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Abstract: The deployment of wireless communication networks in the E band (60–90 GHz) requires
highly flexible, real-time, and precise tunability to optimize power transmission amidst diffraction,
obstacles, and scattering challenges. This paper proposes an innovative reconfigurable metasurface
reflect array design capable of achieving a dynamic phase range of 312 degrees with less than 1 dB of
loss. The design integrates two types of unit cells and employs piezoelectric crystal as the tuning
element. Simulation results illustrate the feasibility of beam focusing and accurate beam steering
within a range of ±3 degrees. Furthermore, the proposed reconfigurable metasurface reflector
demonstrates an antenna gain comparable to that of a dish antenna with the same aperture size.

Keywords: wireless communication; metasurface; intelligent reflection surface (IRS); millimeter wave
(MMW); piezoelectric crystal

1. Introduction

A metasurface (MS) reflect array antenna comprises a feed and an array of reflecting
elements, known as unit cells, arranged on a surface. Each unit cell can be tailored to reflect
a specific phase shift, allowing for the generation of secondary radiation patterns [1–3].
These patterns encompass beam steering at a designated angle θ and the formation of a flat
parabolic surface (FLAPS) [4].

Achieving beam steering at an angle θ involves applying a progressive phase shift
to each unit cell of the metasurface. Figure 1 illustrates the typical configuration of a
metasurface with an off-axis projection. According to Fresnel’s law, the incident angle θi
relative to the surface normal equals the reflection angle θr. The resulting steering angle θ
is influenced by both θi and the designed metasurface steering angle [5].

In the FLAPS scenario, positioning the pyramidal horn antenna feed, as depicted in
Figure 1, at the FLAPS’s focal point generates a collimated beam. Additionally, utilizing
this horn antenna to introduce a planar wave onto the FLAPS yields a focused beam.

According to the phased array theory, each unit cell location on the metasurface (MS)
is defined at its center [6]. A 2D surface on the XY plane with a spatial array arrangement
at a fixed distance and a 90◦ angle between the unit cells is denoted as S(Xj, Yi), where j = 1,
2, . . ., N and i = 1, 2, . . ., M. Here, N and M are integer numbers, resulting in an array of
N × M unit cells. This array, with the desired phase distribution throughout the surface,
enables manipulation of the reflected wavefront pattern, such as focusing [7] or steering
towards the desired direction [8].

A side cross-section view depicting the beam steering generated by the MS reflector is
illustrated in Figure 2.
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towards the desired direction [8]. 
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is illustrated in Figure 2. 
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Figure 2 depicts a side-view schematic of wavefront steering by the MS reflect array 
antenna. The incident wavefront is represented by rays L0, L1, up to LN. With each unit cell 
of the MS providing a predetermined gradual phase, the reflected rays (wavefront) are 
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Figure 2. MS reflector lateral cross-section scheme of beam steering principle [4,5].

Figure 2 depicts a side-view schematic of wavefront steering by the MS reflect array
antenna. The incident wavefront is represented by rays L0, L1, up to LN. With each unit
cell of the MS providing a predetermined gradual phase, the reflected rays (wavefront) are
directed at the desired angle θ. The Optical Path Difference (OPD) between the reflected
rays from unit cells Xj to Xj+1 is defined as ∆L and is given by (1):

∆L = ∆X · sinθ (1)
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where ∆X is the array periodicity of the MS. For beam steering, ∆L remains constant for all
different paths from adjacent cells Xj and Xj+1 throughout the MS. The conversion of ∆L
into phase difference is depicted in Equation (2):

∆φx =
360 · ∆L

λ
(2)

By introducing the phase difference ∆φx between adjacent unit cells Xj and Xj+1 along
the X-axis, a gradual accumulation of phase is achieved, resulting in the desired steering
angle θ in the XZ plane, as depicted in Figure 2. Utilizing Equations (1) and (2), the desired
steering angle θ is derived from ∆φ and ∆X, as outlined in Equation (3):

sin−1
(

λ · ∆φx

360 · ∆X

)
(3)

For the steering angle θ in the YZ plane, the analogous analysis applies by employing
∆φy between adjacent unit cells along the Y-axis and ∆Y in Equations (1)–(3).

Three-dimensional electromagnetic simulation software such as HFSS (2023 R2) and
CST (2024.02) [9] can effectively simulate two-dimensional periodic structures. Dedicated
solvers designed for these structures simplify the simulation process and save time by
enabling the extraction of surface reflection properties and dispersion diagrams from a
single-unit cell simulation [10]. In an MS reflect array antenna, the amplitude at each unit
cell is determined by the wavefront pattern of the primary feed, allowing manipulation of
only the phase at each unit cell of the MS. Whether employing pencil, shaped, or contoured
wavefront patterns, local phase shifts are achieved by adjusting one or more geometrical
parameters at each element. Reconfigurable MS reflect array antennas feature tuning
elements capable of electrically shifting the reflected phase of each unit cell, facilitating fast
and real-time tuning. The integration of tunable elements into MS unit cells enables a wide
range of applications, including tuning beam-steering reflectors [11], reflective surfaces
functioning as parabolic mirrors with adjustable focus [5,12], and more [13–16]. The ability
to tune and reconfigure the reflected phase distribution throughout the MS reflector allows
for beam steering (refer to Figure 1 and Equation (3)). This approach, known as phase-
gradient, is divided into two sub-approaches: the quantization of the reflected phase shift
of the unit cell into two values, four values, etc. [17], and the continuous reflected phase
shift of the unit cell [11]. Various methods exist to incorporate tuning elements into an MS,
such as PIN switches, MEMS switches, liquid crystal (LC) materials, piezoelectric materials,
and varactor diodes. These methods are classified into three types: variations in material
parameters, variations in the geometry, and circuit tuning.

Variations in material parameters comprising the MS reflect array can significantly
affect the reflected phase shift of the unit cell. One widely utilized example is liquid
crystal [18–21]. Liquid crystal materials consist of molecules that alter their polarization
direction in response to an external DC voltage, thereby enabling control over the light
intensity passing through the material and its refractive index.

Variations in the geometry of the unit cell itself or its dimensions also impact the
tuning of MS properties. One example of such tuning elements is piezoelectric crystals and
micro-electromechanical systems (MEMS). These elements facilitate continuous changes in
the unit cell thickness in response to the DC voltage supplied to them [22–25]. Consequently,
the electromagnetic properties of the MS undergo continuous alteration as well.

Circuit tuning is typically achieved using a varactor diode [3,4,11,26,27] for continuous
adjustments or a PIN switch [28–30] for discrete adjustments. A varactor diode introduces
tuning capacitance to the unit cell of the MS based on the reverse voltage applied to it.
Conversely, a PIN switch facilitates ON/OFF operation, allowing for discrete adjustments of
the unit cell. These tuning components play a crucial role in modifying the electromagnetic
properties of the MS. Moreover, the response time of these diodes is exceptionally fast,
typically on the order of nanoseconds. Additionally, they can be seamlessly integrated
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into standard PCB circuits. If these tuning components are significantly smaller than the
relevant wavelength, they can be simulated as lumped elements.

Achieving optimal performance of the MS reflect array antenna necessitates a 360◦

phase dynamic range. Additionally, the reflected magnitude across the entire phase dy-
namic range should remain uniform with minimal losses. However, no tuning elements or
unit cell geometries can inherently provide the entire phase range with uniform, lossless
magnitude. Consequently, once the phase distribution on the MS reflect array surface is
determined, the optimization process for each element and unit cell of the MS is utilized to
attain the required phase value with minimal losses. Furthermore, most reflect array unit
cells and tuning elements are sensitive to the angle of incidence of the wavefront relative
to the MS normal. This sensitivity can degrade the performance of the MS reflect array
antenna. Therefore, a proper design process should account for the varying angles of inci-
dence beams. One method to enhance the performance of reconfigurable MS reflect array
antennas is the stripes method [31]. Based on this method, a Ku band MS reconfigurable
reflect array antenna was designed with two types of tunable unit cells, type A and type B,
arranged in three stripes on the reflect array surface, as depicted in Figure 3. The tuning
element employed in this design was the varactor diode.
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rectangles, are prominently featured within the structure [31].

Each unit cell type, along with its varactor diode, was meticulously designed to
achieve a reflection coefficient close to one across a portion of the entire phase dynamic
range. This strategic design allowed the two types, arranged in stripes as depicted in
Figure 3, to collectively possess a phase dynamic range very close to 360◦ with a reflection
coefficient approaching unity. Simulation results of this design showcased a notable
enhancement of 3 dB in antenna gain, contingent upon the steering angle. Moreover,
a significant improvement of approximately 50% in steering angle accuracy for various
operating frequencies was demonstrated [31].

Reflect array antennas offer several advantages compared to phased arrays and
parabolic reflectors. Reflect arrays can provide high gain, precise and rapid scanning
and steering, and low cross-polarization [1,2,32]. Additionally, reflect arrays boast low
loss, ease of PCB manufacturing, and the potential for electronic control of the reflected
wavefront pattern [1,2].
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In this study, a novel concept of a reconfigurable MS reflect array antenna based on
patch unit cells and piezoelectric crystal bending as a tuning element for E band (60–90 GHz)
communication is proposed. The proposed reflect array comprises two types of unit
cells, enabling a very large phase dynamic range of approximately 312◦ and a reflectance
coefficient very close to one. As radiation at Millimeter wave (MMW) frequencies attenuate
rapidly over distance, highly directional antennas are required to focus and direct their
power [33]. Blockages or obstacles introduce variations in MMW path loss characteristics,
with paths categorized as line-of-sight (LOS) and non-line-of-sight (non-LOS), necessitating
real-time steering corrections of the antenna to optimize the channel [33]. Environmental
factors such as winds can sway the reflector, leading to degradation of channel performance
and requiring a real-time compensation mechanism [33]. This study presents and analyzes
very accurate steering of ±3◦ and focusing with an antenna gain of about 30 dB. MMW
wave steering can be electrically controlled by applying a control voltage to a piezoelectric
crystal bender. The response time of the piezoelectric crystal bender is in the order of 1 µs,
enabling the MS reflector to compensate for beam steering errors due to environmental
influences such as winds.

2. Unit Cell and MS Design

The unit cell designed for the E band (60–90 GHz) regime is depicted in Figure 4. It
is important to note that two parameters, Wp and g, are utilized to augment the phase
dynamic range of the MS reflect array antenna while maintaining the reflectance coefficient
close to one.
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The unit cell size was selected to be W = 0.9 mm, slightly smaller than a quarter of the
wavelength at a frequency of 80 GHz, thus qualifying it as a metasurface unit cell [1–5].
This unit cell comprises a ground surface with a copper thickness of t = 0.035 mm, an
adjustable air gap, g, and a variable patch width, Wp, printed on a dielectric substrate with
a thickness of h. To augment the phase dynamic range of the MS reflect array antenna, a
methodology akin to the stripe method was employed [31]. Two distinct unit cell types
were developed: type A with g = 1.95 mm and type B with g = 1.75 mm.
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Rogers 5880 (tanδ = 0.0009, εr = 2.2) with a thickness of h = 0.252 mm was chosen
as the dielectric substrate owing to its minimal losses and low relative permittivity [34].
Composed of PTFE composite substrates with woven glass reinforcement, Rogers 5880 can
operate effectively up to millimeter-wave frequencies [34]. A W-band single-layer reflect
array antenna based on this substrate was previously designed, fabricated, and measured
at 94 GHz [32]. The design parameters employed in that study were obtained from the
Rogers 5880 datasheet [34]. The consistency between the simulations and experimental
results [32] validates these design parameters up to 115 GHz [34]. Consequently, an almost
constant relative permittivity and loss tangent from low frequencies up to 115 GHz (and
potentially beyond) is anticipated.

Figure 5 illustrates the phase dynamic range of the reflected beam as a function of the
patch width, Wp, at 80 GHz. Two types of unit cells are displayed in Figure 5: the lower
graph corresponds to type A with g = 1.95 mm, while the upper graph represents type
B with g = 1.75 mm. Table 1 summarizes the design parameters of the unit cell and MS
reflect array.
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Table 1. Parameters of the designed unit cell and metasurface reflector.

Parameters Description Value (mm)

W Unit cell size 0.8

Wp Patch size Variable

t Copper thickness 0.035

g Air gap thickness Type A: g = 1.95, type B: g = 1.75

h Dielectric substrate thickness 0.254

D Diameter of the reflector 80

F Focal length of the reflector 80

f Frequency 80 GHz
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By employing two distinct types of unit cells, the dynamic range of the reflected phase
is expanded while ensuring a reflectance coefficient close to one for all patch widths. This
strategy leverages the unique characteristics of each unit cell type to accommodate different
ranges of reflected phases. The transition phase between using type A and type B unit cells
occurs at 290 degrees, as denoted by the dashed gray line in Figure 5. For reflected phases
exceeding 290 degrees, unit cell type B is utilized, whereas unit cell type A is employed for
reflected phases below this threshold. This approach significantly enhances the reflected
phase dynamic range.

Another benefit of this method is the gradual adjustment of phase relative to the
patch width. The MS reflect array antenna in this study was designed to focus an 80 GHz
millimeter-wave beam using a combination of the described two types of unit cells. Addi-
tionally, the metasurface was configured with a circular aperture with a diameter of 80 mm.
Thus, realizing such an MS reflect array antenna necessitates integrating thousands of unit
cells, each with different parameters of Wp and g based on the phase requirements.

From a practical standpoint, designing such metasurfaces requires an algorithm capa-
ble of automatically generating thousands of unit cells with varying parameters. In this
study, CST software was utilized to simulate both the unit cell and the entire MS reflect
array antenna. While CST allows scripting in a programming language named VBA to
construct complex surfaces, VBA language can be cumbersome for complex calculations.
Therefore, we developed a Python script that generates a text file containing all the VBA
commands necessary to build this optimized metasurface. Utilizing this script, one can
design an MS reflect array antenna within the CST platform based on a few design param-
eters such as focal length F, aperture diameter D, unit cell size W, and frequency f. This
unique algorithm employs a function called meshgrid on two axes, x and y, to position
each unit cell at a fixed distance according to the unit cell period W. The phase dispersion
as a function of the positions within the metasurface is calculated based on the optical path
difference (OPD) as given in Equation (4).

Phase (x, y) =
[√

x2 + y2 + F2 − F
]
·360

λ
(4)

where λ is the wavelength and F is the focal length of the reflector. In this study, the chosen
frequency is 80 GHz, resulting in a wavelength of 3.75 mm. Additionally, the focal point F
and the reflector diameter D were both set to 80 mm. The values of Wp and g for each unit
cell position on the MS reflector were calculated based on the required phase correction
given in Equation (4).

The simulation of the reflected phase of the unit cell was conducted using the Floquet
method, with the simulation results depicted by the yellow graphs in Figure 6. The reflected
phase of each MS unit cell is determined by the values of Wp and g. The black curves in
Figure 6 were generated using an approximation function that determines the required
patch width Wp for any desired phase reflection. This function also completes the required
patch width Wp for phases that fall outside the phase range provided by the Floquet
method simulation (yellow curves). The approximation function (black line) was utilized
to position unit cells at any location (x, y) with the correct patch width Wp and gap g
according to the required phase specified in Equation (4).

The phase correction applied to the reflected wave from the metasurface can be utilized
to either focus or collimate a millimeter-wave (MMW) beam. A plane wave incident on
the MS will be focused to the focal length F, while a wave emanating from the focal length
will be collimated. Figure 6 (left) corresponds to unit cell type A, while Figure 6 (right)
represents unit cell type B.
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Figure 6. Unit cell reflected phase simulation conducted using the Floquet method. The yellow
graphs represent the phase reflection as a function of the patch width, Wp, for unit cell type A (left
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The simulation of the reflected magnitude of the unit cell using the Floquet method is
depicted in Figure 7. The left graph corresponds to type A unit cells, while the right graph
corresponds to type B unit cells. This simulation considers both the dielectric losses and
the losses attributed to the final conductivity of the copper.
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The simulation results depicted in Figure 7 reveal that the losses of the designed
metasurface are minimal. Moving to Figure 8, the MS reflector designed using the algorithm
outlined above is showcased. On the right side of Figure 8, the metallic ground surface is
displayed, featuring contours corresponding to unit cells type A and type B. Meanwhile,
on the left side of Figure 8, the corresponding printed copper patches are shown. The
varying sizes of these patches were computed based on Equation (4) and the approximation
function depicted in Figure 6.

Piezoelectric benders, such as the Thorlabs PB4NB2W with a ±450 µm displacement
capacity, can be utilized to rotate the metallic ground surface around its center, as demon-
strated in the side view of the constructed MS reflector depicted in Figure 9. This rotation
alters the gap distance between the metallic ground surface shown in Figure 8 (right) and
the substrate with the copper patches depicted in Figure 8 (left). The gradual modification
in the gap distance, denoted as g, for both type A and type B unit cells along the horizontal
axis, induces a corresponding gradual change in the reflected phase of these unit cells,
thereby influencing the deflection of the reflected beam.
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3. Simulation Results

The outcome of the metasurface algorithm was simulated using CST to examine its
focal point position along the Z-axis (see Figure 8). In the CST simulation, a plane wave
illuminated the reflector, and Figure 10 displays the reflected electric field intensity as a
function of distance on the Z-axis from this reflector. The maximum intensity of the reflected
electric field was observed at approximately 75 mm from the center of the metasurface
reflector, closely matching the designed value of 80 mm.

For comparison, a metallic three-dimensional parabolic reflector with the same focal
length of 80 mm and the same diameter of 80 mm was also simulated using CST. The
simulation result for this case showed a focal length of about 75 mm, which is nearly
identical to that of the proposed metasurface reflector.

The directivity of the constructed MS reflector was simulated using a horn antenna
positioned at the metasurface focal point. The simulation results are illustrated in Figure 11
for the cases of αr = 0◦, αr = 0.5◦ and αr = 1◦ (see Figure 9).
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the proposed MS, ranging from θ = −3° to θ = +3° for rotation angle αr between −1° and 
+1°. Each plot was taken with φ equal to 90 degrees. The described metasurface underwent 
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Figure 11. Simulation results of the constructed MS reflector directivity for three rotation angles: the
first with αr = 0 (black line), the second with αr = 0.5◦ (blue line), and the third with αr = 1◦ (red
line). The reflected beam steering for αr = ±0.5◦ is approximately ±2.25◦, and for αr = ±1, it is about
±3◦. Additionally, a graph depicting an ideal parabolic antenna is included for reference.

The simulation results depicted in Figure 11 illustrate the beam steering capability of
the proposed MS, ranging from θ = −3◦ to θ = +3◦ for rotation angle αr between −1◦ and
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+1◦. Each plot was taken with φ equal to 90 degrees. The described metasurface underwent
simulation tests to assess its performance against varying plane wave incident angles and
their effects. Figure 12 illustrates the simulation results for a plane wave radiating at angles
of incidence of 1, 1.5, and 2 degrees.
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The results depicted in Figure 12 demonstrate that the deviation of the incident wave
angle indeed alters the focus position on the metasurface, as anticipated. However, despite
these variations, the performance of the metasurface remained largely consistent across the
tested angles. Furthermore, additional simulations were conducted to assess the impact
of the wave frequency on the directivity of the metasurface. Remarkably, the directivity
remained consistently high despite variations in the wave frequency. Table 2 compares the
presented technology with other research works utilizing different technologies.

Examination of Table 1 highlights the advantages of the metasurface array designed
in this study, including reduced attenuation, high gain, and cost-effectiveness. Notably,
unlike alternative approaches outlined in references [35–37], our design streamlines the
process by eliminating the need for individual diodes per unit cell and the requirement
for precise voltage allocation to each diode or segment of the liquid crystal (LC) surface.
This metasurface underwent simulation for 1D beam steering, achieving a maximum
of 3 degrees of steering. However, further optimized design could facilitate additional
progress by integrating an additional perpendicular piezoelectric bender, thus enabling 2D
beam steering capabilities.
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Table 2. Comparison of the proposed reflector’s performance with other studies found in the
literature.

Feature Ref. [35] Ref. [36] Ref. [37] This Work

Tuning technology PIN LC PIN Piezoelectric
Frequency (GHz) 73 78 78 80

Response time nsec sec nsec µs
Phase range 180◦ --- 180◦ ± 30◦ 312◦

Gain (dBi) 16.8 25.1 --- >25
Aperture (mm) 32 × 32 --- 54 × 27 Diameter of 80 mm

Losses (dB) 6.2 (per element) >10 (per element) 2.7 <0.2
BW (GHz) --- --- 74–84 78–82

Steering range ±70◦ ±6◦ ±60◦ ±3◦

1D/2D 2D 1D 1D 1D

4. Discussion

The simultaneous demonstration of beam steering and focusing, as depicted in
Figures 10 and 11, presents a compelling proposition for the deployment and alignment of
wireless communication networks. The swift and remote alignment of the MS (metasur-
face) reflector contrasts favorably with traditional dish antennas. This capability confers
notable advantages in terms of flexibility, efficiency, and ease of deployment across diverse
communication scenarios. Moreover, as illustrated in Figures 12 and 13, minor alterations
in the angle of the wave incident on the metasurface or slight shifts in wave frequency
exert only a modest influence on the metasurface’s performance concerning focal distance
and directivity. The dynamic steering range of the constructed MS reflector spans ±3◦

degrees, achieved through piezoelectric benders rotating the metal ground from αr = −1◦ to
αr = +1◦. The MS reflector exhibits a directivity of approximately 25 dB at θ = 3◦, a per-
formance closely resembling that of a conventional dish antenna. Figure 13 illustrates the
simulation results depicting the directivity of the fabricated metasurface reflector across
various beam frequencies, compared to that of an ideal dish.
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Additionally, a unique algorithm was devised for constructing the MS reflector, utiliz-
ing specific design parameters detailed in Table 1, such as diameter (D), frequency (f), focal
distance (F), and the predefined unit cell. This algorithm has been thoroughly validated for
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correctness and accuracy. Notably, the constructed MS comprises approximately 7000 unit
cells of varying Wp sizes, arranged across approximately 50 contours and divided into 2
types of unit cells.

5. Conclusions

This article validates the concept of the stripe method, employing two types of unit
cells to expand the dynamic range of the reflected phase. Furthermore, a unique algorithm
was developed to construct the MS reflector based on these two types of unit cells. This
algorithm demonstrated high efficiency, and the simulation results of the constructed MS
reflector closely aligned with the theoretical principles of reflect arrays and dish antennas.
The constructed MS reflector offers the dual capability of precisely focusing radiation onto
the desired focal point and dynamically steering the reflected radiation within a range of
±3◦ degrees.
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