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Abstract: This paper addresses the design of ultra-wideband (UWB) impedance matching networks
operating in the unlicensed 3.1–10.6 GHz frequency band for low-power applications. It improves the
simplified real frequency technique (SRFT) by adding a realizability check and employing an iterative
approach with different initial guesses in optimization to achieve realizable solutions under the
requirements of UWB, low-power consumption, and a minimum number of circuit components. The
comparison of solutions obtained using the SRFT with published solutions based on the Chebyshev
filter theory is presented. It is shown that the optimal SRFT solution requires fewer components in
the impedance matching network, maximizes the RF power delivery over the UWB spectrum with a
reflection coefficient below −10 dB, and allows for circuit optimization to reduce power consumption.
Using the improved SRFT, it demonstrates a systematic approach to find the strategies and limitations
of designing the input matching networks for low-power UWB applications using GlobalFoundries
90 nm BiCMOS technology.

Keywords: ultra-wideband (UWB); impedance matching network; simplified real frequency
technique

1. Introduction

Ultra-wideband (UWB) technology is characterized by exceptional features, such as
high data rate, low power spectral density, enhanced target recognition, precise localization,
and ranging capabilities [1]. These qualities make UWB a desirable choice for a wide
variety of applications, including wireless communication, radar, and imaging. In these
applications, the primary focus is ensuring the optimal transmission and reception of
signals within the operational bandwidth. Hence, the design of broadband impedance
matching networks (IMN) has emerged as a significant area of interest for engineers [2].

To match a source impedance ZS to an arbitrary load impedance ZL, as illustrated in
Figure 1, various theories and techniques have been developed. To meet this objective,
Fano [3] and Youla [4] invoked the gain-bandwidth limitation theory and utilized the Dar-
lington representation, where the load ZL is represented by a lossless two-port terminated
in a unit resistor. Analytical models for determining the IMN are also used, but they require
an analytical model of the load impedance [5] and often result in suboptimal solutions in
terms of circuit performance metrics and network complexity [6].

Another approach to the design of passive IMNs relies on filter theory [7–10]. The
approach employs either a cascaded L-section topology consisting of high-pass and low-
pass filters [7,8] or a bandpass filter [9,10]. These fixed topologies, however, may not
necessarily provide a minimum number of elements in the IMN for a specific load [6].
A related approach employs series or tank resonators, and it is based on manipulations
of the resonant frequencies [11,12]. When these resonant frequencies can be strategically
spaced apart while maintaining an acceptable gain variation, it is possible to attain a
broadband IMN. However, it may not prove effective for high fractional bandwidth (FBW)
requirements, where many resonators are required.
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Design approaches for IMNs with no prior assumption about the network topology,
no need for analytical load modelling, and leading to a minimum element count have
always been desired. To fulfill this need, Carlin [5] developed the so-called real frequency
technique (RFT) utilizing the real-frequency (e.g., experimental) load-impedance data along
with numerical optimization. The initial version of the RFT technique was to solve a
single matching problem, i.e., a complex load impedance ZL with a source impedance
Zs = 50 Ω [5]. The subsequently developed RFTs can be classified into four distinct cate-
gories, namely the line segment technique (RFT-LST), the direct computational technique
(DCT), the parametric approach, and the simplified real frequency technique (SRFT) [2].
The line segment technique, direct computational technique, and parametric approach
formulate the objective function utilizing the unknown input immittance (driving point
admittance or impedance) across the entire angular real-frequency ω axis. The proce-
dure starts with the real part of the input immittance, as the imaginary part would be
found with the Hilbert transformation or the Gewertz procedure. A lossless two-port IMN
can be synthesized by finding an optimized input immittance. The line segment tech-
nique formulates the real part of the input immittance as a linear combination of straight
lines Rin = ∑N

k=1 ak(ω)Rk [5]. On the other hand, the direct computational technique
defines the real part of a positive real minimum immittance as a rational even function

Rin(ω) = Ev{Zin(s)}|s=jω = N(ω2)
D(ω2)

[13]. The parametric approach represents this rational

function in a parametric form Zin(s) =
N
∑

k=1

Ak
s+sk

and takes the even function of Zin as the

real part of Zin [14]. Finally, the simplified real frequency technique simplifies the task by
defining the two-port scattering parameters of an IMN as rational functions [15], which
helps in handling the double-matching problems [13,16] and streamlining the computation
process [17].

In this paper, we present the simplified real frequency technique in detail in Section 2
and apply this technique to the design of the IMN for low-power applications in Section 3,
followed by the conclusions.

2. Simplified Real Frequency Technique (SRFT)

The SRFT starts with defining the scattering parameters, SIMN, of an IMN containing
lossless reciprocal passive elements based on three polynomials: h, g, and f. Because the
IMN should satisfy the paraunitary requirement S†

IMN · SIMN = I [17–19], where I is the
identity matrix, SIMN is expressed as

SIMN =

S11 = h(s)
g(s) S12 = f (s)

g(s)

S21 = f (s)
g(s) S22 = −(−1)k ·h(−s)

g(s)

 (1)

where h(s) and g(s) are polynomials of order n, n is the number of elements in an IMN, and
k = 0, 1, 2, . . ., n. The polynomial g(s) is strictly Hurwitz, which has all poles on the left-hand
side of the complex plane to avoid impractical or unrealizable solutions. The polynomial f (s)
provides the information about the transmission zeros of the IMN. Transmission zeroes are
defined as the frequencies at which the output signal is completely cut off. In consideration
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of a transmittance function S21 that may possess finite zeros at ±jωi, zeros at infinity, or
zeros at the origin, its general form is expressed as

f (s) = sk
m

∏
i=1

(s2 + ωi
2) (2)

Such form implies that f (s) can be either an odd function or an even function. The
presence of finite zeros, such as in the modified Chebyshev design [20], often increases
the number of elements and complicated synthesis [21]. Therefore, it is preferable for f (s)
to be in the sk form. The parameter k may assume a value of zero in low-pass scenarios
and a value greater than one in bandpass and high-pass cases [22]. The lossless condition
introduces a relationship among the polynomials f, g, and h. Knowing f (s) allows for
expressing g(s) as a function of h(s) as

g(s)g(−s) = h(s)h(−s) + f (s)(−s) (3)

The objective in designing the IMN for a known load can be achieved by either
maximizing the transductor power gain GT, ideally approaching unity, or minimizing the
reflection coefficient Γin, as follows from

GT =
|S21|(1 − |ΓL|2)
|1 − S22ΓL|2

(4)

and
Γin = S11 +

S21S12ΓL

1 − S22ΓL
(5)

The SRFT utilizes optimization techniques to determine the optimal polynomial h(s)
and, consequently, the corresponding polynomial g(s). Optimization aims to minimize the
error function based on the objective function (4) or (5) for load impedance data.

3. Results and Discussion
3.1. Comparing SRFT and Chebyshev Filter-Based Solutions

Bode and Fano demonstrated a physical limitation on the maximum achievable band-
width for loads comprising resistors and reactive elements [3,23]. For example, in the case
of a load with a resistor R and capacitor C connected in series, this limitation can be found
by [24] ∫ ∞

0

1
ω2 ln

[
1

|Γin(ω)|

]
dω < πRC (6)

It is evident from (6) that efficient broadband impedance-matching structures in-
herently exhibit filter-like characteristics [23,24]. For optimal matching performance, all
reflection coefficients |Γin(ω)| within the frequency band of interest are preferred to be
small while |Γin(ω)| outside this frequency range are one (i.e., perfect reflection). So, the
sharper the cut-off rate of the filter is, the better the performance of the IMN will be [25].
It is well known that the Chebyshev filter offers a sharper cut-off; therefore, it is chosen
for comparison with the SRFT method. In [9], a UWB Chebyshev filter theory was used
to design the IMN for a load modelled by a 50 Ω resistor in series with a 650 fF capacitor.
The IMN comprises five components, with their values (from [9]) depicted in Figure 2. The
reflection coefficient resulting from this design is shown in Figure 3, obtained by simulating
the circuit in Figure 2 using the Cadence Virtuoso Spectre circuit simulator with ideal
elements from the analog library.
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On the other hand, when designing a UWB IMN using SRFT, the choice of the opti-
mization method plays a significant role in obtaining a solution with better performance.
Most reported RFT and SRFT techniques use Levenberg–Marquart optimization [15,17,26],
a local optimization algorithm that aims to find the minimum of a function in the vicinity
of an initial guess. Thus, it is best suited for problems where a solution is expected to be
found in the proximity of the initial guess [27]. Selecting a good initial guess in such a
highly nonlinear optimization process is critical, and it substantially impacts the ability to
reach the optimal IMN [15,22,28].

To see if we can obtain a better solution than the Chebyshev filter approach, we
applied the SRFT to the same load as in [9]. It is observed that the SRFT may yield solutions
that cannot be realized by LC elements, even if they demonstrate superior matching
performance. We characterize them as unrealizable solutions. One such solution is shown
by the red symbols in Figure 3. The realizability of a solution can be verified by examining
the input reflection coefficients observed at the input port of the IMN when its output port
is terminated with either a short or an open circuit. For example, when the IMN comprises
solely reactive elements, and when the output port is open-circuited, its input reflection
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coefficient Γin,OC or input impedance Zin,OC can be expressed in terms of f (s), h(s), and
g(s) as

Γin,OC(s) = S11(s) +
S2

12(s)
1 − S22(s)

=
h(s)

[
g(s) + (−1)kh(−s)

]
+ f 2(s)

g(s)
[

g(s) + (−1)kh(−s)
] =

N(s)
D(s)

(7)

and
Zin,OC(s) =

1+Γin,OC(s)
1−Γin,OC(s)

= D(s)+N(s)
D(s)−N(s)

= knsn + kn−1sn−1 . . . + k1s + k0 +
kp0
s +

kp1
s−jωp1

+
k′p1

s+jωp1
. . .

(8)

where N(s) and D(s) are the numerator and denominator of the input reflection coefficient.
In (8), the input impedance Zin,OC is expressed in a partial-fraction form, where ki is the
coefficient of si, kpi and k′pi are residues, and ωpi are poles. Since the input impedance Zin,OC

only comprises reactive components, it should exhibit the following three characteristics.
First, it must be an odd function (k0 = 0) with the numerator and denominator differing by
one degree. Second, it should contain only simple zeros and poles, all interlaced on the
jω axis. Third, the residues of Zin,OC for all poles must be real-positive [29]. If a solution
violates any of these features, it cannot be implemented only by reactive elements. For
instance, the red curve in Figure 3 is not realizable because of its k0 < 0.

To find a realizable solution, an exhaustive search with various initial guesses using
the Levenberg–Marquardt optimization method is required. In the SRFT, it assigns initial-
guess values to the n + 1 coefficients of h(s). Each coefficient value is randomly selected
from a continuous uniform distribution within the bounds defined by lb and ub for quick
optimization convergence [30]. If the solution fails to satisfy the feasibility conditions
outlined above, another initial guess is used until a realizable solution is found. Based
on this iterative approach, a solution with a maximum reflection coefficient of −13.7 dB
in the whole UWB spectrum has been found, as shown by the green symbols in Figure 3.
This solution is better than the solution obtained using the Chebyshev filter theory, which
features a maximum reflection coefficient of −12.3 dB [9]. Moreover, the solution obtained
using the SRFT requires only four elements, as demonstrated in Figure 4, as opposed to
the five elements required by the Chebyshev design. This is beneficial, particularly in this
example, saving space since an inductor is eliminated.
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Another way to verify the performance of an IMN solution for a particular load is
to check how close it is to the Bode–Fano limit, πRC in (6). As |Γin(ω)| in (6) cannot be
determined using an analytical expression in SRFT, it is assumed that |Γin(ω)| remains
constant and equal to an average value Γavg across the specified frequency band. This
approximation can simplify (6) as [24]

BW
ω2

0
ln
(

1
Γavg

)
< πRC (9)

where BW = ωmax − ωmin, ω0 =
√

ωmaxωmin, and ωmin and ωmax are the lower and upper
limits of the frequency band. For the realizable solution shown in Figure 3, the averaged
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reflection coefficient Γavg is 0.115. This results in 78 ps, closer to the Bode–Fano limit of
102 ps compared with the 72 ps value obtained from [9].

As an alternative, one may consider utilizing global optimization techniques. These
methods can offer the lowest possible reflection coefficient at the expense of significantly
longer computations. RFT-based techniques predominantly employ local minimum opti-
mization methods, yielding a solution quickly. As exemplified above, SRFT may result in
an unrealizable solution, in which case another search must be initiated. With a global opti-
mization method, e.g., the genetic algorithm (GA), the algorithm may bypass a realizable
solution and converge to an unrealizable solution due to its inclination towards achieving
the lowest minimax objective. Indeed, [31] reports an approach using the GA; however,
impractical responses are sometimes obtained. It is clear that synthesizing a realizable
solution for a UWB IMN (topology and component values) is problematic. While the opti-
mization may indicate the existence of a solution, it may be difficult or even impossible to
synthesize a practical network, particularly in scenarios involving intricate configurations
and components like transformers. As shown in [32], some preassumption is required to
find the right synthesis.

3.2. IMN for Low-Power Applications

Assuming the antenna provides a source impedance ZS = 50 Ω in the frequency band
of interest, the improved SRFT can find an IMN to match a load ZL to the 50 Ω source
impedance, as shown in Figure 1. The inductor-degenerated topology is a commonly used
technique [33] for amplifiers using bipolar junction transistors (BJT) [34] and field-effect
transistors (FET) [35]. Figure 5 shows the frequently used common emitter amplifier with a
degeneration inductor Le to obtain the required input resistance for narrowband [34] and
wideband matching [10]. Here, C1 serves as a DC blocking capacitor, and L1 is an RF choke
to isolate the biasing circuit from the RF port. We demonstrate the designs of the input
matching networks based on the improved SRFT for different bias conditions and circuit
topologies using GlobalFoundries 90 nm BiCMOS technology.
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Figure 5. Inductively degenerated common-emitter amplifier.

For low-power applications, the circuit’s input reactance sets the lower power con-
sumption limit. When we reduce the power consumption by decreasing the base-to-emitter
voltage applied to the BJT, the base-emitter junction capacitor (Cbe) becomes smaller, result-
ing in a smaller Cin (or a bigger absolute value of input reactance) and a lower Bode–Fano
limit, which makes it more challenging to find an IMN solution with Γin < −10 dB. To
examine the lowest power consumption for the inductive degeneration topology shown
in Figure 5 and ensure the circuit has sufficiently high cut-off frequency f T to cover the
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3.1–10.6 GHz band, Figure 6 shows the equivalent Cin at 3 GHz, the f T of the transis-
tor, and the f T of the amplifier (with Le in the range of 30–40 pH) at different collector
currents IC. The transistor used in the simulation has a length and width of 90 nm and
10 µm, respectively, and its collector is biased at 1.0 V. To be able to compare with the result
in [9] and ensure that we can obtain a realizable IMN solution with Γin < −10 dB over
3.1–10.6 GHz, we start with the collector current IC = 32.8 mA, at which Cin is about 650 fF,
which is the same as the value reported in [9]. As expected, the reduction in the collector
current decreases the equivalent input capacitance Cin at 3 GHz due to the reduction in
Cbe. The lowest collector current for a realizable IMN solution is at IC = 27.4 mA. Further
reducing Cin is prohibited by the Bode–Fano limit in (9). The Rin of this circuit exhibits
frequency-dependent variations due to the inherent characteristics of the BJT transistor
in this technology. The intrinsic base resistance varies from approximately 50 Ω to 17 Ω
across the frequency band of interest. The adjustment of this variation around 50 Ω with
the assistance of Le poses an additional challenge in the quest for an IMN compared to
a circuit that provides a constant 50 Ω over the bandwidth. In addition, comparing the
circuit’s cut-off frequency (f T) and the transistor’s f T at these bias points indicates that the
emitter degeneration inductor Le enhances the f T of the circuit slightly and follows the f T
of the transistor.
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Figure 6. The equivalent input capacitance Cin (▲) at 3 GHz and the f T (•) of the inductive degener-
ation common-emitter amplifier in Figure 5 with Le in the range of 30–40 pH and the f T (■) of the
transistor at different collector currents IC. The transistor used in the simulation has a length and
width of 90 nm and 10 µm, respectively, and its collector is biased at VCC = 1.0 V.

To further reduce the power consumption, Cin is to be established by adding a capacitor
Cp in parallel at the amplifier input, as shown in Figure 7. Incorporating Cp mitigates
variations in Rin with respect to frequency as it is placed in parallel with the intrinsic
impedance of the transistor. This arrangement brings Rin closer to 50 Ω. When reducing the
collector current IC, we adhere to two essential criteria: (1) ensuring that the IMN remains
below −10 dB across the bandwidth and (2) maintaining the circuit’s f T above 100 GHz
to ensure a circuit bandwidth up to 10.6 GHz. Cp and Le are adjusted to ensure that Zin
and f T meet these requirements. Figure 8 shows the equivalent Cin at 3 GHz, the cut-off
frequencies f T of the transistor and the amplifier (with Le in the range of 60–140 pH) at
different collector currents IC. It is observed that, although adding Cp decreases the f T of
the amplifier, we can further reduce the collector current IC to 6.1 mA. When comparing
with the initial IC = 32.8 mA, we observe an 81.3% reduction in collector current while
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maintaining the f T at around 100 GHz to ensure the amplifier operates at 10.6 GHz. A
further decrease in the collector current IC would yield a circuit with a reduced f T or Γin
surpassing −10 dB. Table 1 shows the component values of the IMN, Cp, and Le for the
bias conditions of the base-to-emitter voltage VBE and the collector current IC in Figure 8.
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Figure 8. The equivalent input capacitance Cin (▲) at 3 GHz and the f T (•) of the inductive degenera-
tion common-emitter amplifier with CP and Le in Figure 7 and the f T (■) of the transistor at different
collector currents IC. The transistor used in the simulation has a length and width of 90 nm and
10 µm, respectively, and its collector is biased at VCC = 1.0 V.
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Table 1. Component values for the amplifier in Figure 9 with VCC = 1.0 V.

Parameter

Cin (fF)
655 600 562 540 502 475 449

VB (mV) 923 910 894 886 873 863 852
IC (mA) 29.3 24.2 18.0 15.2 11.1 8.5 6.1
Le (pH) 60 60 75 80 90 110 140
Cp (fF) 100 140 180 195 210 220 230
C11 (pF) 1.01 0.92 0.92 0.87 0.93 0.79 0.79
L12 (nH) 2.09 2.2 2.23 2.17 2.18 2.25 2.56
C12 (fF) 180 111 158 134 140 116 61
L22 (nH) 1.02 0.91 1.15 1.11 1.17 1.25 1.21
ICmin (mA) 25 21.46 15.9 13.42 10.85 8.5 6.1
ICmax (mA) 34.5 30.5 24.2 22.7 17.7 10.8 11.4
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Figure 9. Inductively degenerated common-emitter amplifier with its UWB IMN.

Based on the amplifier shown in Figure 7, Figure 9 shows the complete amplifier
design with its input IMN. Table 1 shows the component values of the circuit for the bias
conditions in Figure 8. The ICmax and ICmin specify the tolerable range of the collector
current to which the IMN solution can still maintain Γin < −10 dB over 3.1–10.6 GHz.
Maintaining the tolerance for ICmin at low bias currents is challenging because Cin and
the resulting Bode–Fano limit reduce, and, therefore, it is hard to find a solution with
Γin < −10 dB.

4. Conclusions

We demonstrated that the SRFT is a highly efficient design method for UWB IMNs,
which provides solutions with the minimum component count in the IMN. On the other
hand, we also show that not all optimal reflection-coefficient responses obtained with the
SRFT can be assured to be realizable or synthesizable. The choice of the optimization
method and the initial guess are essential for uncovering solutions in RFT-based method-
ologies. With local optimization, which is usually employed by the SRFT methods, an
improper initial point can result in a solution that is optimal in a mathematical sense but is
physically unrealizable with components such as capacitors and inductors. On the other
hand, local optimization methods converge fast, thus allowing for exhaustive searches with
various initial points. Such searches are not feasible with global optimization methods,
which are slower and more difficult to steer through an initial guess and converge to a
realizable solution. Nonetheless, there exists an opportunity for further investigation to
rigorously define the underlying SRFT model features leading to unrealizable solutions,
thereby providing guidelines for the selection of the initial guess as well as the formulation
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of constraints to steer the optimization away from such solutions. Finally, we have demon-
strated that the improved SRFT ensures realizable IMN solutions. The systematic approach
in this paper enables us to find a UWB IMN solution with an 81.3% power reduction and
an amplifier f T at around 100 GHz to ensure the amplifier operates at 10.6 GHz.
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