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Abstract: The sustainable development of the maritime supply chain is an undeniable trend. Low-
carbon port operations are a vital component of creating an eco-friendly maritime supply chain,
requiring substantial investments in technologies that reduce carbon emissions. However, the key
factors influencing investment decisions by ports and shipping companies in these green technologies,
particularly government subsidies, remain poorly understood. Hence, this paper proposes a game-
based framework to explore the impact of government subsidies. Through numerical analysis, this
study first demonstrates that the pricing decisions, investment level, and profits of ports and shipping
companies are sensitive to government subsidies and low-carbon preferences of the market; however,
the influence of government subsidies and low-carbon preferences varies with different adopted
investment strategies. Furthermore, investment decisions are mainly influenced by investment costs,
low-carbon preferences, government subsidies, and cost-sharing ratios. Ports are more sensitive to
government subsidies and low-carbon preferences while shipping companies are more sensitive to
government subsidies and cost-sharing ratios. In addition, government subsidies and low-carbon
preferences are substitutes for each other and can balance cost-sharing ratios between ports and
shipping companies. Finally, recommendations are provided to the government, ports, and shipping
companies for promoting low-carbon port operations based on the findings of this study.

Keywords: low-carbon port operations; government subsidies; low-carbon preferences; game theory

1. Introduction

The international maritime supply chain plays a crucial role in global trade, account-
ing for 90% of the total trading volume [1]. Ports are important maritime supply chain
nodes, driving worldwide economic and trade development, and promoting land and sea
transportation. However, port operations are also a major contributor to air and marine
pollution, posing a significant threat to human health and the environment [2]. According
to a report by the International Maritime Organization, pollutant emissions from ships
can cause a significant number of premature deaths worldwide, highlighting the need
to limit these emissions [3]. According to the Greenhouse Gas Protocol (GHG Protocol),
port carbon accounting encompasses the comprehensive assessment of carbon emissions
originating from both ports and shipping entities during the provision of services within
port vicinities [4]. Hence, the carbon footprint attributed to the ports under scrutiny in
this study stems primarily from two pivotal sources: Firstly, during the docking phase,
encompassing the intricate maneuvers from the ship’s arrival in port (anchoring and navi-
gating towards the berth, cargo-handling operations) and subsequent departure, there is
a notable emission of carbon [5]. Zis et al. (2014) elucidated the considerable potential of
shore power systems in mitigating CO2 emissions by an impressive margin ranging from
48.0% to 70.0% for vessels berthed at ports [6]. Similarly, Sciberras et al. (2016) corroborated
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these findings, highlighting that the integration of shore power infrastructure alongside
vessel operations can yield a noteworthy reduction of up to 40% in CO2 emissions [7].
Furthermore, carbon emissions stemming from land-based activities predominantly em-
anate from the operational activities of port-related equipment. Scholars often classify such
endeavours aimed at curtailing emissions within the maritime supply chain as instances of
low-carbon investment [8]. With the increase in carbon emissions from port operations, the
damage to the coastal ecological environment and the pollution of near-shore waters have
also gained increasing attention [2,9]. Therefore, the government and related companies
are currently working towards reducing emissions for low-carbon port operations. Govern-
ments are enacting relevant laws and regulations to reduce emissions in port operations,
and some countries, such as the US, Canada, and China, have established Emission Control
Areas (ECAs) in their coastal regions [10,11]. On the other hand, the development of green
technologies, such as tail gas scrubbers, liquefied natural gas (LNG), and shore power
technology, offers opportunities for port operations to reduce emissions [12–14]. However,
the heavy investment and retrofitting costs associated with these technologies make it
challenging for ports and shipping companies to implement such technologies [15,16]. Con-
sequently, understanding different parties’ behaviour of investing in emission reduction
technology in low-carbon port operations has become a hot topic for academic research in
recent years.

The government, ports, and shipping companies are the main players in port opera-
tions, but they make decisions independently, forming a mutual game system with the goal
of maximising their own benefits. To this end, research on introducing game theory into
the analysis of green emission reduction in port operations has gained significant momen-
tum. Nash games [17,18], Stackelberg games [19,20], and evolutionary games [21,22] have
already been successfully applied in studying green emission reduction in port operations
and provided valuable insights.

Existing studies have identified government subsidies and low-carbon preferences
as key factors that can influence the decision of ports and shipping companies to invest
in emission-reduction technologies [14,23,24]. However, some key questions regarding
government subsidies and other related factors are still not well answered:

(1) When the government provides subsidies to a company (port or shipping company)
that invests in emission reduction technology, how does this affect the company’s
market behaviour and profits, and what impact does it have on other companies in
the system?

(2) How do government subsidies, low-carbon preferences, and cost-sharing factors influ-
ence the investment decisions of ports and shipping companies in carbon-reduction
technologies, and is there an interaction between these factors?

(3) How do these influences affect the evolution of ports’ and shipping companies’ carbon
emissions reduction technology investment strategies?

To address the above issues, this paper develops a game framework to analyse the
impact of government subsidies and related factors on the decision-making process of
emission reduction investment strategies of ports and shipping companies. Compared
with existing models, this framework examines the impact of various factors, including
government subsidies, on the market prices and profits of ports and shipping companies,
and explores the process of strategies evolution in the investment decisions of ports and
shipping companies in emission reduction technologies.

The remainder of this paper is structured as follows. Section 2 provides a review of
the relevant literature on low-carbon port operations research in terms of the impact of
government subsidies, cost sharing, and applied game theoretic models. Section 3 describes
the research questions of this paper. The proposed investment decision game framework
that combines the Stackelberg game and the evolutionary game is described, solved and
analysis in Section 4. In addition, Section 5 provides a discussion of the differences and
connections between the findings of this paper and the existing literature. Finally, Section 6
presents the overall conclusions and identifies future research directions.
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2. Literature Review

The existing literature related to this study mainly focuses on three areas: analysing
the impact of government subsidies in low-carbon port operations, research on cost-sharing
mechanisms in low-carbon port operations, and how game theories can be applied to
analysing low-carbon port operations.

2.1. Government Subsidies in Low-Carbon Port Operations

Government subsidies are an effective macro-control method for reducing emissions
in low-carbon port operations [25–27]. Recent studies have incorporated a range of factors,
such as low-carbon preferences [14,28,29], carbon trading mechanisms [18,24,29], carbon
taxes [23,30,31], and information-sharing mechanisms [20,32,33], into their analyses, in
order to better understand the complex interplay between government subsidies and other
key drivers of sustainable practices in the maritime industry. Furthermore, existing studies
have also attempted to analyse the relationship and interactions between factors. Chen
et al. (2020) [19] proposed an optimisation model for a coastal transportation system,
concluding that government subsidies and reasonable tax plans for highway and waterway
transportation can significantly reduce carbon emissions without increasing freight rates.
Zhou (2022) [16] analysed the interactive effects of government subsidies and low-carbon
preferences on emission control technology decisions in low-carbon port operations. Hu
and Wang (2022) [34] analysed the impact of government subsidies and low-carbon pref-
erences on low-carbon production technology adoption in the manufacturing industry.
However, there are few studies on the interactions between factors under different port
and shipping company investment strategies, and they do not take into account the cost-
sharing mechanisms when ports and shipping companies invest in emission-reduction
technologies.

2.2. Application of Game Theories in Analysing the Low-Carbon Port Operations

The government, ports, and shipping companies make independent decisions and
engage in a mutual game to maximise their interests, naturally forming a game. Conse-
quently, the use of game theory to investigate green emission reduction in low-carbon
port operations has gained considerable traction. Currently, the game theories commonly
applied in analysing low-carbon port operations include traditional game theories (the
Nash game [17,18], the Stackelberg game [19,20,35], and the evolutionary game [21,22,36].

2.2.1. Application of Traditional Game Theories in Analysing Low-Carbon Port Operations

Most of the literature applied traditional game theories to study the impact of relevant
factors on the decisions in low-carbon port operations. Yang et al. (2019) [18] conducted a
study on low-carbon operational technology options for port operations, which included
ports and shipping companies operating under a cap-and-trade program. The authors
developed two Stackelberg game models and a Nash game model to analyse the opti-
mal investment strategies for sustainable operations [37]. Zhou and Zhang (2022) [14]
expanded this research by also considering low-carbon preferences in their analysis [16].
Particularly, some research has applied traditional game theories to consider the impact
of government subsidies in the analysis of low-carbon port operations [26,38]. Wang et al.
(2022) [25] outlined a Stackelberg game theory model for optimising government subsidies
for Shore Side Electricity (SSE) adoption in the Port of Shanghai, providing insights into
the prioritisation of subsidies on ships and identifying factors that should be subsidized.
As technology becomes more advanced and information becomes more accessible and
accurate, information-sharing mechanisms in port operations have been studied [20,32].
However, the above-mentioned literature often analyses these factors in isolation, and the
analysis of multiple factors is lacking. Therefore, these studies cannot fully describe the
decision-making behaviour of game players.
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2.2.2. Application of Evolutionary Game in Analysing Low-Carbon Port Operations

With the development of game theory research, scholars have found that equilibrium
strategies between participants are not formulated at a fixed time, but are formed in the
process of continuous learning and dynamic adjustment, which leads to the application
of evolutionary games. Lin et al. (2021) [39] developed a pricing decision model that
considers price elasticity, market competition, green investment, and market concern for
greenness. They proposed an evolutionary game-theoretic framework embedded in the
pricing model to study the long-term green strategic behaviour of maritime shipping
companies. Long et al. (2021) [40] developed a general evolutionary game model consisting
of green-sensitive governments, companies, and consumers, revealing that green sensitivity
had a significant effect on the stabilisation strategy of the model [41,42]. Li et al. (2020) [13]
studied a two-tier port operation system, consisting of ports and shipping companies, under
government green subsidies. Their research explored the mechanisms of government green
subsidies and their impact [23,43]. Huang et al. (2023) [24] used a dynamic game model to
study a three-level maritime supply chain addressing carbon reduction and low-carbon
service investments, influenced by government policies and social preferences [34]. While
their findings reveal the impact of these key factors on investing in low-carbon emission
reduction technologies, the study does not delve into the intricate interactions between
these factors, leaving room for further investigation.

2.3. Cost Sharing in Low-Carbon Port Operations

As research on system theory deepens, the supply chain is increasingly perceived as a
complex system, prompting scholars to focus on the organic coordination among its various
entities. Within this realm, cost sharing emerges as a pivotal mechanism for supply chain
coordination, drawing significant scholarly attention. Numerous studies have meticulously
examined cost-sharing dynamics between wholesalers and retailers in the manufacturing
supply chain [44,45]. Ni et al. (2010) found that suppliers can share costs with downstream
members of the supply chain by setting reasonable wholesale prices by examining the in-
vestment costs of CSR [46]. In tandem with the growing imperative of energy conservation
and emissions reduction, scholars are delving deeper into the application of cost-sharing
mechanisms within low-carbon supply chains [47,48]. Yang and Gong (2021) studied green
supply chain decision making and coordination under retailers’ reciprocal preferences and
found that cost-sharing contracts play a positive role in improving the environmental and
economic performance of green supply chains [49]. Moreover, the burgeoning discourse on
low-carbon maritime supply chains has garnered considerable academic attention, with a
specific focus on supply chain coordination mechanisms, notably cost sharing [50]. Huang
et al. (2023), in their analysis of long-term strategic behaviours among ports, shipping
companies, and freight forwarders within the ambit of cost-sharing mechanisms, delineated
a three-tier maritime supply chain scenario. Their findings underscored how shipping
companies can foster mutually beneficial outcomes and enhance decision-making stability
by equitably distributing the costs associated with carbon emission reduction efforts in
ports [24]. Furthermore, Xue et al. (2023) underscored the pivotal role of cost-sharing
mechanisms as determinants for investment in decarbonization technologies within col-
laborative green port operations. Their findings highlight how such mechanisms shape
investment behaviours and cooperation dynamics in the pursuit of sustainable maritime
operations [51].

2.4. Summary

This paper has identified two major research gaps based on the review of the two
streams of literature. Firstly, in terms of research content, there are fewer studies existing
in the literature about the impact of government subsidies under different investment
strategies of ports and shipping companies. In addition, with the development of the
“systems concept”, a cost-sharing mechanism in port operations is becoming more favoured
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by companies, but this factor has received limited attention in strategic investment studies
of emission reduction technology in ports and shipping companies.

Secondly, in terms of research methods, the existing literature on the emission re-
duction problem of ports and shipping companies has primarily adopted a single-game
approach, part of which adopts the traditional game to study the relationship between
pricing, profit, and related variables of ports and shipping companies, and part of which
adopts the evolutionary game to study the strategy choice of ports and shipping companies.
However, in practice, both the port and the shipping company have limited rationality. The
port and shipping company decides whether to invest in emission reduction technologies
based on profit maximisation. Therefore, it is not enough to study the strategy selection
problem by using only the traditional game, and the relationship between the strategy
selection results and the variables cannot be portrayed by using only the evolutionary game.

To address the above-mentioned gaps, this paper proposes a game-based investment
framework that considers a port-dominated secondary port operation system, which
transitions from a Stackelberg game to a dynamic evolutionary game. This framework
considers government subsidies and low-carbon preferences, as well as cost-sharing ratios,
to provide a more comprehensive analysis of the investment strategy for emission reduction
in low-carbon port operations. Table 1 shows the differences between this study and other
relevant studies.

Table 1. Comparison between this study and other relevant studies.

Paper Government Subsidy Cost Sharing
Research Content

Low-Carbon Preference
Factors Analysis Strategic Analysis

[18,30,31]
√

[9,14,20]
√ √

[19,25]
√ √

[16]
√ √ √

[39]
√ √

[13,27,40]
√ √ √

[24]
√ √ √ √

[49–51]
√ √

This paper
√ √ √ √ √

3. Problem Description

This paper delves into the intricate dynamics among stakeholders within the maritime
supply chain, encompassing the government, the port terminal operator, the shipping
company, and cargo owners. The government plays a pivotal role by offering subsidies
to entities embracing carbon emission reduction technologies, whether it be the port
terminal operator or the shipping company. The preferences of cargo owners for low-
carbon transport significantly influence market demand, thereby impacting the volume
of transport required. Subsequently, both the port terminal operator and the shipping
company are driven by the objective of maximising profits. In the ensuing discussion, we
will elucidate the decision-making processes inherent to both the port terminal operator
and the shipping company.

The port terminal operator needs to determine the pricing at which the port call
services are provided to shipping companies. This pricing is influenced by various factors,
such as the extent of government subsidies and the volume of services subscribed to by
the shipping companies, which reflects the demand for handling operations received by
the port.

In the maritime supply chain, the shipping company acts as an intermediary, collecting
fees from cargo owners and remitting payments to the port terminal operator for services
rendered. The port terminal operator receives compensation from the shipping company
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for various port-related activities, such as loading, unloading, and storage. These costs
are factored into the fees charged by the shipping company to cargo owners, shaping
their pricing strategies. Consequently, port services emerge as a critical commodity in
this ecosystem. By applying a traditional service supply chain framework, we view the
shipping company as a retailer of port services, tasked with wholesaling these services to
shippers and determining the market price. This abstraction facilitates the examination
of the direct influence of port services on the shipping market, simplifying the analysis
without compromising the equilibrium of the model [52]. While this approach streamlines
the investigation, it is important to acknowledge that port services are often subject to tariffs,
although this aspect lies beyond the scope of our study and will not be reiterated here.

Based on the above discussion, this paper gives a schematic diagram of the relationship
between various stakeholders in the maritime supply chain, as shown in Figure 1 (the solid
line represents the behaviour of the decision and the dashed line represents the effect of
the decision).
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However, the decision-making process of the port terminal operator and the shipping
company regarding investment in carbon-reduction technologies is not immediate but
rather occurs over a long period in response to market changes and adjustments in govern-
ment subsidies. This game ultimately leads to a stable decision being formed at a specific
point in time. As a result, this decision-making behaviour can be effectively modelled as an
evolutionary game, which can provide insights into the dynamics of the shipping industry
and guide policy interventions aimed at promoting sustainable practices.

4. Methods

This paper develops a game framework that both derives port and shipping company
payoff functions and describes the evolution of the decision-making process in ports and
shipping companies.

4.1. Framework Descriptions

The framework, as described in Figure 2, comprises a Stackelberg model at the bottom
and an evolutionary model at the top, facilitating a comprehensive understanding of the
interrelated dynamics between these entities.

At the bottom of the framework, the pricing, cost-sharing, and investment decisions
of ports and shipping companies are influenced by government subsidies and the market’s
low-carbon preferences, and the game between the two parties is modelled as a Stackelberg
game, considering their dominant–subordinate relationship. Ports and shipping companies
will make different decisions regarding investment in carbon emission reduction technology,
namely to invest or not to invest. In this paper, investment is denoted by “Y” and non-
investment is denoted by “N”, the investment choices of ports and shipping companies
will form four strategic combinations (ports, shipping companies), namely (N, N), (Y, N),
(N, Y), and (Y, Y). Therefore, the optimal solution under different strategies is derived
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and input as a payoff function into the top-level evolutionary game model, forming a
payoff matrix regarding investment in emission reduction technology. On the top level, an
evolutionary game model is established to analyse the evolution of ports’ and shipping
companies’ investment strategies in emission reduction technology.

Figure 2. Overview structure of the investment decision framework.

Overall, this framework offers a sophisticated and multi-faceted approach to the eval-
uation of investment decisions related to carbon-reduction technologies, thereby providing
insights into the optimal strategies that can be employed by ports and shipping companies
to enhance their profitability and promote sustainable practices and the influence of key
factors on the optimal strategies.

4.2. Notations and Assumptions

Table 2 lists the notations and this study is based on the following assumptions.
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Table 2. Notations of the framework.

Notations Definition

Decision variables
m Marginal profit per unit of product for shipping companies
e Level of investment in emission-reduction technologies
q Port service price

Parameters

a The potential shipping market size
b Price sensitivity coefficient
θ Low-carbon preferences (0 < θ < 1)
p Market price for port service
Q Market demand

n Government unit price subsidies for companies’ investment in
emission-reduction technology

η Investment cost coefficient
α Cost-sharing ratios (0 < α < 1)

πp Port profit
πs Shipping company profit

Assumption 1. The port charges the shipping company q for its services, and its marginal cost is
assumed to be zero according to [32]. On the other hand, the shipping company charges the shipper
p for the market price for port service, and its marginal profit is denoted as m. Therefore, using the
above notations, we can express the pricing equation of the shipping company as (1).

p = q + m (1)

Assumption 2. In this model, the market demand is assumed to be linearly related to the shipping
company’s market price for port service p. Furthermore, the government’s low-carbon promotion
has a positive influence on shippers’ green and low-carbon preferences, which in turn affects the
market demand [24,41]. Hence, the demand function can be expressed as a function of the carbon
reduction level of the port and shipping supply chain, as shown in Equation (2).

Q = a − bp + θe (2)

Assumption 3. The port and shipping company incur investment costs of 1
2 ηe2 when investing

in emission-reduction technology [16,32,53,54].

Assumption 4. When both parties invest in emission-reduction technology, they enter into a
cost-sharing contract where the port bears a proportion of the cost, denoted as α, and the shipping
company bears the remaining proportion, denoted as 1 − α [29].

Assumption 5. When the port or shipping company invests in emission-reduction technology, the
government provides a certain amount of low-carbon subsidy, which increases the revenue gained
per unit of a product by n [55].

Assumption 6. Both the port and the shipping company are independent economic entities that
make investment decisions based on their profit maximisation goals, without being influenced by
other factors.

Assumption 7. Entities in port operations may have short-sighted perspectives and limited
decision-making capabilities, which can lead to suboptimal decisions due to incomplete or imperfect
information [13,39,40].
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4.3. Model Solving
4.3.1. The Embedded Stackelberg Game Model

This section initially defines the profit functions of ports and shipping companies for
varying strategies, as demonstrated in Table 3.

Table 3. Profit function.

Strategies πp πs

(N, N) qQ mQ
(Y, N) (n + q)Q − ηe2

2 mQ

(N, Y) qQ (m + n)Q − ηe2

2
(Y, Y) (n + q)Q − 1

2 αηe2 (m + n)Q − 1
2 ηe2(1 − α)

To make all equilibrium solutions positive and at the same time ensure the existence
of optimal solutions (the Hessian matrix is negative definite), according to Appendix A, we
can conclude that η > max

(
θ2

2b , θ2

4bα

)
. Therefore, the order of computation under different

strategies is determined according to the computational rules of the Stackelberg inverse
solution method. The decision variables and profit results of the four strategies are solved
by using Stackelberg’s inverse solution method, as shown in Tables 4 and 5.

Table 4. Optimal solution for port and shipping profits.

Strategies πp πs

(N, N) a2

8b
a2

16b

(Y, N) (a+bn)2η
8bη−2θ2

b(a+bn)2η2

(θ2−4bη)2

(N, Y) (a+bn)2η
8bη−4θ2

(a+bn)2η
16bη−8θ2

(Y, Y) (a+2bn)2αη
8bαη−2θ2

(a+2bn)2η[2bα2η+(α−1)θ2]
2(θ2−4bαη)2

Table 5. Optimal solution for decision variables.

Strategies m q e

(N, N) a
4b

a
2b 0

(Y, N) (a+bn)η
4bη−θ2

2aη−2bnη+nθ2

4bη−θ2
(a+bn)θ
4bη−θ2

(N, Y) aη−3bnη+2nθ2

4bη−2θ2
a+bn

2b
(a+bn)θ
4bη−2θ2

(Y, Y) aαη−2bnαη+nθ2

4bαη−θ2
2aαη+nθ2

4bαη−θ2
(a+2bn)θ
4bαη−θ2

4.3.2. The Complete Evolutionary Game Model

Assuming that the proportion of shipping companies adopting emission-reduction
technology (Y) is x (0 ≤ x ≤ 1), the proportion of not applying emission-reduction tech-
nology (N) is 1 − x. Meanwhile, assuming that the proportion of ports applying emission-
reduction technology (Y) is y (0 ≤ y ≤ 1), the proportion of not applying emission-reduction
technology (N) is 1 − y, as shown in Table 6, where the function expressions are shown in
Table 4.
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Table 6. Revenue Matrix.

Ports

Shipping Companies

Investment (x) Non-Investment
(1 − x)

Investment (y) (πYY
p , πYY

s ) (πYN
p , πYN

s )

Non-investment (1 − y) (πNY
p , πNY

s ) (πNN
p , πNN

s )

The expected payoff functions for the “investment” and “non-investment” strategies
adopted by the port are represented by Equations (3) and (4), and the average expected
payoff function is represented by Equation (5).

f Y
p = xπYY

p + (1 − x)πYN
p (3)

f N
p = xπNY

p + (1 − x)πNN
p (4)

fp = y f Y
p + (1 − y) f N

p (5)

The expected payoff functions for shipping companies adopting “investment” and
“non-investment” strategies are represented by Equations (6) and (7), and the average
expected payoff function is represented by Equation (8).

f Y
s = yπYY

s + (1 − y)πNY
s (6)

f N
s = yπYN

s + (1 − y)πNN
s (7)

fs = x f Y
p + (1 − x) f N

p (8)

Therefore, the dynamic replication equations of the port and shipping company are
represented by Equations (9) and (10), respectively.

f (y) =
dy
dt

= y(1 − y)
[

x
(

πYY
p − πNY

p

)
+ (1 − x)

(
πYN

p − πNN
p

)]
(9)

f (x) =
dx
dt

= x(1 − x)
[
y
(

πYY
s − πYN

s

)
+ (1 − y)

(
πNY

s − πNN
s

)]
(10)

If Equations (9) and (10) are equal to zero, it means that the system will no longer
evolve and achieve equilibrium. Therefore, the above replicator dynamics system has
five stable equilibrium points: (1) (0,0); (2) (0,1,); (3) (1,0); (4) (1,1); and (5) (x∗,y∗), where

x∗ =
πNN

p −πYN
p

πYY
p +πNN

p −πYN
p −πNY

p
, y∗ = πNN

s −πNY
s

πYY
s +πNN

s −πYN
s −πNY

s
.

The Jacobi matrix of the above differential equation is as follows:

J =

[
(1 − 2x)

[
y
(
πYY

s − πYN
s

)
+ (1 − y)

(
πNY

s − πNN
s

)]
x(1 − x)

(
πYY

s − πYN
s + πNY

s − πNN
s

)
y(1 − y)

(
πYY

p − πNY
p + πYN

p − πNN
p

)
(1 − 2y)[(x

(
πYY

p − πNY
p

)
+ (1 − x)

(
πYN

p − πNN
p

)]
The local stability of the system at the equilibrium point solved by replicating the

dynamic equations is determined by analysing the local stability of the corresponding
Jacobian matrix of the system. For discrete systems, the following two conditions need to
be satisfied [18,30,31]: detJ =

∣∣∣∣j11 j12
j21 j22

∣∣∣∣= j11 j22 − j12 j21 > 0

trJ = j11 + j22 < 0
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The five equilibrium points are substituted into the Jacobian matrix J in turn, and the
local stability analysis of the equilibrium points will be obtained, as shown in Table 7.

Table 7. Stability of the equilibrium point.

Equilibrium Points det J tr J Stable Conditions Stability

(0, 0) + - Unstable
(0, 1) + − πYY

s − πYN
s < 0 and πNN

p − πYN
p < 0 Stable

(1, 0) + − πNN
s − πNY

s < 0 and πYY
p − πNY

p < 0 Stable
(1, 1) + − πYN

s − πYY
s < 0 and πNY

p − πYY
p < 0 Stable

(x∗, y∗) 0 0 - Unstable

If η < (a+2bn)2(1−α)θ2

2b[α2(a+2bn)2−(a+bn)2]
, ports are likely to invest in carbon-reduction technologies

to reap benefits, while shipping companies may engage in “free-riding” behaviour and be
less active in pursuing a low-carbon economy. As shown in Figure 3 (Scenario 1), the final
evolutionary stabilisation strategy, in this case, is for the port to adopt emission-reduction

technology and the shipping company to not adopt it. If η <
(a2(2α−1)+2abn(4α−1)+b2n2(8α−1))θ2

4b2n(2a+3bn)α ,
as shown in Figure 3 (Scenario 2), the final evolutionary stabilisation strategy is for ship-
ping companies to adopt carbon-reduction technologies and for ports to not adopt them.

If η < (a+2bn)2(1−α)θ2

2b((a+bn)2−(a+2bn)2α2)
, as shown in Figure 3 (Scenario 3), the final evolutionary

stabilisation strategy is for both parties to invest in carbon-reduction technologies at the
same time.
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Figure 3. Evolutionary strategy phase diagram.

Comparing the scenarios above, it is clear that the value of η has a significant impact on
the evolution of investment in emission-reduction technology in port operations. Thus, the
magnitude of the investment cost is an important factor for ports and shipping companies
to invest in carbon emission-reduction technologies. It is evident that the size of the
investment cost is influenced by market green preference, government subsidies, and
cost-sharing ratios. Therefore, the numerical analysis will be used to investigate the impact
of these factors further.

4.4. Results

This section conducts numerical experiments based on the proposed framework to
answer the key questions raised in this study and provides recommendations for govern-
ments, ports, and shipping companies to effectively reduce pollution emissions. According
to the relevant literature and the requirements of this paper, this study sets the parameter
values of the model as shown in Table 8.
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Table 8. The values of the relevant parameters.

Parameters Value Data References

a 500 [14,41]
b 1 [42]
n [0, 30] [24,40]
η 500 [24,29]
θ [0, 1] [24,39,41]
α [0, 1] [24,33]

4.4.1. Analysis of the Effects of Government Subsidies and Low-Carbon Preferences on
Different Subjects

This section analyses the impact of government subsidies and low-carbon preferences
on decision variables and profits of the port and the shipping company.

Figure 4 illustrates the relationship between government subsidies n and low-carbon
preferences θ on port service price q under three different investment strategies denoted
as (Y, N), (N, Y), and (Y, Y), where each strategy is represented by a three-dimensional
cubic plot with the price of port service q on the Z-axis and government subsidies n and
low-carbon preferences θ on the X- and Y-axes, respectively. The figure reveals that the
effects of government subsidies and low-carbon preferences on the service prices of ports
vary under different strategies. As shown in Figure 4a, when the market’s green demand
is low, the government subsidy compensates part of the port’s investment in emission-
reduction technology, leading to a relatively low service price. However, as the green
demand in the market increases, even with the government subsidy, the port will increase
its service price to maximise benefits. In Figure 4b, the sensitivity of the service price of
ports varies in response to different factors. Specifically, the service price of ports tends to be
more sensitive to government subsidies, namely it increases with the level of government
subsidies provided. However, it is generally not as sensitive to low-carbon preferences
in the market. In Figure 4c, both parties jointly invest in emission-reduction technology.
When the government subsidizes both parties, the price of the port’s services increases
gradually with low-carbon preferences and is not sensitive to subsidies.
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In Figure 5, the relationship between government subsidies, low-carbon preferences,
and the marginal profits of shipping companies m is depicted through three three-dimensional
cubic plots, each representing a different investment strategy denoted as (Y, N), (N, Y),
and (Y, Y), with the marginal profit on the Z-axis and government subsidy and low-
carbon preference on the X- and Y-axes, respectively. Figure 5a shows that the marginal
profit of shipping companies increases with the increase in government subsidies under
the strategy (Y, N). This is because the price of services paid by shipping companies to
ports decreases due to government subsidies. In contrast, Figure 5b illustrates that the
marginal profit of shipping companies is inversely related to the government subsidy
under the strategy (N, Y). As the government subsidy increases, the shipping company
needs to reduce the price of transportation to obtain the green market demand. Finally, in
Figure 5c, the shipping company’s marginal profit increases with the low-carbon preference
increase under the strategy (Y, Y). This is because shipping companies can charge a higher
price for their low-carbon transportation services in response to the growing demand for
environmentally friendly shipping options.
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Figure 6 reveals a strong positive relationship between the increase in the level of
investment and the low-carbon preference of the market. In Figure 6, the three subplots
represent the effects of the two variables, government subsidies and low carbon preference,
on the level of investment in carbon emission-reduction technologies under the strategies
(Y, N), (N, Y) and (Y, Y), respectively. Figure 6a and Figure 6b show single-party investment
with a maximum investment level of 300, respectively. On the other hand, Figure 6c
illustrates that the investment level is as high as 2000 when both parties invest together.
This phenomenon may be due to the fact that the cost pressure borne by the port and
shipping companies when they invest alone is too great, whereas when they invest jointly,
the cost pressure is shared by both parties and the level of investment is naturally higher.
This finding underscores the significant impact of joint efforts between ports and shipping
companies on promoting low-carbon port operations.
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Figure 7 shows the trend of the port’s profit under the change of government subsidy
and low-carbon preference, which can intuitively reveal that the dependent variable of the
port’s profit is influenced by the two independent variables of government subsidy and
low carbon preference. In Figure 7, it is easy to find that although the strategies represented
by the three sub-figures are different, the trend of each figure is basically the same, which
indicates that the trend of the port’s profit is the same regardless of which strategy, namely,
the port’s profit will increase with the increase of the government subsidy and the rise of
the low carbon preference, which is in fact a positive effect.Based on the results presented
in Figure 7, it can be inferred that port profits are positively correlated with rising subsidies,
as well as increasing consumer incline towards low-carbon alternatives.
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Similarly, Figure 8 offers a comprehensive insight into the nuanced dynamics shaping
the profitability of shipping companies amidst variations in government subsidies and
low-carbon preferences. Clearly, the interplay between the dependent variable of shipping
company profit and the independent variables of government subsidies and low-carbon
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preference is visually elucidated. Notably, despite the distinct strategies delineated across
the three sub-figures, a striking uniformity in trend emerges. This unanimity underscores a
fundamental truth: irrespective of the chosen strategy, the trajectory of shipping company
profit remains steadfast. Specifically, as discerned from the figures, the ascent of government
subsidies and the elevation of low-carbon preferences invariably propel the profitability of
shipping enterprises—a testament to the unequivocally positive impact of these factors.
Figure 8 elucidates that the profits of shipping companies show an upward trend with
augmenting subsidies and burgeoning low-carbon preferences of the market.
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In summary, the sensitivity of pricing decisions of ports and shipping companies to
government subsidies and low-carbon preferences varies under different strategies. Table 9
presents the relationship between the dependent variables, including port service cost q,
shipping company marginal profit m, investment level e, profits of ports πp and profits of
shipping companies πs, and the two independent variables, government subsidy n and low
carbon preference θ under different strategies where “−” indicates a negative relationship,
“+” indicates a positive relationship, and the “×” sign indicates no relationship between
the variables.

Table 9. The sensitivity under different strategies.

Strategies
Independent Variable

Dependent Variable

Ports Shipping Companies q m e πp πs

Y N
n

− + + + +
N Y + − + + +
Y Y × + + + +

Y N
θ

− × × + +
N Y × × × + +
Y Y + + × + +
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4.4.2. Analysis of the Impact of Government Subsidies and Low-Carbon Preferences on
the Decision

This section simulates the investment decision framework to analyse the investment
strategy game between ports and shipping companies, based on Table 8 and the reality
(in the initial stage of low-carbon port operations construction, the government has not
yet intervened on a large scale because the market green preference is low, and the port is
the dominant player in port operations). Therefore, this paper sets the initial parameter
values of n = 0, θ = 0.05, α = 0.01, X0 = 0.5, and Y0 = 0.5 while satisfying the constraints
mentioned earlier. The results are displayed in Figure 9, where X = 0.00, Y = 0.61. This
shows that in the early stage of the construction of low-carbon port operations, the port
as the system leader will have the will to invest in emission-reduction technology, but
at this stage, it will not put it into practice. The shipping companies, on the other hand,
will gradually reduce their willingness to invest until it is 0. Therefore, it is necessary to
investigate ways to improve the investment willingness of ports and shipping companies
and promote the construction of low-carbon port operations.
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To study the impact of government subsidies and low-carbon preferences on the
decision to invest in carbon-reduction technologies in low-carbon port operations, we
varied the values of n and θ in the model. We sought to achieve the goal of low-carbon port
operations at the lowest cost for the government. Therefore, we still set the government
subsidy at n = 0, but α = 0.3, θ ∈ [0, 0.4], respectively, while keeping other values constant.
Figure 10 shows that as low-carbon preferences increase, the port gradually prefers to adopt
emission-reduction technology to capture the green market demand. On the other hand,
the shipping company, being a follower, does not invest in emission-reduction technology
but rather benefits from the low-carbon operation implemented by the port to obtain the
green market.

However, this evolutionary result is not the ideal state. Shipping companies rely on
maintaining strong relationships with their shippers, and with an increasing preference
for low-carbon and environmentally friendly approaches, there is a surge in demand for
green practices. This means that shipping companies should proactively invest in carbon-
reduction technologies to cater to this growing demand. It is worth noting that the port
assumes a dominant position in the system, enabling it to hold decision-making author-
ity over cost-sharing ratios. In the absence of government intervention, ports prioritise
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reducing their cost-sharing ratios and allocate more investment costs to shipping compa-
nies. With rising low-carbon preferences for environmentally friendly options, shipping
companies are required to fight for a fair sharing ratio, which may discourage them from
investing further in carbon-reduction technologies. As a result, it is reasonable to conclude
that in the absence of government subsidies, increased market preference for low carbon
can only promote ports to invest in carbon-reduction technologies and has no positive
effect on shipping companies’ investment.
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Then, the government will take measures to intervene to promote low-carbon port
operations, based on Figure 10D, with n set as 0.02, 0.05, and 0.1, respectively. From
Figure 11, we observe that when the government participates in subsidies, the final strategy
for the evolution of ports and shipping companies is still (Y, N). However, the effect of
government subsidies is immediately compared to low-carbon preferences, but the cost is
also enormous.

In summary, the adoption of emission-reduction technology in low-carbon port op-
erations systems is influenced by the interaction between government subsidies and low-
carbon preferences. However, shipping companies, being followers in the port operations
system, do not seem to invest in carbon-reduction technologies in this case. This suggests
that factors beyond subsidies and low-carbon preferences also affect shipping companies’
investment strategies. Further investigation will be conducted based on this section to
provide a more comprehensive analysis while maintaining the original meaning.
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4.4.3. Analysis of the Effect of Cost Sharing on the Decision

In this evolutionary model, we assume that when both parties are willing to invest
in emission-reduction technology simultaneously, they will adopt a cost-sharing contract
strategy. This means that they will negotiate and agree on sharing the cost of emission-
reduction technology in different proportions. As the port is the dominant player in the
system, it may reduce the sharing ratio to minimise the cost investment and maximise
its interests, which could lead to losses for the shipping company. Therefore, setting the
sharing ratio between the two sides is crucial to determining the low-carbon operations’
investment in emission-reduction technology. Based on Figure 10D, the setting is α ∈ [0.5, 1].
As depicted in Figure 12, cost-sharing ratios affect the green emission-reduction investment
strategy of the low-carbon operations. As the sharing ratio of the port increases, the
shipping company is more likely to adopt emission-reduction technology. And, although
the investment cost borne by the port has increased, its final evolutionary result is still an
investment. This shows that under the development of green shipping, the port, as the
dominant player in the system, gains more than the shipping company. Hence, promoting
emission reduction in the shipping industry should focus on port emission reduction,
while identifying the difficulties in shipping company emission reduction. And we can
conclude that the key factor influencing shipping companies to invest in carbon-reduction
technologies is cost-sharing ratios.

However, achieving the condition of making both parties invest in emission-reduction
technology simultaneously without government subsidy is relatively difficult. Shipping
companies will only invest when the sharing ratio of ports reaches 0.9, and the larger the
ratio borne by ports, the more it affects their investment initiative.
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Therefore, based on the findings illustrated in Figure 12, by setting the government
subsidy n as 0.02 (as shown in Figure 13), the optimal evolutionary strategies of ports
and shipping companies tend towards (Y, Y), indicating that both parties prefer to invest
in emission-reduction technology with government subsidies. This strategy is an ideal
solution, as it minimises the amount of government spending while enabling both ports and
shipping companies to invest in carbon-reduction technologies. As shown in Figure 13B,
the investment strategies of ports and shipping companies tend to shift towards (Y, Y) when
cost-sharing ratios are 0.6. This is in contrast to Figure 12C, where both ports and shipping
companies invest in carbon-reduction technologies only when cost-sharing ratios are 0.9.
These findings suggest that government subsidies can play a crucial role in balancing cost-
sharing ratios, thereby inducing both parties to invest in carbon-reduction technologies.
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4.5. Management Insights

The findings derived from the numerical analysis can provide useful recommendations
for governments, ports, and shipping companies to effectively reduce pollution emissions.

For the government, the ultimate goal is to reduce pollution emissions while minimis-
ing subsidy costs. Hence, the following recommendations are given: firstly, the government
should focus on promoting low-carbon ports, starting with ports and treating the promo-
tion of investment in carbon-reduction technologies by shipping companies as a difficult
issue. To promote low-carbon port operations, it is crucial to adopt a targeted approach.
Since the port has a massive impact on the entire system with its decisions. Therefore, using
the port as an entry point to drive low-carbon investments by shipping companies can be
an effective strategy. In this regard, the government can play a critical role in incentivizing
and supporting the port to implement low-carbon initiatives, which also brings invest-
ments by shipping companies because of the stimulation from the port. This approach can
also create a positive feedback loop, where shipping companies are encouraged to adopt
low-carbon practices, leading to more significant reductions in emissions and a greener
maritime supply chain. Overall, a targeted approach that leverages the port’s influence and
the government’s support is necessary to promote low-carbon port operations and achieve
a sustainable maritime industry.

Secondly, the government should adopt a “promotion-based, subsidy-based” approach
to achieve the goal with minimal expenditure costs. The study conducted in this paper
reveals that although low-carbon preferences of the market and government subsidies
have different degrees of influence on port operation investment in emission-reduction
technology, they are mutually substitutable. Specifically, the government’s promotion
can increase the market’s low-carbon preferences, and the cost of promotion is smaller
compared to direct subsidies. Therefore, the government can prioritise promotion as the
main method, supplemented by subsidies. This approach can effectively promote the
construction of low-carbon port operations while also reducing the government’s financial
expenditure.

Thirdly, the government should intervene in the cost-sharing arrangements between
ports and shipping companies to ensure the fairness of the green market. The willingness
of ports and shipping companies to cooperate in promoting low-carbon port operations
depends on cost-sharing ratios. If the parties cannot agree on cost-sharing ratios, the
government needs to intervene to facilitate cooperation. Effective cooperation between
ports and shipping companies is crucial in achieving low-carbon goals and promoting
sustainable practices in the maritime industry. Therefore, it is necessary to develop clear
guidelines and regulations that outline the roles and responsibilities of each party and
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facilitate a fair and equitable cost-sharing mechanism. This approach can encourage
both ports and shipping companies to actively participate in promoting low-carbon port
operations and achieve a sustainable maritime supply chain.

For ports and shipping companies, it is essential to abandon their previous focus
on maximising individual interests and prioritise maximising the overall interests of the
supply chain. Sustainable port operations in the maritime supply chain can only be
achieved through effective cooperation between ports and shipping companies. Both
parties must adopt a “holistic” approach and work together to promote the construction
of a green maritime supply chain. This involves developing shared goals and objectives,
transparent communication, and a fair and equitable distribution of costs and benefits so
that ports and shipping companies achieve their respective goals while also contributing
to the sustainability of the industry. Overall, a cooperative approach that prioritises the
interests of the supply chain is necessary to promote sustainable practices in the maritime
industry and achieve global climate goals.

5. Discussion

In addressing the imperative to foster environmentally sustainable practices within
maritime supply chains, this study delves into the intricate dynamics of low-carbon port
operations, recognising their pivotal role in mitigating pollution in harbourfront areas. The
emphasis on constructing a green maritime supply chain underscores the significance of in-
vesting in low-carbon port operations as a linchpin in this transformative process. Utilising
a game theory framework, this paper examines the impact of government subsidies and
low-carbon preferences on port service price (q), shipping company marginal profits (m),
investment levels (e), port profits (πp), and shipping company profits (πs) across various
investment strategies.

Our analysis reveals the profound sensitivity of pricing decisions, investment lev-
els, and profits of ports and shipping companies to government subsidies and market-
driven low-carbon preferences. This aligns with the existing literature exploring the
nexus between government incentives and low-carbon considerations in the maritime
sector [14,16–18,28,29]. Notably, we extend this understanding by scrutinizing the reper-
cussions of government subsidies under different investment strategies, revealing nuanced
effects contingent on the adopted approach.

Furthermore, our study delves into the stability of investment strategies for ports and
shipping companies, elucidating the intricate interplay between government subsidies,
low-carbon preferences, and cost-sharing coefficients. Building upon the work of Huang
et al. (2023) [24] and Meng et al. (2022) [56], we contribute a novel insight that government
subsidies and low-carbon preferences act as substitutes, playing distinct roles in balancing
cost-sharing ratios between ports and shipping companies. This finding introduces a
nuanced perspective to the existing literature on the subject.

In presenting managerial insights for the operation and construction of low-carbon
ports, our study acknowledges its limitations. The assumption of linear market demand,
while a simplifying assumption, may not fully capture the complexity of real-world market
dynamics characterised by uncertainty. Future research should explore the impact of
stochastic demand on emission reduction in low-carbon port operations to enhance the
robustness of decision outcomes.

Moreover, our focus on government subsidies as an intervention warrants consid-
eration of potential counterbalancing policies, such as government penalty frameworks.
Introducing government penalties in emission-reduction decisions could be a promising
avenue for future research, offering a more comprehensive understanding of the dynamics
involved.

In conclusion, this study contributes to the academic discourse on sustainable maritime
practices by unraveling the intricate relationships between government interventions,
market preferences, and the strategic decisions of ports and shipping companies. Our
findings provide a foundation for further exploration into the complexities of low-carbon
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port operations, offering valuable insights for both researchers and practitioners navigating
the evolving landscape of the green maritime supply chain.

6. Conclusions

As a key node in the maritime supply chain, the level of low-carbon port operations
directly determines the construction and development of a green maritime supply chain.
Therefore, this paper focuses on this important node and explores the key factors influenc-
ing the investment decision of carbon emission reduction of ports and shipping companies
in port operations based on modelling the evolution of the decision process of both parties
using a proposed game-based investment decision framework. The proposal is based on the
Stackelberg game and evolutionary game. The decisions of ports and shipping companies
in low-carbon port operations are analysed separately through numerical analysis, which
reveals some valuable results and insights:

(1) The pricing decisions, investment level, and profits of ports and shipping companies
are sensitive to government subsidies and low-carbon preferences of the market;
however, the influence of government subsidies and low-carbon preferences varies
with different adopted strategies.

(2) The investment strategies of ports and shipping companies are influenced differently
by market green preferences, government subsidies, and cost-sharing ratios due to
their different market positions. Ports are more sensitive to government subsidies and
low-carbon preferences, and shipping companies are more sensitive to government
subsidies and cost-sharing ratios; government subsidies and low-carbon preferences
are substitutes for each other and balance cost-sharing ratios between ports and
shipping companies.

(3) To promote low-carbon port operations, the government should prioritise the promo-
tion of low-carbon investments in ports and intervene in cost-sharing arrangements,
while adopting a “publicity-based, subsidy-based” approach to minimise expendi-
ture costs and address the challenges of promoting investment in carbon-reduction
technologies by shipping companies. On the other hand, for ports and shipping
companies, it is essential to abandon their previous focus on maximising individual
interests and prioritise maximising the overall interests of low-carbon port operations.

This paper’s research on the gaming problem of ports and shipping companies’ invest-
ment in emission-reduction technology in the port operation system, on the one hand, can
promote energy saving and emission reduction of ports and shipping companies and pro-
mote the green and sustainable development of the port operation system. On the one hand,
it can optimise the cost-sharing mechanism of emission reduction of port and shipping
company and promote the development of synergistic emission reduction of the port and
shipping system; on the other hand, it can optimise the government subsidy and regulation
policy, and explore the benign and reasonable government regulatory mechanism. In the
future, in-depth research can also be expanded in the following areas: (1) exploring the
interaction between government subsidies and other regulatory mechanisms in promoting
low-carbon port operations; (2) incorporating a wider range of port and shipping company
behavioural models, taking into account different degrees of rationality and different strate-
gic focuses; and (3) exploring cost–benefit analyses of different types of emission-reduction
technologies.
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Appendix A. Proof of the Existence of the Optimal Solution

Proof of the (Y, N) strategy:
Equation (A1) represents the equilibrium marginal profit of the shipping company,

which is calculated by incorporating the demand function into the company’s profit func-
tion and solving for ∂πs/∂m = 0.

mYN =
a − bq + θe

2b
(A1)

By incorporating Equation (A1) into the port profit function, we can derive the Hessian
matrix of π

p
YN with respect to q and e, which is represented by Equation (A2).
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 ∂2π
p
YN
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∂2π
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∂e∂q
∂2π

p
YN
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−b θ

2
θ
2 −η

]
(A2)

For the (Y, N) strategy, there exists an optimal freight price p∗YN , an optimal service
price q∗YN , and an optimal carbon emission-reduction investment level e∗YN that maximises
the profit of the low-carbon port operations when the investment reduction cost factor η

satisfies the inequality η > θ2

4b , which implies that −b < 0 and bη − θ2

4 > 0. In this case, the
Hessian matrix is negative definite and takes on a significant value.

Proof of the (N, Y) strategy:
Equations (A3) and (A4) represent the equilibrium marginal profit of the shipping

company, which is derived by incorporating the demand function into the company’s profit
function and solving for ∂πs/∂m = 0 and ∂πs/∂e = 0.

mNY =
aη − b(n + q)η + nθ2

2bη − θ2 (A3)

e =
(a + b(n − q))θ

2bη − θ2 (A4)

By incorporating Equations (A3) and (A4) into the port profit function, we derive the
Hessian matrix of π

p
NY with respect to q, which is represented by Equation (A5).

H2 =

 ∂2πs
NY

∂2m2
∂2πs

NY
∂m∂e

∂2πs
NY

∂e∂m
∂2πs

NY
∂2e2

 =

[
−2b θ

θ −η

]
(A5)

For the (N, Y) strategy, there exists an optimal freight price p∗NY, an optimal service
price q∗NY, and an optimal carbon emission-reduction investment level e∗NY that maximises
the profit of the low-carbon port operations when the investment reduction cost factor η

satisfies the inequality η > θ2

2b , which implies that −2b < 0 and 2bη − θ2 > 0. Under these
conditions, the Hessian matrix is negative definite and takes on a significant value.

Proof of the (Y, Y) strategy:
Equation (A6) represents the equilibrium marginal profit of the shipping company,

which is derived by incorporating the demand function into the company’s profit function
and solving for ∂πs/∂m = 0.

mYY =
a − bn − bq + eθ

2b
(A6)
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By incorporating Equation (A6) into the port profit function, we derive the Hessian
matrix of π

p
YY with respect to q and e, which is represented by Equation (A7).

H3 =

 ∂2π
p
YY

∂2q2
∂2π

p
YY

∂q∂e
∂2π

p
YY

∂e∂q
∂2π

p
YY

∂2e2

 =

[
−b θ

2
θ
2 −αη

]
(A7)

For the (Y, Y) strategy, there exists an optimal freight price p∗YY, an optimal service
price q∗YY, and an optimal carbon emission-reduction investment level e∗YY that maximises
the profit of the low-carbon port operations when the investment reduction cost factor η

satisfies the inequality η > θ2

4b∝ , which implies that −b < 0 and bαη − θ2

4 > 0. Under these
conditions, the Hessian matrix is negative definite and takes on a significant value.
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