future trend. In this paper, we address the characteristics of track fastener
detection tasks by improving the YOLOv4-tiny object detection model. We improved the model
to output single-scale features and used the K-means++ algorithm to cluster the dataset, obtaining
anchor boxes that were better suited to the dataset. Finally, we developed the FPGA platform and
deployed the transformed model on this platform. The experimental results demonstrated that the
improved model achieved an mAP of 95.1% and a speed of 295.9 FPS on the FPGA, surpassing the
performance of existing object detection models. Moreover, the lightweight and low-powered FPGA
platform meets the requirements for UAV deployment.

Keywords: track; fastener defect detection; model improvement; FPGA; UAV

1. Introduction

Track fasteners are essential components that connect the rails to the sleepers and used
to secure the rails and prevent lateral and longitudinal displacement [1]. Due to factors
such as wear and tear on train wheels and the irregular deformation of the tracks over
prolonged periods of train operation, trains are prone to vibrations during high-speed
travel. These vibrations not only affect the trains themselves but are also transmitted to
the track fasteners. Coupled with the impact of train loads, this can lead to the fracture
and damage of track fasteners, thereby affecting the safe operation of trains. Common
abnormalities in track fasteners include fracture, displacement, and dislodgement [2].

The speed and mileage of high-speed trains are gradually increasing, and urban rail
transit is also developing gradually. Therefore, the efficient detection of track fastener
defects is crucial. Initially, track fastener defect detection relied mainly on manual visual
inspection. This method is inefficient, costly in terms of labor, and has unreliable accu-
racy, making it incapable of meeting modern requirements. This has also been confirmed
in railway bridge inspection [3]. In order to improve detection efficiency, researchers
have developed non-destructive testing methods, such as detection based on vibration
signals [4,5], ultrasonic detection [6], laser detection [7], and machine vision detection [8].
With the rapid development of artificial intelligence, machine vision-based detection meth-
ods have emerged in various scenarios, including track fastener defect detection. Currently,
machine vision-based detection methods can be categorized into two main types: those based
on traditional image processing techniques and those based on deep learning approaches.

Electronics 2024, 13, 1781. https://doi.org/10.3390/electronics13091781 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091781
https://doi.org/10.3390/electronics13091781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13091781
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091781?type=check_update&version=2

Electronics 2024, 13, 1781 2 of 15

Detection methods based on image processing rely on manually designed features.
After extracting features, a trained classifier is used for detection and classification. This
results in the detection performance being influenced by manually designed features.
Therefore, these algorithms often have lower detection accuracy and poor adaptability
to variations in factors such as lighting and noise in real-world engineering scenarios,
leading to low robustness. Khan et al. [9] utilized Harris–Stephens and Shi–Tomasi feature
detectors to extract feature points and feature vectors from images. Subsequently, they
matched the features of input images with those of training images to detect track fasteners.
Feng et al. [10] proposed a probabilistic structural subject model (STM) to model the
fastener. This model can detect the wear state of the fastener and is robust to changes in
lighting conditions. Gibert et al. [11,12] proposed a fastener detection algorithm based on a
multi-task learning framework. The algorithm uses image-oriented gradient histograms
(HOGs) to extract fastener features and uses support vector machine (SVM) classifiers
to classify and recognize damaged and missing fasteners, improving detection accuracy.
Wang et al. [13] proposed an automated method for detecting defects in track fasteners.
Initially, they located track fasteners precisely using the background difference method.
Then, they extracted linear features from images based on an improved Canny operator and
Hough transform. Subsequently, they extracted feature vectors for track fastener defects
by combining local binary patterns (LBP) and HOGs. Finally, they employed an SVM to
classify the feature vectors. This method demonstrated higher real-time performance and
accuracy. Although the aforementioned image processing-based detection methods have
improved detection accuracy to some extent, their complex image-processing and feature
extraction processes still cannot improve the efficiency of fastener detection.

Detection methods based on deep learning primarily utilize convolutional neural
networks (CNNs) to learn features from images. Compared to image processing-based
detection methods, they do not require manual feature design, thus offering better robust-
ness. These algorithms can be classified into two major categories: two-stage detection
algorithms based on candidate regions and one-stage detection algorithms based on end-to-
end learning. The main representatives of two-stage algorithms include R-CNN [14], Fast
R-CNN [15], and Faster R-CNN [16]. Wei et al. [2] applied Faster R-CNN to track fastener
detection. Despite the improvement in detection accuracy, the issue of slow detection
speed persists. The one-stage algorithms are mainly represented by SSD [17] and the
YOLO [18–22] series. Compared to other algorithms, the YOLO series algorithms have
significant advantages in both detection speed and accuracy. Therefore, they are widely
used in track fastener defect detection. Qi et al. [23] proposed an improved MYOLOv3-Tiny
network based on YOLOv3. Depth-wise and pointwise convolution were used, and the
backbone network was redesigned. The experiments showed that the network achieved
higher detection precision and faster detection speed compared to R-CNN. Fu et al. [24] pro-
posed a MobileNet-YOLOv4 algorithm for track fastener detection. This algorithm replaces
the CSPDarknet53 feature extraction network in the YOLOv4 algorithm with MobileNet,
which enables the extraction of subtle features of track fasteners while reducing the number
of parameters and computational complexity, thus improving detection speed. Li et al. [25]
proposed an improved track fastener defect detection model based on YOLOv5s. In this
model, a convolutional block attention module (CBAM) is added to the Neck network
of YOLOv5s to enhance the extraction of key features and suppress irrelevant features.
Additionally, a weighted bi-directional feature pyramid network (BiFPN) is introduced
to achieve multi-scale feature fusion. The experimental results demonstrate that the im-
proved model enhances both accuracy and detection speed. Wang et al. [26] introduced the
CBAM attention mechanism into the backbone network of YOLOv5, replaced the standard
convolution blocks in the neck network with GSConv convolution modules, and integrated
BiFPN. Finally, they designed a lightweight decoupled head structure to improve detection
accuracy and enhance the robustness of the model. The experimental findings testify to
the YOLOv5-CGBD model’s ability to conduct real-time detection, with mAP0.5 scores
of 0.971 and 0.747 for mAP0.5:0.95, surpassing those of the original YOLOv5 model by

Electronics 2024, 13, 1781 3 of 15

2.2% and 4.1%, respectively. Although the above methods can accurately detect fastener
defects, there is still room for improvement in terms of false detection rates. Additionally,
the detection speed of the models is relatively slow, making it challenging to apply them in
engineering practice.

Due to its low cost, high flexibility, and ease of control, UAV-based detection is
widely employed across various fields. For instance, in agriculture, it is utilized for tree
detection [27,28]; in transportation, it is employed for vehicle tracking [29,30]; in environ-
mental conservation, it is used for inspections [31]; in industry, it is applied for power
facility inspections [32]; and in infrastructure, it is employed for bridge crack inspections [33].
In the field of railway inspection, utilizing UAVs can reduce labor costs, improve efficiency,
and enhance safety. Wu et al. [34] proposed the use of UAV vision for detecting surface de-
fects on railway tracks. Similarly, Milan et al. [35] suggested the use of UAVs for inspecting
railway infrastructure. The development of autonomous UAVs for analyzing data in real
time is an emerging trend in UAV data processing [36]. However, current track fastener
defect detection models rely on Nvidia graphics cards, which cannot meet the engineering
requirements for lightweight, low-power, and real-time devices.

To address the aforementioned issues, the main contributions of this article are
as follows:

1. We converted the YOLOv4-tiny model to output single-scale features, which resulted
in improved detection speed. Furthermore, we utilized the K-means++ algorithm to
re-cluster anchor boxes, thereby improving the model’s detection accuracy.

2. We developed the model using an FPGA development platform and deployed the
model on the FPGA platform after transformation [37,38], achieving the lightweight,
low-power, and real-time requirements of the track fastener defect detection device.

2. Materials and Methods
2.1. YOLOv4-Tiny Algorithm

YOLO is an end-to-end object detection algorithm. It takes the entire image as input,
and after processing through a CNN, it yields the localization and classification results
of objects. The core of the YOLO detection algorithm involves segmenting the neural
network’s input image into an n ∗ n grid, where each grid cell has S predefined anchor boxes.
Detection results are obtained by applying non-maximum suppression to remove duplicate
and ineffective anchor boxes. Additionally, techniques such as residual network structures,
feature fusion, and multi-scale output are employed to improve detection capabilities
across various scenarios. The loss function of YOLO is represented as Equation (1).

LOSS = lossloc + lossobj + losscls (1)

lossloc, lossobj, and losscls represent the position regression loss function, the object
confidence loss function, and the target classification loss function, respectively.

YOLOv4-tiny is a lightweight version of YOLOv4 proposed by Bochkovskiy et al. In
comparison to YOLOv4, YOLOv4-tiny employs a lighter architecture, enabling it to achieve
efficient detection speeds even in resource-constrained environments. Therefore, YOLOv4-
tiny is better suited for running on embedded devices. The structure of YOLOv4-tiny is
shown in Figure 1.

From Figure 1, it can be seen that the backbone network of YOLOv4-tiny consists of
Resblocks. The structure of the Resblock is shown in Figure 2. The backbone network
outputs multi-scale features, which are then utilized by the YOLO head for detection.

Electronics 2024, 13, 1781 4 of 15Electronics 2024, 13, 1781 4 of 15

Conv BN Leaky
k=3,s=2,c=32

Conv BN Leaky
k=3,s=2,c=64 Resblock Resblock

ResblockConv BN Leaky
k=3,s=1,c=512

Conv BN Leaky
k=1,s=1,c=256

Conv BN Leaky
k=3,s=1,c=512

Conv2d
k=1,s=1,c=n

Conv BN Leaky
k=1,s=1,c=128

upsample

Concat

Conv BN Leaky
k=3,s=1,c=256

Conv26
k=1,s=1,c=n

416 416 3× × 208 208 32× × 104 104 64× ×

13 13 512× ×13 13 512× ×13 13 256× ×
13 13 512× ×

13 13 128× ×

26 26 128× ×

26 26 384× ×

26 26 512× ×

YOLO head

YOLO head

Figure 1. Structure of YOLOv4-tiny.

From Figure 1, it can be seen that the backbone network of YOLOv4-tiny consists of
Resblocks. The structure of the Resblock is shown in Figure 2. The backbone network out-
puts multi-scale features, which are then utilized by the YOLO head for detection.

input Conv BN Leaky
k=3,s=1,c=n

Conv BN Leaky
k=3,s=1,c=n Concat Conv BN Leaky

k=3,s=1,c=2n Concat Maxpool output

split

Figure 2. Structure of the Resblock.

In ConvBNLeaky, 𝑘 represents the size of the convolutional kernel, 𝑠 represents
the stride, and 𝑐 represents the number of channels. ConvBNLeaky consists of a convo-
lutional layer, a batch normalization layer (BN), and a Leaky activation function. The
Leaky function is represented as Equation (2). Compared to the ReLU activation function,
during the backpropagation process in deep learning training, the Leaky activation func-
tion can still compute gradients for the parts of the input that are less than zero. 𝐿𝑒𝑎𝑘𝑦(𝑥) = 𝑥 𝑥 ≥ 0𝑎𝑥 𝑥 < 0 (2)

2.2. YOLOv4-Tiny Improvement
2.2.1. Single-Scale Feature Output

The original YOLOv4-tiny model has two-scale feature outputs. By detecting objects
at two scales, YOLOv4-tiny can obtain a more comprehensive understanding of target
information and can handle complex scenes more effectively. Compared to other detec-
tion tasks such as face detection and vehicle detection, track fastener defect detection tasks
typically demonstrate relatively fixed sizes of objects in the image. An image displaying
anomalous track fasteners is shown in Figure 3.

Figure 1. Structure of YOLOv4-tiny.

Electronics 2024, 13, 1781 4 of 15

Conv BN Leaky
k=3,s=2,c=32

Conv BN Leaky
k=3,s=2,c=64 Resblock Resblock

ResblockConv BN Leaky
k=3,s=1,c=512

Conv BN Leaky
k=1,s=1,c=256

Conv BN Leaky
k=3,s=1,c=512

Conv2d
k=1,s=1,c=n

Conv BN Leaky
k=1,s=1,c=128

upsample

Concat

Conv BN Leaky
k=3,s=1,c=256

Conv26
k=1,s=1,c=n

416 416 3× × 208 208 32× × 104 104 64× ×

13 13 512× ×13 13 512× ×13 13 256× ×
13 13 512× ×

13 13 128× ×

26 26 128× ×

26 26 384× ×

26 26 512× ×

YOLO head

YOLO head

Figure 1. Structure of YOLOv4-tiny.

From Figure 1, it can be seen that the backbone network of YOLOv4-tiny consists of
Resblocks. The structure of the Resblock is shown in Figure 2. The backbone network out-
puts multi-scale features, which are then utilized by the YOLO head for detection.

input Conv BN Leaky
k=3,s=1,c=n

Conv BN Leaky
k=3,s=1,c=n Concat Conv BN Leaky

k=3,s=1,c=2n Concat Maxpool output

split

Figure 2. Structure of the Resblock.

In ConvBNLeaky, 𝑘 represents the size of the convolutional kernel, 𝑠 represents
the stride, and 𝑐 represents the number of channels. ConvBNLeaky consists of a convo-
lutional layer, a batch normalization layer (BN), and a Leaky activation function. The
Leaky function is represented as Equation (2). Compared to the ReLU activation function,
during the backpropagation process in deep learning training, the Leaky activation func-
tion can still compute gradients for the parts of the input that are less than zero. 𝐿𝑒𝑎𝑘𝑦(𝑥) = 𝑥 𝑥 ≥ 0𝑎𝑥 𝑥 < 0 (2)

2.2. YOLOv4-Tiny Improvement
2.2.1. Single-Scale Feature Output

The original YOLOv4-tiny model has two-scale feature outputs. By detecting objects
at two scales, YOLOv4-tiny can obtain a more comprehensive understanding of target
information and can handle complex scenes more effectively. Compared to other detec-
tion tasks such as face detection and vehicle detection, track fastener defect detection tasks
typically demonstrate relatively fixed sizes of objects in the image. An image displaying
anomalous track fasteners is shown in Figure 3.

Figure 2. Structure of the Resblock.

In ConvBNLeaky, k represents the size of the convolutional kernel, s represents the
stride, and c represents the number of channels. ConvBNLeaky consists of a convolutional
layer, a batch normalization layer (BN), and a Leaky activation function. The Leaky
function is represented as Equation (2). Compared to the ReLU activation function, during
the backpropagation process in deep learning training, the Leaky activation function can
still compute gradients for the parts of the input that are less than zero.

Leaky(xi) =

{
xi xi ≥ 0
axi xi < 0

(2)

2.2. YOLOv4-Tiny Improvement
2.2.1. Single-Scale Feature Output

The original YOLOv4-tiny model has two-scale feature outputs. By detecting objects
at two scales, YOLOv4-tiny can obtain a more comprehensive understanding of target
information and can handle complex scenes more effectively. Compared to other detection
tasks such as face detection and vehicle detection, track fastener defect detection tasks
typically demonstrate relatively fixed sizes of objects in the image. An image displaying
anomalous track fasteners is shown in Figure 3.

Electronics 2024, 13, 1781 5 of 15Electronics 2024, 13, 1781 5 of 15

Figure 3. Captured images and abnormal fasteners.

Due to the fixed perspective of the camera and the consistent size of the track fasten-
ers, the size of the detection targets remains fixed relative to the image. To improve the
detection speed and reduce computational complexity, we modified YOLOv4-tiny to out-
put features at a single scale. From Figure 3, it can be observed that the track fasteners
belong to medium-sized objects. Therefore, we retained features at the scale of (26, 26)
while removing features at the scale of (13, 13). The improved model structure is shown
in Figure 4.

Conv BN Leaky
k=3,s=2,c=32

Conv BN Leaky
k=3,s=2,c=64 Resblock Resblock

ResblockConv BN Leaky
k=3,s=1,c=512

Conv BN Leaky
k=1,s=1,c=256

Conv BN Leaky
k=1,s=1,c=128

upsample

Concat

Conv BN Leaky
k=3,s=1,c=256

Conv26
k=1,s=1,c=n

416 416 3× × 208 208 32× × 104 104 64× ×

13 13 512× ×13 13 512× ×13 13 256× ×

13 13 128× ×

26 26 128× ×

26 26 384× ×

26 26 512× ×

YOLO head
Figure 4. Improved YOLOv4-tiny network structure.

Experiments will be used to validate the hypothesis that the size of the detection tar-
gets remains fixed relative to the image.

Figure 3. Captured images and abnormal fasteners.

Due to the fixed perspective of the camera and the consistent size of the track fasteners,
the size of the detection targets remains fixed relative to the image. To improve the detection
speed and reduce computational complexity, we modified YOLOv4-tiny to output features
at a single scale. From Figure 3, it can be observed that the track fasteners belong to medium-
sized objects. Therefore, we retained features at the scale of (26, 26) while removing features
at the scale of (13, 13). The improved model structure is shown in Figure 4.

Electronics 2024, 13, 1781 5 of 15

Figure 3. Captured images and abnormal fasteners.

Due to the fixed perspective of the camera and the consistent size of the track fasten-
ers, the size of the detection targets remains fixed relative to the image. To improve the
detection speed and reduce computational complexity, we modified YOLOv4-tiny to out-
put features at a single scale. From Figure 3, it can be observed that the track fasteners
belong to medium-sized objects. Therefore, we retained features at the scale of (26, 26)
while removing features at the scale of (13, 13). The improved model structure is shown
in Figure 4.

Conv BN Leaky
k=3,s=2,c=32

Conv BN Leaky
k=3,s=2,c=64 Resblock Resblock

ResblockConv BN Leaky
k=3,s=1,c=512

Conv BN Leaky
k=1,s=1,c=256

Conv BN Leaky
k=1,s=1,c=128

upsample

Concat

Conv BN Leaky
k=3,s=1,c=256

Conv26
k=1,s=1,c=n

416 416 3× × 208 208 32× × 104 104 64× ×

13 13 512× ×13 13 512× ×13 13 256× ×

13 13 128× ×

26 26 128× ×

26 26 384× ×

26 26 512× ×

YOLO head
Figure 4. Improved YOLOv4-tiny network structure.

Experiments will be used to validate the hypothesis that the size of the detection tar-
gets remains fixed relative to the image.

Figure 4. Improved YOLOv4-tiny network structure.

Electronics 2024, 13, 1781 6 of 15

Experiments will be used to validate the hypothesis that the size of the detection
targets remains fixed relative to the image.

2.2.2. Anchor Box Optimization

The original YOLOv4-tiny model has problems such as inaccurate localization in track
fastener defect detection tasks due to its utilization of default anchor boxes. The default
anchor boxes in YOLOv4-tiny are generated through clustering analysis conducted on the
COCO dataset, which predominantly consists of object categories commonly encountered
in everyday scenarios. Consequently, the anchor boxes obtained from this process may not
be optimally tailored for the track fasteners, leading to issues such as inaccurate localization
in detection tasks.

To improve the accuracy of the model in detecting track fasteners, this study obtained
new anchor box parameters from proprietary datasets. We employed the K-means++
algorithm to conduct clustering analysis on the fastener dataset to obtain new anchor box
parameters. Compared to the K-means algorithm, the K-means++ algorithm optimizes
the selection of initial cluster centers by maximizing the distance between K initial cluster
centers as much as possible, effectively improving clustering efficiency. The steps of the
K-means++ algorithm are as follows:

Step 1: Randomly select a sample from dataset N as the first cluster center.
Step 2: Compute the distance D(x) from each sample x to the nearest existing cluster

center and calculate the probability P(x) of each sample being identified as the next cluster
center using the following formula:

IoU =
A ∩ B
A ∪ B

(3)

D(x) = 1 − IoU (4)

P(x) =
D(x)2

∑x∈N D(x)2 (5)

where IoU denotes the degree of matching between the anchor box and the labeled box.
Select the sample with the maximum value of P(x) as the next cluster center.

Step 3: Repeat step 2 until k cluster centers have been selected.
Step 4: Utilize the K-means algorithm to obtain new anchor box parameters.
The original and the new parameters of the anchor boxes are shown in Table 1.

Table 1. The original and the new parameters of the anchor boxes.

Algorithm Anchor Box

YOLOv4-tiny [(10, 14) (23, 27) (37, 58)]
[(81, 82) (135, 169) (344, 319)]

K-means++ [(25, 27) (34, 48) (55, 73)]

2.3. Hardware Platforms
2.3.1. Comparison of Hardware Platforms

Currently, almost all deep learning algorithms run on GPUs. This is because GPUs offer
powerful computational capabilities, and frameworks like PyTorch provide convenience
for researchers in their studies. However, the powerful computational capabilities of GPUs
also come with drawbacks such as large size and high power consumption. As mentioned
earlier, we plan to utilize UAVs for track fastener defect detection. Therefore, we require a
lightweight, low-power, high-performance real-time computing platform.

We have noticed that an increasing number of researchers are choosing field-programmable
gate arrays (FPGAs) as deployment platforms for deep learning models. Compared to
GPUs, FPGAs offer advantages such as programmability, flexibility, and low power con-

Electronics 2024, 13, 1781 7 of 15

sumption. With Xilinx’s introduction of the deep learning processing unit (DPU), FPGAs
can also provide high-performance inference for deep learning models.

In conclusion, FPGAs were chosen as the hardware platform for our algorithm.

2.3.2. The ZCU104 Development Platform

The hardware development platform used in this paper is the Zynq Ultrascale+ MP-
SoC ZCU104 development platform from Xilinx. The ZCU104 development board is shown
in Figure 5. The ZCU104 is a high-performance development platform suitable for various
embedded systems and application scenarios, such as artificial intelligence, video process-
ing, network communication, and industrial control. The ZCU104 platform employs the
ZU7EV chip, which includes a quad-core ARM Cortex™-A53 processor and a dual-core
Cortex-R5 processor, with a CPU frequency of 1200 MHz.

Electronics 2024, 13, 1781 7 of 15

2.3.2. The ZCU104 Development Platform
The hardware development platform used in this paper is the Zynq Ultrascale+

MPSoC ZCU104 development platform from Xilinx. The ZCU104 development board is
shown in Figure 5. The ZCU104 is a high-performance development platform suitable for
various embedded systems and application scenarios, such as artificial intelligence, video
processing, network communication, and industrial control. The ZCU104 platform em-
ploys the ZU7EV chip, which includes a quad-core ARM Cortex™-A53 processor and a
dual-core Cortex-R5 processor, with a CPU frequency of 1200 MHz.

Figure 5. The ZCU104 development board.

The hardware development platform resources also include 312 Block RAMs
(BRAMs) for data storage, 1728 digital signal processors (DSPs) for digital signal pro-
cessing and algorithm acceleration, 230,400 look-up tables (LUTs) for executing logic op-
erations, and 460,800 flip-flops (FFs) for storing state information.

2.3.3. Hardware Platform Development
The development process on the ZCU104 platform is shown in Figure 6.

Develop the Hardware
Project and Generate

the XSA File

Develop the Software
Project and Generate

the Image System

Building the Vitis
Platform

Incorporate the Vitis-
AI Repository into the

Project

Develop the DPU
Kernel Project and

Generate the SD Card
Image

Vivado PetaLinux

Vitis
Figure 6. The development process on the ZCU104 platform.

The hardware project was developed on the Vivado 2021.1 platform. We utilized the
Zynq UltraScale + MPSoC IP module from the Zynq series, alongside the board preset for
ZCU104. This IP module is shown in Figure 7. After configuring all of the ports, an XSA
file was generated. The XSA file contained all of the hardware information.

Figure 5. The ZCU104 development board.

The hardware development platform resources also include 312 Block RAMs (BRAMs)
for data storage, 1728 digital signal processors (DSPs) for digital signal processing and
algorithm acceleration, 230,400 look-up tables (LUTs) for executing logic operations, and
460,800 flip-flops (FFs) for storing state information.

2.3.3. Hardware Platform Development

The development process on the ZCU104 platform is shown in Figure 6.

Electronics 2024, 13, 1781 7 of 15

2.3.2. The ZCU104 Development Platform
The hardware development platform used in this paper is the Zynq Ultrascale+

MPSoC ZCU104 development platform from Xilinx. The ZCU104 development board is
shown in Figure 5. The ZCU104 is a high-performance development platform suitable for
various embedded systems and application scenarios, such as artificial intelligence, video
processing, network communication, and industrial control. The ZCU104 platform em-
ploys the ZU7EV chip, which includes a quad-core ARM Cortex™-A53 processor and a
dual-core Cortex-R5 processor, with a CPU frequency of 1200 MHz.

Figure 5. The ZCU104 development board.

The hardware development platform resources also include 312 Block RAMs
(BRAMs) for data storage, 1728 digital signal processors (DSPs) for digital signal pro-
cessing and algorithm acceleration, 230,400 look-up tables (LUTs) for executing logic op-
erations, and 460,800 flip-flops (FFs) for storing state information.

2.3.3. Hardware Platform Development
The development process on the ZCU104 platform is shown in Figure 6.

Develop the Hardware
Project and Generate

the XSA File

Develop the Software
Project and Generate

the Image System

Building the Vitis
Platform

Incorporate the Vitis-
AI Repository into the

Project

Develop the DPU
Kernel Project and

Generate the SD Card
Image

Vivado PetaLinux

Vitis
Figure 6. The development process on the ZCU104 platform.

The hardware project was developed on the Vivado 2021.1 platform. We utilized the
Zynq UltraScale + MPSoC IP module from the Zynq series, alongside the board preset for
ZCU104. This IP module is shown in Figure 7. After configuring all of the ports, an XSA
file was generated. The XSA file contained all of the hardware information.

Figure 6. The development process on the ZCU104 platform.

The hardware project was developed on the Vivado 2021.1 platform. We utilized the
Zynq UltraScale + MPSoC IP module from the Zynq series, alongside the board preset for
ZCU104. This IP module is shown in Figure 7. After configuring all of the ports, an XSA
file was generated. The XSA file contained all of the hardware information.

Electronics 2024, 13, 1781 8 of 15
Electronics 2024, 13, 1781 8 of 15

Figure 7. ZCU104 IP module.

PetaLinux is a specialized development platform designed for embedded Linux sys-
tem development, introduced by Xilinx. This platform enables the configuration of the
Linux kernel, device tree, and root file system (rootfs). We utilized PetaLinux 2021.2 and
the XSA file to generate a Linux image system that incorporates the required dependency
library files. Subsequent development will be based on this customized Linux system.

Vitis is a software development platform introduced by Xilinx, designed to simplify
the software development process on FPGAs. It offers a unified software development
environment. After building the Vitis platform and incorporating the Vitis-AI repository,
we developed the DPU kernel project. The DPU is a hardware accelerator dedicated to
deep learning inference tasks, introduced by Xilinx. Its primary objective is to expedite
the inference computations of deep learning models, including convolutional neural net-
works (CNNs). The top-level architecture of the DPU is shown in Figure 8.

High
Performance

Scheduler

Instruction
Fetch Unit Global Memory Pool

PE PE PE PE

High Speed Data Tube

Ap
pli

cat
ion

 Pr
oce

ssi
ng

 U
nit

Deep Learning Processing Uint

RAM

Hybrid Computing Array

Figure 8. The top-level architecture of the DPU.

A DPU module with model number B4096 was utilized in this paper. With UltraRAM
enabled, the ZCU104 platform supports a maximum of two B4096 modules.

Finally, we packaged all of the files into an SD card image.

2.4. Model Transformation
After completing hardware platform development, it is necessary to transform the

trained network model to enable forward inference on the hardware platform. The process
of model transformation is shown in Figure 9.

Figure 7. ZCU104 IP module.

PetaLinux is a specialized development platform designed for embedded Linux system
development, introduced by Xilinx. This platform enables the configuration of the Linux
kernel, device tree, and root file system (rootfs). We utilized PetaLinux 2021.2 and the XSA
file to generate a Linux image system that incorporates the required dependency library
files. Subsequent development will be based on this customized Linux system.

Vitis is a software development platform introduced by Xilinx, designed to simplify
the software development process on FPGAs. It offers a unified software development
environment. After building the Vitis platform and incorporating the Vitis-AI repository,
we developed the DPU kernel project. The DPU is a hardware accelerator dedicated to
deep learning inference tasks, introduced by Xilinx. Its primary objective is to expedite the
inference computations of deep learning models, including convolutional neural networks
(CNNs). The top-level architecture of the DPU is shown in Figure 8.

Electronics 2024, 13, 1781 8 of 15

Figure 7. ZCU104 IP module.

PetaLinux is a specialized development platform designed for embedded Linux sys-
tem development, introduced by Xilinx. This platform enables the configuration of the
Linux kernel, device tree, and root file system (rootfs). We utilized PetaLinux 2021.2 and
the XSA file to generate a Linux image system that incorporates the required dependency
library files. Subsequent development will be based on this customized Linux system.

Vitis is a software development platform introduced by Xilinx, designed to simplify
the software development process on FPGAs. It offers a unified software development
environment. After building the Vitis platform and incorporating the Vitis-AI repository,
we developed the DPU kernel project. The DPU is a hardware accelerator dedicated to
deep learning inference tasks, introduced by Xilinx. Its primary objective is to expedite
the inference computations of deep learning models, including convolutional neural net-
works (CNNs). The top-level architecture of the DPU is shown in Figure 8.

High
Performance

Scheduler

Instruction
Fetch Unit Global Memory Pool

PE PE PE PE

High Speed Data Tube

Ap
pli

cat
ion

 Pr
oce

ssi
ng

 U
nit

Deep Learning Processing Uint

RAM

Hybrid Computing Array

Figure 8. The top-level architecture of the DPU.

A DPU module with model number B4096 was utilized in this paper. With UltraRAM
enabled, the ZCU104 platform supports a maximum of two B4096 modules.

Finally, we packaged all of the files into an SD card image.

2.4. Model Transformation
After completing hardware platform development, it is necessary to transform the

trained network model to enable forward inference on the hardware platform. The process
of model transformation is shown in Figure 9.

Figure 8. The top-level architecture of the DPU.

A DPU module with model number B4096 was utilized in this paper. With UltraRAM
enabled, the ZCU104 platform supports a maximum of two B4096 modules.

Finally, we packaged all of the files into an SD card image.

2.4. Model Transformation

After completing hardware platform development, it is necessary to transform the
trained network model to enable forward inference on the hardware platform. The process
of model transformation is shown in Figure 9.

Vitis-AI is a development platform aimed at AI acceleration, introduced by Xilinx. It
offers a comprehensive set of tools and libraries to assist developers in converting various
deep learning models into formats suitable for FPGA deployment, while also accelerating
deep learning inference tasks. Following the process shown in Figure 9, we utilized the
Vitis-AI 1.4 platform to quantize and compile our model, transforming it into an Xmodel
file executable on the hardware platform.

Electronics 2024, 13, 1781 9 of 15Electronics 2024, 13, 1781 9 of 15

Selecting the Pytorch
Framework

Model
Quantization

Evaluate the
Quantized Model Compile the Model Xmodel Executable

File

Hardware
Configuration

Declaration Files

Modify and Retrain
the Model

Qualified

Not Qualified

Figure 9. The process of model transformation.

Vitis-AI is a development platform aimed at AI acceleration, introduced by Xilinx. It
offers a comprehensive set of tools and libraries to assist developers in converting various
deep learning models into formats suitable for FPGA deployment, while also accelerating
deep learning inference tasks. Following the process shown in Figure 9, we utilized the
Vitis-AI 1.4 platform to quantize and compile our model, transforming it into an Xmodel
file executable on the hardware platform.

3. Experimental Results
3.1. Dataset

The dataset used in this paper was collected using a line laser camera, comprising a
total of 2000 images with a resolution of 800 × 1261 pixels. After removing distorted and
blurry images, 1100 images were obtained. Each image contained approximately 6 to 12
fasteners, with a total of approximately 8000 fasteners. Approximately 200 images con-
tained abnormal fasteners. The dataset comprises two distinct categories of fasteners, de-
noted Class A and Class B, alongside their respective abnormal counterparts, labeled Class
A–F and Class B–F.

3.2. Experimental Setting
The experimental environment was configured with Windows 10 as the operating

system, NVIDIA GeForce RTX 3070 as the GPU model with 8 G of video memory, Python
3.8 as the compilation language, Pytorch 1.8.0 as the deep learning framework, CUDA
10.2 as the CUDA version, and ZCU104 development platform as the hardware platform.
The training parameters were set as follows: the initial learning rate was 0.001, the mo-
mentum parameter was 0.9, the weight decay factor was 0.0005, the input image size was
416 × 416, and the Batch Size was 16. A total of 200 epochs were trained using stochastic
gradient descent (SGD) for the whole training process.

Figure 10 shows the comparison of loss curves, where the red curve represents the
loss curve of the YOLOv4-tiny algorithm, and the blue curve represents the loss curve of
the Improved YOLOv4-tiny algorithm. Lower loss values during training indicate better
training results. From Figure 10, it can be observed that the loss value of the Improved
YOLOv4-tiny algorithm is lower than that of the YOLOv4-tiny algorithm after 75 epochs.

Figure 9. The process of model transformation.

3. Experimental Results
3.1. Dataset

The dataset used in this paper was collected using a line laser camera, comprising
a total of 2000 images with a resolution of 800 × 1261 pixels. After removing distorted
and blurry images, 1100 images were obtained. Each image contained approximately
6 to 12 fasteners, with a total of approximately 8000 fasteners. Approximately 200 images
contained abnormal fasteners. The dataset comprises two distinct categories of fasteners,
denoted Class A and Class B, alongside their respective abnormal counterparts, labeled
Class A–F and Class B–F.

3.2. Experimental Setting

The experimental environment was configured with Windows 10 as the operating
system, NVIDIA GeForce RTX 3070 as the GPU model with 8 G of video memory, Python
3.8 as the compilation language, Pytorch 1.8.0 as the deep learning framework, CUDA 10.2
as the CUDA version, and ZCU104 development platform as the hardware platform. The
training parameters were set as follows: the initial learning rate was 0.001, the momentum
parameter was 0.9, the weight decay factor was 0.0005, the input image size was 416 × 416,
and the Batch Size was 16. A total of 200 epochs were trained using stochastic gradient
descent (SGD) for the whole training process.

Figure 10 shows the comparison of loss curves, where the red curve represents the
loss curve of the YOLOv4-tiny algorithm, and the blue curve represents the loss curve of
the Improved YOLOv4-tiny algorithm. Lower loss values during training indicate better
training results. From Figure 10, it can be observed that the loss value of the Improved
YOLOv4-tiny algorithm is lower than that of the YOLOv4-tiny algorithm after 75 epochs.

Electronics 2024, 13, 1781 10 of 15

Figure 10. Comparison of loss curves.

3.3. Evaluation Indicators
In this paper, we evaluated the performance of the algorithms according to two as-

pects, detection accuracy and detection speed, using evaluation methods commonly em-
ployed for target detection algorithms.

Detection accuracy evaluation metrics comprise recall, false detection, and mean av-
erage precision (mAP).

In the field of object detection, 𝑇𝑃 denotes the number of positive samples detected
correctly, 𝐹𝑃 denotes the number of positive samples detected incorrectly, 𝑇𝑁 denotes
the number of negative samples detected correctly, and 𝐹𝑁 denotes the number of neg-
ative samples detected incorrectly. All of the metrics are calculated when 𝐼𝑜𝑈 = 0.5.

Recall, denoted by 𝑅, is the probability that the model correctly identifies a positive
sample in a single category. It is defined as follows: 𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (6)

False detection, denoted by 𝐹𝑃𝑅, is the probability that the model incorrectly identi-
fies a negative sample as a positive sample in a single category. It is defined as follows: 𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁 (7)

High 𝑅 and low 𝐹𝑃𝑅 are required for the task of track fastener defect detection.
The 𝑚𝐴𝑃 is the area enclosed by the precision and recall curves. It is an overall net-

work performance evaluation metric considering precision and recall [39]. Therefore, 𝑚𝐴𝑃 is a more authoritative metric in model performance evaluation, and a larger 𝑚𝐴𝑃
value represents higher detection precision. It is defined as follows: 𝐴𝑃 = 𝑃 ∙ 𝑅𝑑𝑅 (8)

𝑚𝐴𝑃 = 1𝑁 𝐴𝑃 (9)

Figure 10. Comparison of loss curves.

Electronics 2024, 13, 1781 10 of 15

3.3. Evaluation Indicators

In this paper, we evaluated the performance of the algorithms according to two aspects,
detection accuracy and detection speed, using evaluation methods commonly employed
for target detection algorithms.

Detection accuracy evaluation metrics comprise recall, false detection, and mean
average precision (mAP).

In the field of object detection, TP denotes the number of positive samples detected
correctly, FP denotes the number of positive samples detected incorrectly, TN denotes the
number of negative samples detected correctly, and FN denotes the number of negative
samples detected incorrectly. All of the metrics are calculated when IoU = 0.5.

Recall, denoted by R, is the probability that the model correctly identifies a positive
sample in a single category. It is defined as follows:

R =
TP

TP + FN
(6)

False detection, denoted by FPR, is the probability that the model incorrectly identifies
a negative sample as a positive sample in a single category. It is defined as follows:

FPR =
FP

FP + TN
(7)

High R and low FPR are required for the task of track fastener defect detection.
The mAP is the area enclosed by the precision and recall curves. It is an overall

network performance evaluation metric considering precision and recall [39]. Therefore,
mAP is a more authoritative metric in model performance evaluation, and a larger mAP
value represents higher detection precision. It is defined as follows:

AP =
∫ 1

0
P·RdR (8)

mAP =
1
N

N

∑
i=1

APi (9)

where N is the number of categories in the dataset and P is precision, which denotes the
probability that the model detects correctly in a single category. It is defined as follows:

P =
TP

TP + FP
(10)

The detection speed is evaluated in terms of frames per second (FPS), the number of
frames per second that the model processes for the image.

3.4. Experiments on the GPU
3.4.1. Ablation Experiments

We conducted ablation experiments for the two improvements proposed in this paper.
We modified YOLOv4-tiny to output single-scale feature maps and then replaced the
original anchor boxes with anchor boxes optimized using the K-means++ algorithm. The
final results are shown in Table 2.

The experimental results indicate that single-scale feature output can significantly
improve detection speed, increasing from 316.3 FPS to 521.9 FPS. However, there was a
decrease in mAP by 1.8%, and the FPR for each class of fasteners also increased.

Electronics 2024, 13, 1781 11 of 15

Table 2. Comparison of the results of the ablation experiments.

Network Model Class R/% FPR/% mAP/% FPS

YOLOv4-tiny
A 75.0 12.9

90.5 336.3
B 91.7 0

YOLOv4-tiny
+

Single-Scale Feature Output

A 72.6 13.3

88.7 554.9
B 89.8 0.9

YOLOv4-tiny
+

Single-Scale Feature Output
+

Anchor Box Optimization
(Improved YOLOv4-tiny)

A 86.1 3.1

95.8 554.9
B 100 0

The experimental results also indicate that optimizing the anchor boxes significantly
improves detection performance. The Improved YOLOv4-tiny model achieved a 5.3%
increase in mAP compared to YOLOv4-tiny. This validates our previous hypothesis that
the relative size of detected objects remains consistent with respect to the image.

3.4.2. Comparison Experiments

To further validate the detection performance of the improved model, the model in
this paper was compared with the existing mainstream target detection algorithms Faster
R-CNN and SSD. The experiments were conducted in the same hardware and software
environment, as well as with identical training and testing parameters. The experimental
results are shown in Table 3.

Table 3. Performance comparison of various target detection algorithms.

Network Model Class R/% FPR/% mAP/% FPS

Faster R-CNN
A 77.5 13.6

90.6 10.7
B 88.3 0

SSD
A 82.0 5.8

93.4 30.3
B 99.5 0

YOLOv4-tiny
A 75.0 12.9

90.5 336.3
B 91.7 0

Improved YOLOv4-tiny
A 86.1 3.1

95.8 554.9
B 100 0

This can be seen based on the data in Table 3. In terms of the mAP metric, Improved
YOLOv4-tiny achieved the best performance, reaching 95.8%. Compared to Faster R-CNN,
SSD, and YOLOv4-tiny, the improved model’s mAP increased by 5.2%, 2.4%, and 5.3%,
respectively. In terms of the false positive rate (FPR) metric, Improved YOLOv4-tiny also
achieved the best performance, with a rate of 3.1% for Class A fasteners. This is lower
than the rates achieved by Faster R-CNN, SSD, and YOLOv4-tiny, which were 13.6%,
5.8%, and 12.9%, respectively. In terms of detection speed, Improved YOLOv4-tiny also
achieved the best performance, reaching 554.9 FPS. Compared to Faster R-CNN, SSD,
and YOLOv4-tiny, the improved model’s speed increased by 544.2 FPS, 524.6 FPS, and
218.6 FPS, respectively. In summary, compared to other target detection models, the
Improved YOLOv4-tiny model in this paper outperformed in terms of detection accuracy,
detection error rate, and detection speed.

Electronics 2024, 13, 1781 12 of 15

3.5. Experiments on the FPGA

To validate the detection performance of our algorithm on the ZCU104 development
platform, we compared both the improved model and the original model after transfor-
mation. In the experiment, we utilized two DPU modules with the model number B4096
and set their frequency to 300 MHz. Furthermore, we attempted to improve the detection
speed by employing parallel processing techniques. The experimental results are shown
in Table 4.

Table 4. Performance comparison of algorithms on the FPGA.

Network Model Class R/% FPR/% mAP/% Thread FPS

YOLOv4-tiny
A 75.0 6.9

89.5
1 70.9

B 87.5 0 8 179.6

Improved YOLOv4-tiny
A 83.3 3.23

95.1
1 84.2

B 100 0 8 295.9

This can be seen based on the data in Table 4. In terms of the mAP metric, the Improved
YOLOv4-tiny achieved 95.1% on the FPGA, which was 5.6% higher than the original
YOLOv4-tiny. In terms of detection speed, the Improved YOLOv4-tiny achieved 295.9 FPS
on the FPGA, which was 116.3 FPS higher than the original YOLOv4-tiny. Additionally,
parallel processing significantly improved detection efficiency compared to single-thread
processing.

3.6. Experimental Comparison of Different Platforms

To validate the FPGA platform as more suitable for practical engineering, we com-
pared the results across the two hardware platforms. The experimental results are shown
in Table 5.

Table 5. Performance comparison of the algorithm on the GPU and FPGA.

Network Model Hardware Platform mAP/% FPS Power Consumption/W

Improved YOLOv4-tiny GeForce RTX 3070 95.8 554.9 235

Improved YOLOv4-tiny ZCU104 95.1 295.9 20

This can be seen based on the data in Table 5. In terms of the mAP metric, the per-
formance of the improved model on the FPGA was 0.7% lower than on the GPU. This
is attributed to the quantization of model parameters during the model transformation
process, resulting in slight precision loss. However, an mAP of 95.1% still meets engineering
requirements. In terms of detection speed, the improved model achieved 295.9 FPS on the
FPGA, which was lower than the 554.9 FPS achieved on the GPU. However, it still met the
real-time requirements in practical engineering applications. In terms of power consump-
tion, the improved model’s power consumption on the FPGA was 25 W, significantly lower
than the 235 W on the GPU.

In summary, the improved model achieved sufficiently good detection accuracy and
speed on the FPGA with very low power consumption. Compared to the GPU platform,
the FPGA platform is more suitable for meeting the requirements of track fastener defect
detection tasks.

3.7. Visualization of Detection Results

The visualization of detection results is important in practical applications. Figure 11
shows the detection results of the improved model. It can be observed from Figure 11
that the algorithm exhibits excellent recognition performance for both types of fasteners,
with the bounding boxes’ positions and sizes matching the actual objects. Additionally,

Electronics 2024, 13, 1781 13 of 15

the confidence scores for both positive and negative samples are very high, meeting the
requirements of practical detection.

Electronics 2024, 13, 1781 13 of 15

This can be seen based on the data in Table 5. In terms of the mAP metric, the perfor-
mance of the improved model on the FPGA was 0.7% lower than on the GPU. This is
attributed to the quantization of model parameters during the model transformation pro-
cess, resulting in slight precision loss. However, an mAP of 95.1% still meets engineering
requirements. In terms of detection speed, the improved model achieved 295.9 FPS on the
FPGA, which was lower than the 554.9 FPS achieved on the GPU. However, it still met the
real-time requirements in practical engineering applications. In terms of power consump-
tion, the improved model’s power consumption on the FPGA was 25 W, significantly
lower than the 235 W on the GPU.

In summary, the improved model achieved sufficiently good detection accuracy and
speed on the FPGA with very low power consumption. Compared to the GPU platform,
the FPGA platform is more suitable for meeting the requirements of track fastener defect
detection tasks.

3.7. Visualization of Detection Results
The visualization of detection results is important in practical applications. Figure 11

shows the detection results of the improved model. It can be observed from Figure 11 that
the algorithm exhibits excellent recognition performance for both types of fasteners, with
the bounding boxes’ positions and sizes matching the actual objects. Additionally, the
confidence scores for both positive and negative samples are very high, meeting the re-
quirements of practical detection.

Figure 11. Visualization of detection results.

4. Conclusions
This paper addresses the issues of low efficiency in current track fastener detection

algorithms and the lack of lightweight and low-power hardware platforms suitable for
practical engineering applications. We constructed our own dataset of track fasteners, pro-
posed an improved model based on YOLOv4-tiny, and deployed the transformed model
on an FPGA hardware platform. Considering the dataset characteristics, the model was
improved to achieve single-scale feature output, significantly enhancing detection speed.
Additionally, to improve detection accuracy, we employed the K-means++ algorithm to
cluster the dataset and obtain more suitable anchor boxes. Finally, we developed and de-
ployed the model on the FPGA platform. The experimental results demonstrate that the

Figure 11. Visualization of detection results.

4. Conclusions

This paper addresses the issues of low efficiency in current track fastener detection
algorithms and the lack of lightweight and low-power hardware platforms suitable for
practical engineering applications. We constructed our own dataset of track fasteners,
proposed an improved model based on YOLOv4-tiny, and deployed the transformed
model on an FPGA hardware platform. Considering the dataset characteristics, the model
was improved to achieve single-scale feature output, significantly enhancing detection
speed. Additionally, to improve detection accuracy, we employed the K-means++ algorithm
to cluster the dataset and obtain more suitable anchor boxes. Finally, we developed
and deployed the model on the FPGA platform. The experimental results demonstrate
that the improved model achieves an mAP of 95.1% and a speed of 295.9 FPS on the
FPGA, surpassing the performance of the original YOLOv4-tiny. Moreover, the power
consumption of the FPGA platform is 20 W, much lower than that of the GPU platform,
meeting the requirements for UAVs carrying detection equipment.

Our improved model has been specifically designed for the fastener types in this
dataset and may not be suitable for recognizing other types of fasteners. Additionally,
considering the support provided by the Vitis development tools for YOLOv4 series algo-
rithms on the ZCU104 platform, we chose to improve YOLOv4-tiny instead of applying the
latest YOLO versions. In the future, we plan to expand the dataset scope and explore the
application potential of the latest algorithms on FPGA platforms to optimize and extend our
model, making it adaptable to a wider range of fastener types and detection environments.

Author Contributions: Conceptualization, Q.Y. and A.L.; methodology, Q.Y.; investigation, Q.Y. and
A.L.; writing—original draft, Q.Y.; writing—review and editing, X.Y. and W.D.; supervision, X.Y.
and W.D.; project administration, Q.Y., A.L., X.Y. and W.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: You can use this link to download the dataset: https://github.com/
Yuqi1998/FastenerDataset (accessed on 26 April 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/Yuqi1998/FastenerDataset
https://github.com/Yuqi1998/FastenerDataset

Electronics 2024, 13, 1781 14 of 15

References
1. Xiang, J.; Yuan, C.; Yu, C.; Lin, S.; Yang, H. Analysis of Elastic Bar Fracture Causes of Fasteners in Ballastless Track of High-Speed

Railway. J. Rail Way Sci. Eng. 2019, 16, 1605–1613.
2. Wei, X.; Yang, Z.; Liu, Y.; Wei, D.; Jia, L.; Li, Y. Railway Track Fastener Defect Detection Based on Image Processing and Deep

Learning Techniques: A Comparative Study. Eng. Appl. Artif. Intell. 2019, 80, 66–81. [CrossRef]
3. Bono, F.M.; Radicioni, L.; Cinquemani, S.; Benedetti, L.; Cazzulani, G.; Somaschini, C.; Belloli, M. A Deep Learning Approach to

Detect Failures in Bridges Based on the Coherence of Signals. Future Internet 2023, 15, 119. [CrossRef]
4. Chellaswamy, C.; Krishnasamy, M.; Balaji, L.; Dhanalakshmi, A.; Ramesh, R. Optimized Railway Track Health Monitoring System

Based on Dynamic Differential Evolution Algorithm. Measurement 2020, 152, 107332. [CrossRef]
5. Zhan, Z.; Sun, H.; Yu, X.; Yu, J.; Zhao, Y.; Sha, X.; Chen, Y.; Huang, Q.; Li, W.J. Wireless Rail Fastener Looseness Detection Based

on MEMS Accelerometer and Vibration Entropy. IEEE Sens. J. 2020, 20, 3226–3234. [CrossRef]
6. Mao, Q.; Cui, H.; Hu, Q.; Ren, X. A Rigorous Fastener Inspection Approach for High-Speed Railway from Structured Light

Sensors. ISPRS J. Photogramm. Remote Sens. 2018, 143, 249–267. [CrossRef]
7. Damljanović, V.; Weaver, R.L. Laser Vibrometry Technique for Measurement of Contained Stress in Railroad Rail. J. Sound Vib.

2005, 282, 341–366. [CrossRef]
8. Guerrieri, M.; Parla, G.; Celauro, C. Digital Image Analysis Technique for Measuring Railway Track Defects and Ballast Gradation.

Measurement 2018, 113, 137–147. [CrossRef]
9. Khan, R.A.; Islam, S.; Biswas, R. Automatic Detection of Defective Rail Anchors. In Proceedings of the 17th International IEEE

Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 1583–1588.
10. Feng, H.; Jiang, Z.; Xie, F.; Yang, P.; Shi, J.; Chen, L. Automatic Fastener Classification and Defect Detection in Vision-Based

Railway Inspection Systems. IEEE Trans. Instrum. Meas. 2014, 63, 877–888. [CrossRef]
11. Gibert, X.; Patel, V.M.; Chellappa, R. Sequential Score Adaptation with Extreme Value Theory for Robust Railway Track Inspection.

arXiv 2015, arXiv:1510.05822.
12. Gibert, X.; Patel, V.M.; Chellappa, R. Deep Multitask Learning for Railway Track Inspection. IEEE Trans. Intell. Transp. Syst. 2017,

18, 153–164. [CrossRef]
13. Wang, Z.; Wang, S. Research of Method for Detection of Rail Fastener Defects Based on Machine Vision; Atlantis Press: Amstelkade, The

Netherland, 2015.
14. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

arXiv 2014, arXiv:1311.2524.
15. Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083.
16. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]
17. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of

the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.;
Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37.

18. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016,
arXiv:1506.02640.

19. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

20. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
21. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
22. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object

Detectors. arXiv 2023, arXiv:2207.02696.
23. Qi, H.; Xu, T.; Wang, G.; Cheng, Y.; Chen, C. MYOLOv3-Tiny: A New Convolutional Neural Network Architecture for Real-Time

Detection of Track Fasteners. Comput. Ind. 2020, 123, 103303. [CrossRef]
24. Fu, J.; Chen, X.; Lv, Z. Rail Fastener Status Detection Based on MobileNet-YOLOv4. Electronics 2022, 11, 3677. [CrossRef]
25. Li, X.; Wang, Q.; Yang, X.; Wang, K.; Zhang, H. Track Fastener Defect Detection Model Based on Improved YOLOv5s. Sensors

2023, 23, 6457. [CrossRef] [PubMed]
26. Wang, L.; Zang, Q.; Zhang, K.; Wu, L. A Rail Fastener Defect Detection Algorithm Based on Improved YOLOv5. Proc. Inst. Mech.

Eng. Part F J. Rail Rapid Transit 2024, 09544097241234380. [CrossRef]
27. Qin, Z.; Wang, W.; Dammer, K.-H.; Guo, L.; Cao, Z. Ag-YOLO: A Real-Time Low-Cost Detector for Precise Spraying with Case

Study of Palms. Front. Plant Sci. 2021, 12, 753603. [CrossRef] [PubMed]
28. Han, P.; Ma, C.; Chen, J.; Chen, L.; Bu, S.; Xu, S.; Zhao, Y.; Zhang, C.; Hagino, T. Fast Tree Detection and Counting on UAVs for

Sequential Aerial Images with Generating Orthophoto Mosaicing. Remote Sens. 2022, 14, 4113. [CrossRef]
29. Tilon, S.; Nex, F.; Vosselman, G.; Sevilla de la Llave, I.; Kerle, N. Towards Improved Unmanned Aerial Vehicle Edge Intelligence:

A Road Infrastructure Monitoring Case Study. Remote Sens. 2022, 14, 4008. [CrossRef]
30. Balamuralidhar, N.; Tilon, S.; Nex, F. MultEYE: Monitoring System for Real-Time Vehicle Detection, Tracking and Speed Estimation

from UAV Imagery on Edge-Computing Platforms. Remote Sens. 2021, 13, 573. [CrossRef]

https://doi.org/10.1016/j.engappai.2019.01.008
https://doi.org/10.3390/fi15040119
https://doi.org/10.1016/j.measurement.2019.107332
https://doi.org/10.1109/JSEN.2019.2955378
https://doi.org/10.1016/j.isprsjprs.2017.11.007
https://doi.org/10.1016/j.jsv.2004.02.055
https://doi.org/10.1016/j.measurement.2017.08.040
https://doi.org/10.1109/TIM.2013.2283741
https://doi.org/10.1109/TITS.2016.2568758
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1016/j.compind.2020.103303
https://doi.org/10.3390/electronics11223677
https://doi.org/10.3390/s23146457
https://www.ncbi.nlm.nih.gov/pubmed/37514751
https://doi.org/10.1177/09544097241234380
https://doi.org/10.3389/fpls.2021.753603
https://www.ncbi.nlm.nih.gov/pubmed/35003154
https://doi.org/10.3390/rs14164113
https://doi.org/10.3390/rs14164008
https://doi.org/10.3390/rs13040573

Electronics 2024, 13, 1781 15 of 15

31. Luo, W.; Han, W.; Fu, P.; Wang, H.; Zhao, Y.; Liu, K.; Liu, Y.; Zhao, Z.; Zhu, M.; Xu, R.; et al. A Water Surface Contaminants
Monitoring Method Based on Airborne Depth Reasoning. Processes 2022, 10, 131. [CrossRef]

32. Liu, C.; Liu, Y.; Wu, H.; Dong, R. A Safe Flight Approach of the UAV in the Electrical Line Inspection. Int. J. Emerg. Electr. Power
Syst. 2015, 16, 503–515. [CrossRef]

33. Rau, J.Y.; Hsiao, K.W.; Jhan, J.P.; Wang, S.H.; Fang, W.C.; Wang, J.L. Bridge Crack Detection Using Multi-Rotary UAV and
Object-Base Image Analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2-W6, 311–318. [CrossRef]

34. Wu, Y.; Qin, Y.; Wang, Z.; Jia, L. A UAV-Based Visual Inspection Method for Rail Surface Defects. Appl. Sci. 2018, 8, 1028.
[CrossRef]

35. Banić, M.; Miltenović, A.; Pavlović, M.; Ćirić, I. Intelligent Machine Vision Based Railway Infrastructure Inspection and Monitoring
Using UAV. Facta Univ. Ser. Mech. Eng. 2019, 17, 357–364. [CrossRef]

36. Nex, F.; Armenakis, C.; Cramer, M.; Cucci, D.A.; Gerke, M.; Honkavaara, E.; Kukko, A.; Persello, C.; Skaloud, J. UAV in the
Advent of the Twenties: Where We Stand and What Is Next. ISPRS J. Photogramm. Remote Sens. 2022, 184, 215–242. [CrossRef]

37. Zhu, J.; Wang, L.; Liu, H.; Tian, S.; Deng, Q.; Li, J. An Efficient Task Assignment Framework to Accelerate DPU-Based
Convolutional Neural Network Inference on FPGAs. IEEE Access 2020, 8, 83224–83237. [CrossRef]

38. Dobai, R.; Sekanina, L. Towards Evolvable Systems Based on the Xilinx Zynq Platform. In Proceedings of the 2013 IEEE
International Conference on Evolvable Systems (ICES), Singapore, 16–19 April 2013; pp. 89–95.

39. Padilla, R.; Netto, S.L.; da Silva, E.A.B. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the
2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; pp. 237–242.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/pr10010131
https://doi.org/10.1515/ijeeps-2015-0021
https://doi.org/10.5194/isprs-archives-XLII-2-W6-311-2017
https://doi.org/10.3390/app8071028
https://doi.org/10.22190/FUME190507041B
https://doi.org/10.1016/j.isprsjprs.2021.12.006
https://doi.org/10.1109/ACCESS.2020.2988311

	Introduction
	Materials and Methods
	YOLOv4-Tiny Algorithm
	YOLOv4-Tiny Improvement
	Single-Scale Feature Output
	Anchor Box Optimization

	Hardware Platforms
	Comparison of Hardware Platforms
	The ZCU104 Development Platform
	Hardware Platform Development

	Model Transformation

	Experimental Results
	Dataset
	Experimental Setting
	Evaluation Indicators
	Experiments on the GPU
	Ablation Experiments
	Comparison Experiments

	Experiments on the FPGA
	Experimental Comparison of Different Platforms
	Visualization of Detection Results

	Conclusions
	References

