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Abstract: In this study, the hyperbaric (2 bar) laser chemical vapor deposition of TiC fibers grown
under various percent pressures of hydrogen and ratios of ethylene and titanium tetrachloride (2:1 or
1:1) are reported. In the hydrogen-rich (85%) condition, sequential fiber depositions became stunted
as a result of a loss of hydrogen, which served as a reducing agent for the metal halide as hydrogen
evolved with the hydrocarbon gas in the reaction zone because of the Le Chatelier principle. For the
hydrogen-lean (25%) condition, the intrinsic fiber growth rate was invariant, but gas phase nucleation
resulted in the hydrocarbon forming carbon soot in the chamber which subsequently deposited and
coated on the fibers. In the hydrogen-balanced composition (50%), the 2:1 precursor ratio resulted in
inconsistent intrinsic growth rates which ranged from approximately 30 µm/s to 44 µm/s. However,
for the hydrogen-balanced (50%) 1:1 condition, the intrinsic growth rate variation was reduced to
approximately 12 µm/s. The differences in fiber uniformity, composition, and structure under these
process conditions are discussed in terms of hydrogen’s ability to serve as a reducing agent, a fluid to
transport heat from the deposition zone, and alter the structure of the fiber through thermophoresis.

Keywords: LCVD; UHTCs; TiC fibers

1. Introduction

Extreme environments, such as those found in hypersonic flight, requires materials
which have high melting temperatures, high fracture toughness, and high thermal shock
resistance. Ultra-high temperature ceramics (UHTCs) can meet some of those demands as
they have melting points over 3000 ◦C, but, as is characteristic of ceramics, they have a low
thermal shock resistance and low fracture toughness [1,2]. Conventionally, these mechanical
property issues are overcome using carbon and silicon carbide-based fiber reinforcements
to increase shock resistance, fracture toughness, and overall material strength for UHTCs
in a composite form [3]. However, these types of fibers have a lower temperature resiliency.
For example, silicon carbide begins to oxidize and ablate in aerospace applications above
1600 ◦C [4,5]. Consequently, there is an identified need for the development of new fibers
which can endure ever increasing temperatures. Titanium carbide (TiC), which is a UHTC,
would be such a material and could act as a strengthening fiber for UHTC ceramic-matrix-
composites [1,6].

TiC fibers can be traditionally synthesized by electrospinning [7–9] or by coating TiC
onto a carbon fiber through chemical vapor deposition (CVD) [10] or by a molten salt
synthesis route [11]. In this work, we explore the direct formation of TiC fibers through
laser chemical vapor deposition (LCVD), where no such carbon fiber substrate is required.
Comparable to hot wall CVD, LCVD utilizes a pyrolytic reaction of precursor gases to
deposit the material under the focal point of the laser which serves as the primary heat
source [12,13]. By retracting the laser focal point, deposition continues and a free-standing
fiber grows directly from the vapor-to-solid phase transformation. This process can be
scaled-up by the employment of multiple lasers and/or a beam splitter to enable several
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such beams to facilitate simultaneous growth. A benefit of LCVD over electrospinning
synthesis or conventional CVD is the accuracy of deposition, which allows for possibilities
to make complex 3D structures such as rods or helixes [14,15]. Additional benefits include
the potential for stoichiometric phase control for TiC through gas mixture [16] as well as
high deposition rates to control the microstructure [17,18].

To date, there are a rather limited number of reports concerning LCVD TiC fibers [19,20].
In the work by Westburg et al. [20], the LCVD TiC deposition was grown as singular
lines across a substrate, referred to as ‘strings’, in a hypobaric condition. The precursor
gases flowed through a hot wall CVD chamber and a laser directed the deposition on the
substrate. In more recent work, Fronk et al. [19] reported the hyperbaric LCVD of TiC to
deposit free-standing TiC fibers under various laser powers. While hydrogen, ethylene,
and titanium tetrachloride were the gas mixtures in both of these reports, neither paper
provided a thorough investigation into the gas chemistry mixtures on growth. The gas
chemistry, particularly hydrogen, is especially important as its ratio with the carbon gas
source is reported to dramatically influence growth rates, deposition morphologies, and
microstructures in carbide-based CVD processes [21,22]. In this paper, specific variations in
gas composition are addressed in a hyperbaric batched LCVD process for TiC fibers.

2. Materials and Methods

The precursors used to deposit TiC included hydrogen (H2), ethylene (C2H4), and
liquid titanium chloride (TiCl4), with respective purities of 99.999%, 99.9%, and 99.9%.
The TiCl4 was contained in a pressure vessel directly connected to the reaction chamber
and heated to 250 ◦C to bring it into the gas phase. The H2 and C2H4 vessels were kept at
ambient lab temperatures. Each gas was then flowed into a 400 cm3 semi-spherical cube
vessel that was warmed to 200 ◦C with heat tape and insulation placed around the stainless
steel chamber to ensure that the TiCl4 remained in the gas phase during deposition. After
the vessel was evacuated using a cryogenic absorption pump that housed zeolite traps
along with baking soda that neutralize any condensate HCl (post-deposition), the precursor
gases were then flowed into the chamber to a total pressure of 2 bar. Table 1 summarizes
the percent pressures of the precursor used during each fiber growth. The concentration
of H2 and the ratio of C2H4:TiCl4 were chosen to expand upon conditions from previous
work for a hydrogen-rich, hydrogen-balanced, and hydrogen-lean environment [19,20].

Table 1. The percent pressure of gases used during each growth.

Percent Pressures of Gases during Each Growth Composition

H2 C2H4 TiCl4
Hydrogen-rich (2:1) 85 10 5

Hydrogen-balanced (2:1) 50 33 17
Hydrogen-lean (2:1) 25 50 25

Hydrogen-balanced (1:1) 50 25 25

Using these gases, the ideal stoichiometric reaction for TiC deposition is as follows:

2TiCl4(g) + C2H4(g) + 2H2(g) → 2TiC(s) + 8HCl(g) (1)

As commented on in the introduction, hydrogen is critical to the reaction as it serves as
a reducing agent for TiCl4 and binds excess chlorine to reduce it as a hazard. A continuous
wave, 10 W ytterbium 1064 nm laser with a 100 mm focal length lens shined through a
33.8 mm sapphire viewport onto a 5 mm thick tantalum carbide (Ta2C) substrate. The
substrate had a 0.25 µm diamond polish over the surface to reduce its reflectivity. The
laser emission was set to and held at 6.5 W throughout each fiber growth. A camera
was positioned normal to the laser viewport through another 33.8 mm diameter sapphire
viewport to monitor the fiber growth speed. Once the fiber initiated growth, the laser
was retracted at a pre-determined axial growth speed with the determination of which
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discussed below. Each fiber was grown to a target of 12 mm in length, when possible. After
completing this growth length, the laser was turned off, repositioned back to its initial
location, and translated 2 mm in-plane whereupon another fiber was then initiated, and the
process was repeated. This was repeated for ten fiber deposits for each condition whenever
possible. At the conclusion of the deposition, the vessel had the remaining precursor gases
evacuated, the chamber walls were cooled, and the fibers were removed and separated
from the substrate. A visual representation of the experimental setup is shown in Figure 1.
This experimental set up is similar to a prior LCVD chamber reported by the authors in [23],
with the added addition of heating tape and insulation around the deposition chamber to
ensure that the chamber temperature exceed the boiling point of the metal halide precursor
so that it remained in the gaseous phase.

Fibers 2024, 12, x FOR PEER REVIEW 3 of 14 
 

positioned normal to the laser viewport through another 33.8 mm diameter sapphire 
viewport to monitor the fiber growth speed. Once the fiber initiated growth, the laser was 
retracted at a pre-determined axial growth speed with the determination of which dis-
cussed below. Each fiber was grown to a target of 12 mm in length, when possible. After 
completing this growth length, the laser was turned off, repositioned back to its initial 
location, and translated 2 mm in-plane whereupon another fiber was then initiated, and 
the process was repeated. This was repeated for ten fiber deposits for each condition 
whenever possible. At the conclusion of the deposition, the vessel had the remaining pre-
cursor gases evacuated, the chamber walls were cooled, and the fibers were removed and 
separated from the substrate. A visual representation of the experimental setup is shown 
in Figure 1. This experimental set up is similar to a prior LCVD chamber reported by the 
authors in [23], with the added addition of heating tape and insulation around the depo-
sition chamber to ensure that the chamber temperature exceed the boiling point of the 
metal halide precursor so that it remained in the gaseous phase. 

 
Figure 1. A schematic of the LCVD setup. 

To determine the intrinsic growth rate at each gas mixture condition, a fiber was ini-
tiated under the laser focal point, but the laser did not translate. Here, the deposit would 
grow from the focal point where its hot spot was tracked by a video feed until it ceased 
growing. The stage was shifted by 1 mm and this procedure was performed again 10× to 
achieve an average measurement of the intrinsic growth rate via a calibrated pixel-to-
length calculation. For the hydrogen-rich condition, the speed was set to 3 µm/s; for the 
hydrogen-balance condition, it was set to 30 µm/s; and for the hydrogen-lean condition, 
it was set to 40 µm/s. 

The structure of the fibers were characterized by a high intensity Rigaku XtaLAB 
Synergy-R DW—Single Crystal X-Ray diffractometer. The XRD source was Mo and indi-
vidual fibers were epoxied to a glass mounting rod and secured onto the goniometer. The 
morphology of the fibers was captured using a Keyence VHX-7000N digital microscope 
as well as by scanning electron microscopy (SEM) using a Thermo Fisher Apreo instru-
ment (Waltham, MA, USA). For the SEM analysis, the fibers were secured using conduc-
tive carbon tape onto a stub and then imaged at 15 keV. 

Figure 1. A schematic of the LCVD setup.

To determine the intrinsic growth rate at each gas mixture condition, a fiber was
initiated under the laser focal point, but the laser did not translate. Here, the deposit would
grow from the focal point where its hot spot was tracked by a video feed until it ceased
growing. The stage was shifted by 1 mm and this procedure was performed again 10×
to achieve an average measurement of the intrinsic growth rate via a calibrated pixel-to-
length calculation. For the hydrogen-rich condition, the speed was set to 3 µm/s; for the
hydrogen-balance condition, it was set to 30 µm/s; and for the hydrogen-lean condition, it
was set to 40 µm/s.

The structure of the fibers were characterized by a high intensity Rigaku XtaLAB
Synergy-R DW—Single Crystal X-Ray diffractometer. The XRD source was Mo and indi-
vidual fibers were epoxied to a glass mounting rod and secured onto the goniometer. The
morphology of the fibers was captured using a Keyence VHX-7000N digital microscope as
well as by scanning electron microscopy (SEM) using a Thermo Fisher Apreo instrument
(Waltham, MA, USA). For the SEM analysis, the fibers were secured using conductive
carbon tape onto a stub and then imaged at 15 keV.
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3. Results and Discussion

The standard progression for the TiC fiber growth under the laser focal point are
shown in a series of time-lapse images in Figure 2 for the 2 C2H4:1 TiCl4 ratio for various
hydrogen mixtures. Gaseous convection created by the heat of the reaction was present in
each mixture condition, evidenced by the spectral reflection of the beam in the chamber.
As can be further gleaned in the time-lapsed images in Figure 2 (at t2), the hydrogen-rich
mixture revealed a significant thermal tail along the fiber length as it deposited. This is
contributed to the high thermal conductivity of hydrogen, which ranges from ≈190 to
310 mW/mK over 23 ◦C to 350 ◦C; for comparison, air is 26 to 46 mW/mK over the same
temperature range. A closer inspection of these time-lapse images, particularly at t3 for
the hydrogen-rich condition, revealed a circumventing dendritic-like deposit at the base
around the fiber as seen in Figure 2a. These deposits have been previously determined
to be TiCl2 and TiCl3 byproducts, along with carbon soot which nucleates from the high
temperature provided by the laser upon initiating the deposition [19,24]. The relatively
reduced size of these dendritic deposits for the hydrogen-balanced and lean conditions
highlights how the gas mixtures influence, at least, the heat transfer in and around the fiber
as it deposits.
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Figure 3 shows a series of digital images for the post-deposited, first three fibers grown
under the various hydrogen (2:1) mixtures with their fiber lengths tabulated in Table 2. In
the hydrogen-rich (2:1) deposits, the ability to grow each subsequent fiber became ever
more difficult evidenced by a decreasing fiber length, as seen in Figure 3a. While the initial
fiber, (i), retained a uniform and linear shape, the second fiber, (ii), exhibited a modulated
fiber diameter along its length and a termination of growth at approximately half the height
of the first fiber. This variation in diameter highlights the difficulty to initiate and maintain
a uniform deposition. The third fiber, (iii), which was even shorter than the second deposit,
(ii), had its growth stunted at the very early onset of deposition and would not continue to
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grow after this height. No other fibers were able to be deposited after this third fiber at this
hydrogen-rich concentration.
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Table 2. Measurements of fibers taken from Keyence VHX-7000N at 20x. Up to six measurements per
diameter per fiber was collected. For the hydrogen-lean condition, the soot was removed prior to
measurement to reveal the fiber size.

Fiber No. Length (mm) Average
Diameter (mm)

Cross
Sectional

Area (mm2)

Hydrogen-
rich (2:1)

1 12.93 0.31 0.07
2 6.56 0.67 0.21
3 1.47 0.64 0.33

Average 6.99 ± 4.69 0.49 ± 0.21 0.21 ± 0.32

Hydrogen-
balanced

(2:1)

1 12.71 0.47 0.18
2 12.44 0.49 0.19
3 12.44 0.53 0.23

Average 12.53 ± 0.13 0.50 ± 0.07 0.20 ± 0.10

Hydrogen-
lean (2:1)

1 12.00 0.99 0.80
2 11.64 0.49 0.21
3 11.64 0.35 0.10

Average 11.76 ± 0.17 0.61 ± 0.25 0.37 ± 0.35

Hydrogen-
balanced

(1:1)

1 12.23 0.63 0.31
2 12.46 0.74 0.42
3 12.35 0.71 0.40

Average 12.37 ± 0.09 0.68 ± 0.05 0.38 ± 0.05

To rationalize the inability to continue to deposit sequential fibers in the hydrogen-rich
(2:1) condition, the interaction of hydrogen with the other precursors must be considered.
Upon decomposing the ethylene under the laser focus, and in the presence of such a high
concentration of hydrogen, ethylene’s constituent components will react with hydrogen
forming methane, ethane, and propane according to the Le Chatelier principle [25]. In
prior work by Cook and Thompson [26,27], these other hydrocarbons are shown to be more
difficult to deposit (decompose) by LCVD. With the hydrogen being consumed into these
other hydrocarbons, there becomes less hydrogen available to act as a reducing agent for
the titanium halide [28]. This in turn impacts the metal decomposition, its growth, and even
the metal’s reaction with carbon. As seen in the second fiber, Figure 3(a-ii), the instability
of the precursor decomposition to be evident by the significant instability to deposit a fiber
with a constant diameter. The initiation of the third fiber, Figure 3(a-iii), resulted in minimal
deposition, as there is an insufficient availability of hydrogen to act as a reducing agent
to promote the deposition reaction given in Equation (1). In addition to these effects, the
thermal gradient produced by the laser profile coupled with the high thermal conductivity
of hydrogen in the reaction zone led to a variation in the gaseous migration according to its
molecular weight, a thermophoresis phenomenon known as the Soret Effect [29,30]. Here,
hydrogen occupied the warmer regions of the reaction zone making it more difficult for the
other precursors to be co-located with it under the laser focus. This was not an issue in prior
work by Westburg et al. [20] because the gas continuously flowed. And, in the hyperbaric
condition reported by Fronk et al. [19], where the gas was stagnant as in this work, this
paper reported the initial fiber and not the consequences on repeated growth sequences.

In the hydrogen-balanced (2:1) condition, the repeatability of the fiber growth was
achieved as evidenced by the similar fiber morphology and consistent fiber height between
each subsequent deposit, Figure 3b. In the hydrogen-lean (2:1) condition, the fibers retained
a similar height to the hydrogen-balanced (2:1) state, but the subsequent deposited fibers
are covered in carbon soot, which was also apparent within the growth chamber and would
explain the darker contrast seen in the time-lapse images in Figure 2c. The formation of
this errant carbon is attributed to gas-phase nucleation (GPN), which is the homogeneous
nucleation of solid particulates directly from the gas phase while outside the focal point of
the laser [31]. GPN occurred because a high concentration of ethylene was coupled with
sufficient heat generated from the laser within the closed chamber vessel [32]. Once a new
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fiber began to deposit, the carbon-soot simply was caught and collected itself onto the
previously grown fibers as seen in Figure 3(c-i,ii).

The phase(s) of the fibers, identified by XRD, are shown in the diffractograms plotted
in Figure 4. In all cases, multiple diffracted peaks are indexed to TiC. In addition to TiC,
for the hydrogen-balanced (2:1) and hydrogen-lean (2:1) conditions, a reflection denoted
with an asterisk (*) at approximately 12◦ and 24◦ 2Θ was captured and corresponds to
graphite. The lack of carbon reflections for the hydrogen-rich (2:1) condition affirmed that
if the carbon was not bound to titanium, it likely recombined with the excess hydrogen-rich
environment and formed a hydrocarbon gas that became more difficult to dissociate into a
carbon deposit, as previously discussed above.
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As seen in Figure 5a, the SEM image for the hydrogen-rich (2:1) condition has a notable
hole in the fiber core forming it as a tube. An X-ray Energy Dispersion Spectroscopy (XEDS)
line profile across the diameter is plotted alongside this image, where the relative carbon
counts are zero in the hole region. While there is a modest Ti X-ray signal in this same
region, this contributed to the Ti X-ray signal being collected from the inner core walls of
the tube and escaping through the hole. This is further affirmed by the asymmetric count
profile of this signal in this region based on the tilt of the fiber to the imaging electron
beam shown in the same figure. The lack of carbon X-ray emissions from the same off-axis
collection is contributed to its much lower emission energy, as compared to Ti, resulting
in it being absorbed and unable to escape through the hole. Note that equivalent hole
structure has also been reported by Fronk et al. in TiC fibers [19]. This hole morphology is
explained by the aforementioned Soret effect, where the hydrogen gas, at a sufficiently high
concentration, excluded the heavier precursor species from the central region under the
laser focal point. Consequently, the solid TiC phase was only able to be deposited radially
around the gaseous center creating this tube.
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In Figure 5b,c the core region of these fibers have a carbon-rich deposit which was
indexed as graphite in the XRD diffractograms and confirmed by the accompanying XEDS
line profiles in Figure 5b,c. The formation of a carbon-rich core was, again, attributed
to the Soret effect. With the reduced hydrogen concentration, ethylene, being the next
lightest molecule for the precursors, collected itself into the warmer regions of the reaction
zone and deposited as carbon under the laser focus. As the hydrogen concentration was
further decreased, the carbon core grew larger for the hydrogen-lean (2:1) condition, as
compared to the hydrogen-balanced (2:1) condition, i.e., compare Figure 5c vs. Figure 5b.
This would support the prior postulation that excess hydrogen in the presence of ethylene
formed hydrocarbons that became more difficult to reduce thereby resulting in a smaller
carbon core for the higher hydrogen concentrated mixture. In addition, the morphology
of this carbon core in the hydrogen-lean (2:1) fiber had a nodular appearance whereas
the hydrogen-balanced (2:1) fiber’s carbon core had a smooth surface. The formation of
a nodular structure seen in the hydrogen-lean (2:1) fiber’s carbon core is characteristic of
growth in the mass transport limited regime whereas a smooth surface is noted in surface
kinetic limited growth [25]. The mass transport limited region occurs when the growth
rate is sufficient such that a boundary layer forms around the reaction zone causing all
subsequent growth to be diffusion controlled through this boundary layer [24,27].

In terms of fiber diameters, Table 2 tabulates that all three hydrogen mixtures for
the 2:1 ratio yielded diameters from approximately 300 to 600 µm. As the Gaussian laser
beam profile is approximately 65 µm, which is significantly smaller than the deposited
fiber diameter, this difference in size is contributed to the heat zone created around the
deposition. The reaction of Ti and C is exothermic. The associated heat that would be



Fibers 2024, 12, 43 9 of 14

released from their reaction together provided additional warming around the reaction zone
to increase the radial deposition. This coupled with a slow growth rate gave extended time
for the TiC deposition allowing the fiber diameter to be larger than that of the laser beam
profile itself. Note that there was a modest increase in diameter with a decrease in hydrogen
content. By reducing the high thermal conductivity hydrogen gas from the reaction, this
would allow heat to remain in the reaction zone that could explain this modest change
in fiber diameter. In other words, as hydrogen was reduced in concentration, it became
less effective in assisting in the dissipation of heat and, by default, a higher temperature
promoted the TiC deposition. This would explain the increasing diameter trend with the
decreasing hydrogen mixture content in Table 2.

Figure 6 plots the calculated intrinsic growth rate for each concentration for up to
ten fibers sequentially, when possible. For the hydrogen-rich (2:1) condition, only three
fibers are plotted because of the aforementioned stunted growth, Figure 3a. As could be
expected based on the rational for the stunted growth (loss of hydrogen as a reducing
agent with each deposition), the intrinsic growth rate decreased with each sequential fiber
in this mixture. In the hydrogen-balanced (2:1) condition, the growth rates showed a
variation from approximately 44 µm/s to as low as 30 µm/s, highlighting the complexity
to retain a consistent growth speed at this mixture in this sealed batch process. In the
hydrogen-lean (2:1) condition, the growth rate was much more invariant with a rate near
40 µm/s. This growth rate stabilization is contributed to GPN since not all the carbon
is fully contributing to the fiber growth allowing it to grow at one particular rate as the
carbon is also nucleating throughout the chamber. In addition, the reduced hydrogen also
impacted the reduction in the titanium halide, which then limits the amount of titanium
available to outgrow the carbon deposition. Any further reduction in hydrogen would not
result in faster growth rates but instead would just increase the rate of carbon nucleation
in the chamber and/or diminish the reduction in the titanium precursor. While such a
hydrogen-lean (2:1) condition may yield a more stable growth rate, the formation of carbon
soot clouds the viewing ports in the chamber, as well as coats the fiber deposits, Figure 2c,
which are all detrimental. Thus, this growth condition and gas mixture is not an optimal
setting to operate within, even though stability in the fiber growth can be achieved.

Recognizing that the hydrogen-balanced (2:1) condition yielded a consistent TiC fiber,
as seen in Figure 3b, this hydrogen condition was maintained, but now the C2H4:TiCl4 ratio
was balanced as one-to-one. Here, these fibers are referred to as the hydrogen-balanced
(1:1) condition, which consisted of a percent pressure of 50% H2, 25% C2H4, and 25% TiCl4.
Figure 7a was the time-lapsed images of this fiber growth, along with the XRD diffractogram
shown in Figure 7b confirming the TiC phase. As with the hydrogen-balanced (2:1) fiber, a
modest graphite peak was detected in the hydrogen-balanced (1:1) condition, but it was
relatively lower in intensity via a relative comparison of the graphite to the TiC peaks in
each self-contained diffractogram. This suggests that the carbon-rich core has a reduced
volume fraction (or size) to TiC. Figure 7c is a representative SEM micrograph of this
hydrogen-balanced (1:1) fiber, where the carbon-rich core has indeed been radially reduced
in size to the hydrogen-balanced (2:1) condition, i.e., compare Figure 7c to Figure 5b,c.
This reduction follows the trends associated with the Soret effect, where less ethylene
concentration was available to ‘crowd out’ the heavier titanium halide in the warmer
regions of the reaction zone that would reside under the laser focal point. Consequently,
TiC became more of a phase fraction within the fiber. In addition, the hydrogen-balanced
(1:1) fibers have a sizably larger diameter—680 ± 50 µm—than all other prior deposits
tabulated in Table 2. While the hydrogen concentration was fixed, the relative ratio increase
of the titanium halide allowed for more hydrogen to be consumed as a reducing agent,
which then allowed more of the metal to react with the carbon source.
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Figure 7. (a) Time-lapse images of the growth progression, (b) XRD and (c) SEM image of the
hydrogen-balanced (1:1) condition fiber.

Figure 8 is the digital image comparison between the two-hydrogen balanced mixtures
(2:1 vs. 1:1). In the hydrogen-balanced (1:1) condition, the fibers have a bronze tint, which
was not apparent in the hydrogen-rich (2:1) condition. While both fibers index TiC, in
their respective diffractograms, it is postulated that the bronze coloration is either from
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deposited soot or a surface oxide formation. Brown carbon is a known byproduct from
carbon-based fuel combustion that could occur along with black carbon at a lower rate of
formation [33]. Clearly, the breakdown of ethylene, along with the heat produced during
growth certainly provides the means for brown carbon to be present, especially during
the hydrogen-lean (2:1) deposition where less hydrogen would be available to interact to
form other types of hydrocarbons. However, the lack of gas phase nucleation in either the
hydrogen-rich (2:1) or hydrogen-balanced (2:1 or 1:1) mixtures made the brown carbon less
probable for the coloration. The more likely source for this coloration is a surface oxide.
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Figure 8. The digital image comparing the two hydrogen-balanced mixtures. (a) The hydrogen-
balanced (2:1) deposit of three fibers. (b) The hydrogen-balanced (1:1) deposit of three fibers. Note
the bronze color for the (1:1) condition vs. the (2:1) condition. The numerals i, ii, and iii denote the
sequence of the fiber growth.

Titanium oxide is known to exhibit a bronze color at low temperatures and a white
color at higher temperatures [34]. The hydrogen-balanced (1:1) fibers exhibited a varying
temperature gradient as it deposited, which was visible in Figure 7a, and where such
thermal gradients would have created convective motion of the gases around the fiber that
would lead to the oxidization of titanium. As these colors were not present in the hydrogen-



Fibers 2024, 12, 43 12 of 14

balanced (2:1) condition, this mixture would have less available reduced titanium to react
with any partial oxygen pressure that remained in the chamber after evacuation. While
the XRD scan does not diffract the titania phase for either hydrogen-balanced mixtures,
this simply indicates that titanium oxide is a minimal phase fraction and/or, more likely, a
surface oxide scale. Since more titanium is being reduced in the 1:1 condition coupled with
less available carbon, along with titanium’s high affinity for oxygen, these fibers were more
likely sensitive to the partial pressure of oxygen that was in the evacuated chamber.

Finally, the axial growth rate of the hydrogen-balanced (1:1) fibers are compared to
the hydrogen-balanced (2:1) fibers plotted in Figure 6. As seen in Figure 6, the intrinsic
growth rate dramatically decreases when the ethylene and titanium tetrachloride precursors
are equally balanced. This reduction in speed is attributed to the increased reactivity of
titanium with the carbon source, resulting in the fiber diameter increasing between these
two conditions, as tabulated in Table 2. Consequently, this mixture change, even in the
hydrogen-balanced condition, impacts the rate of axial growth. While the growth rate
decreases, the fiber-to-fiber growth rate variation did reduce, albeit a modest decrease in
rate as one sequentially grows each fiber in this sealed batch process.

4. Conclusions

In this work, the variations in gas mixture for the sequential growth of TiC fibers in
a two-bar LCVD process was presented and discussed. These fibers include a hydrogen-
rich, hydrogen-balanced, and hydrogen-lean mixture with respect to the sum of either a
2 C2H4:1 TiCl4 or 1 C2H4:1 TiCl4 precursor mixture. The presence of hydrogen is shown to
be effective as a reducing agent for the titanium halide, a gas for heat transfer, a contributor
towards hydrocarbon evolution, and an influencer in the fiber morphology through the
Soret effect. In the hydrogen-rich regime, this results in counterproductive hydrocarbon
reactions increasing the difficulty for sequential TiC fiber depositions. In the other extreme,
a hydrogen-lean condition result is in gas phase nucleation whereupon carbon soot deposits
itself onto prior grown fibers. For the hydrogen-balanced condition, the 2:1 mixture has
relatively similar fibers deposited in terms of fiber diameter and color, but exhibits varied
intrinsic growth rates between each sequentially deposited fiber suggesting some instability
in the deposition process. When the ethylene and titanium halide were balanced, i.e., 1:1, for
the hydrogen-balanced condition, the fibers exhibit less fiber-to-fiber growth rate variation,
but their growth rates are reduced by an approximate factor of 4x to the hydrogen-balanced
(2:1) condition. Furthermore, in the hydrogen-balanced (1:1) condition, the carbon-rich core
that formed from the Soret effect is reduced as compared to the other (2:1) mixtures, which
highlights how precursor gas chemistry controls the TiC fiber structure and morphology.
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