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Abstract: The poor adhesion between the DLC film and rubber restricts its application of seals.
Introducing a suitable interlayer can bolster the adhesion of the coating or film. In this study,
nitrogen-doped diamond-like carbon (N-DLC) emerged as the optimal intermediate layer between
rubber and DLC. A series of N-DLC/DLC multilayer films were fabricated via DC magnetron
sputtering on nitrile rubber (NBR) substrates, varying the substrate bias voltage (0 V, 100 V, 200 V). A
scanning electron microscopy analysis revealed that the composite film surface was smoother than the
DLC film alone. The results of Raman spectroscopy and X-ray photoelectron spectroscopy indicated a
robust bond between nitrogen and carbon atoms in the composite film, with nitrogen facilitating the
conversion of sp3C-C bonds into sp2C=C. Mechanical tests demonstrated that the N-DLC interlayer
improved film adhesion and reduced the CoF of the composite film to 0.2–0.3. Specifically, the CoF
of the N-DLC/DLC film prepared at 100 V was as low as 0.20, with a wear amount of 1.13 mg.
Consequently, the inclusion of the N-DLC interlayer substantially enhanced the mechanical and
tribological properties of DLC-coated NBR, rendering this coating highly advantageous for various
applications.

Keywords: N-DLC interlayer; Raman; tribology; mechanical properties

1. Introduction

Nitrile butadiene rubber (NBR) is a synthetic rubber that has excellent oil and heat
resistance, making it suitable for various applications such as seals and bearings in the
marine engineering and aerospace industries [1–5]. However, NBR is susceptible to signifi-
cant friction and wear when it comes into contact with engineering materials, resulting in
potential material loss and seal failure. Currently, numerous researchers have sought to
address the shortcomings of NBR by enhancing formula design and processing technology.
However, despite these efforts, various challenges remain in improving the tribological
properties of rubber through surface modification and process optimization. Simultaneously,
the adhesion between the substrate and the material of surface modification should also be
considered [5–7]. Surface modification can significantly improve the surface wear resistance
of materials without changing the matrix, and it has been studied for rubber surface modifi-
cation. Diamond-like carbon (DLC) is an appealing coating material for NBR because of its
characteristics such as low friction, high hardness, and chemical inertness [8–10]. However,
there are a few obstacles to overcome in the deposition of DLC films on NBR substrates,
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including insufficient adhesion, excessive residual stress, and mismatched mechanical
characteristics.

It is well known that enhancing the bonding strength at the interface between the film
and the matrix is one of the key factors in increasing the mechanical properties of DLC
films [11]. Peng et al. studied N-doped hydrogenated DLC (a-C:H:N) coatings, and the
prepared coatings reduced the internal stress and surface hardness of the carbon film, but
the wear resistance was not improved [12]. Wu et al. fabricated DLC/Ti-DLC films with
varying Ti-DLC contents on an NBR substrate using the dual-target magnetron sputtering
method. By incorporating titanium (Ti) into the interface transition layer of Ti-DLC, that
composite film exhibits a comparatively low coefficient of friction (CoF), high hardness, and
excellent uniformity [8]. While the sandwich design significantly improves the mechanical
properties, the toughness of the film is decreased by the large metal particles, and the
wear resistance in tribological applications is not increased. To enhance the adhesion of
DLC films to NBR substrates, many researchers typically consider common options such
as silane coupling agents, metal bonding layers, and polymeric interlayers as interlayer
materials. However, the brittle fracture of the film still results in higher friction and wear
under higher loads [13]. It has been demonstrated that membrane-based bonding can be
enhanced using nitrogen-doped transition layers [14–16]. At the same time, N-DLC films
face challenges in adhesion, such as mechanical property mismatches, coating uniformity,
and environmental factors, which require finding solutions to optimize their adhesion
properties and improve stability.

Applying bias voltage during the deposition of N-DLC and DLC films influences film
growth, adhesion strength, residual stress, surface energy, and interface morphology [17,18].
Higher biasing voltages enhance film–substrate interactions, leading to denser films with
stronger adhesion, while lower voltages may result in weaker adhesion [19]. By optimizing
biasing voltage parameters, researchers can tailor the deposition process to improve adhe-
sion characteristics, ultimately enhancing the performance and durability of N-DLC and
DLC coatings in diverse applications.

This study investigates the structure and properties of the NBR/N-DLC/DLC compos-
ite film system, where N-DLC serves as an intermediate layer (approximately 80 nm thick)
between NBR and DLC. DC magnetron sputtering was employed to deposit multilayer
films on nitrile rubber substrates using varying deposition biases. Through the optimization
of the substrate bias parameters, we achieved strong adhesion and outstanding tribological
properties in the NBR/N-DLC/DLC coating system, offering a novel approach for the
surface modification of hard coatings on NBR.

2. Materials and Methods
2.1. Films Preparation

Nitrile rubber (20 mm × 20 mm × 6 mm) and silicon wafer (30 mm × 10 mm ×
0.5 mm) were used as substrates in this work. The substrates underwent ultrasonic cleaning
in deionized water followed by ethanol for 10 min before they were placed in the vacuum
chamber. Using a DC power supply magnetron discharge, a balanced magnetron sputtering
system (GLH200E, KYZK Co., Ltd., ShenYang, China) with uniformity, a high-intensity
magnetic field, and multi-polar properties was used to prepare the films. A DC voltage
power was applied to create a negative bias between the target and the substrate during the
DC magnetron sputtering process. A graphite target (Φ76.2 mm × 5 mm) was positioned
at a 45◦ angle 80 mm above the sample stage. High-purity argon plasma was utilized to
sputter the target and substrates for 10 min (−600 V bias voltage), respectively, in order to
clean their surfaces before installing the DLC layer.

High-purity argon (Ar) was used as the sputtering gas (30 sccm) and high-purity
nitrogen (N2) as the reaction gas for depositing the intermediate layer, with a deposition
pressure of 1.4 Pa. The N-doped DLC intermediate layer (M1, M2, and M3) was prepared
via sputtering for 30 min at bias voltages of 0 V, −100 V, and −200 V. The film preparation
parameters are shown in Table 1.
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Table 1. The N-DLC interlayer of experimental process parameters.

Sample No. Bias
Voltages/V

DC Power
Supply/W

Deposition
Time/min

N2
Flow/sccm

Working
Pressure/Pa

M1 0
50 30 3 1.4M2 −100

M3 −200

The diamond-like films deposited without the transition layer under the same bias
voltage conditions (bias voltages of 0 V, −100 V, and −200 V) were labeled as P1, P2, and
P3. They will appear in some of the following characterizations for comparison. The main
parameters of the film are shown in Table 2.

Table 2. The top-layer DLC of experimental process parameters.

Sample No. Bias Voltages/V DC Power
Supply/W

Deposition
Time/min

Working
Pressure/Pa

P1 0
50 30 1.4P2 −100

P3 −200

Diamond-like carbon films were deposited outside the transition (interlayer) layer for
30 min at a bias voltage of −100 V. The prepared composite coatings were labeled as C1,
C2, and C3, respectively. The main coating parameters of the multilayer films are detailed
in Table 3, while the deposition process is shown in Figure 1.

Table 3. The multilayer films of experimental process parameters.

Sample
No.

Interlayer Top-layer
Working

Pressure/PaBias
Voltages/V

DC Power
Supply/W

Deposition
Time/min

N2
Flow/sccm

Bias
Voltages/V

DC Power
Supply/W

Deposition
Time/min

C1 0
50 30 3 −100 50 30 1.4C2 −100

C3 −200
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2.2. Characterization

A field emission scanning electron microscope (GeminiSEM 360, Carl Zeiss AG, Jena,
Germany) was used to characterize the surface morphology of the N-DLC interlayer and the
surface morphology of the multilayer films. The chemical bonding structures of the N-DLC
interlayer and the multilayer films were determined via X-ray photoelectron spectroscopy
(XPS; Thermo Fisher Scientific, Waltham, MA, USA, Escalab 250Xi) with monochromatic
aluminum (Al) Kα radiation at an energy level of 1486.6 eV. Prior to obtaining XPS spectra,
no ion sputtering was employed. To calibrate the energy of the measured XPS spectral data,
the peak center position of the carbon 1s peak was set to 284.4 eV as a reference energy. The
structure of the multilayer films and DLC was determined using a Raman spectrometer
(Nano Finder 30A, Tokyo Instruments, INC, Japan) with a 514 nm laser and acquired
within the range of 50 cm−1 to 4000 cm−1. In order to further analyze the uniformity of the
N-DLC interlayer and the N-DLC/DLC composite film, the Raman mapping was further
observed on an area of 100 µm × 100 µm using silicon substrate because rubber substrate
may contain various organic compounds notwithstanding the silicon substrate having
minimal Raman activity compared to rubber. Using silicon as the substrate can reduce
background interference in Raman spectra, allowing for a clearer identification and analysis
of the carbon film’s Raman signature. The laser power was carefully regulated at 1 mW to
optimize the signal intensity of the DLC film [8].

The adhesion strength of the N-DLC/DLC multilayer films was assessed utilizing
a micro-scratch tester (CETR-UMT, Bruker, Billerica, MA, USA) equipped with a 25 µm
diameter diamond stylus, and the load applied to the coatings was progressively increased
from 0.1 N to 3 N with a scratch length of 2 mm. It should be pointed out that there is
no comparison between the film bonding forces measured under different test conditions
because the critical load measured through scratch experiments depends on many factors,
such as indenter geometry, sliding rate, force loading rate, and contact mode. Evidently,
these factors are different for different test conditions. The evaluation of the bonding
strength of the film needs to be carried out under the same testing conditions to obtain
more accurate results. The mechanical properties of N-DLC/DLC films were analyzed
using a nanoindenter (CETR-UMT, Bruker). The load was incrementally raised to a peak
value of 1 mN over 10 s, then maintained for another 10 s. Subsequently, the load was
reduced to 0.1 mN and held constant for 45 s to compensate for thermal drift. Five random
tests were performed on every sample, and the distance between adjacent indentations was
greater than 10 mm. The hardness and modulus of elasticity of the N-DCL/DLC multilayer
films were determined with the Oliver–Pharr method [20]. The wear performance of the
N-DLC/DLC multilayer films at room temperature (25 ◦C, 45% RH) was evaluated using
a ball-on-disk tribometer (CETR-UMT, Bruker). The ZrO2 ball (diameter of 1.6 mm) was
chosen as the tribo-pair with the films, the wear load was 0.3 N, and it was slid on a circular
path with a radius of 4 mm at a speed of 100 revolutions per minute for 30 min. Then,
the wear tracks and chemical bonding of the NBR/N-DLC/DLC composite coating were
examined using a laser confocal microscope (VK-using X200 series, KEYENCE) and a
Raman spectrometer (Japan-Horiba Scientific-LabRAM HR Evolution). After each friction
test (three), the change in mass of the sample was measured with a balance (LabX Ready,
XSE105) to obtain data on the amount of wear.

3. Results and Discussion
3.1. Morphology and Structure

The red circles in Figure 2 shows the irregular cracks and broken patches of the as-
prepared DLC films coated on NBR. This is brought on by the variation in temperature
during the film deposition process, which is further influenced by the difference in the
DLC film’s and the rubber base’s coefficients of thermal expansion. At the same time, these
cracks release some of the internal stresses in the DLC films and improve the toughness of
DLC films on NBR [21]. The presence of the N element affects the nucleation and mutual
collision of carbon atoms during the deposition of DLC films [22]. The morphology of the
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N-DLC interlayer in this study is shown in Figure 2 (M1, M2, and M3), which shows that
the surface of the N-DLC interlayer is smoother than that of the DLC films (C1, C2, and C3).
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Figure 2. The surface morphology of DLC films deposited on NBR at different interlayer bias voltages
was investigated using scanning electron microscopy (SEM).

Figure 3 shows the Raman spectra and corresponding ID/IG ratios of deposited DLC
films with and without N-DLC interlayers at different bias voltages. As shown in Figure 3a,
the spectra were fitted via the Gaussian function, which possesses two peaks in each
spectrum. The D peak is formed due to a specific vibrational pattern of the sp2C=C carbon
atom in the carbon film, whereas the G peak is formed by the expansion of sp2C=C to
sp3C-C [23,24]. The Raman results indicate that the ID/IG of the N-DLC/DLC composite
film does not change significantly due to the same deposition bias voltage of the outer layer.
Simultaneously, the major peak of the DLC film’s symmetry center stays comparatively
steady as the negative bias voltage rises. Jang et al. used N to replace some of the carbon
atoms in the tetrahedral amorphous carbon in the film, indicating that the degree of
graphitization of the film is related to the number of carbon atoms in the N-substituted
amorphous carbon [25,26]. According to this study, the structure of the pure DLC film
covering the outer surface of the multilayer film is mostly unaffected by the N-DLC
interlayer, although it does have an impact on the chemical bonding state of the carbon
atoms in the DLC film. The results are shown in Figure 3b,c. Generally speaking, when
nitrogen enters the carbon grid, nitrogen atoms preferentially combine with carbon atoms
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to form p bonds, forming many new sp2 sites [27]. In this case, these new sp2 sites combine
with each other and promote the graphitization process of the DLC film [28]. For more
information, refer to Figure S1 in the Supplementary Materials, which shows the surface
roughness of the final DLC film with that of both the substrate and N-DLC buffer layer. In
order to further investigate the properties of N-doped multilayer films, the Raman mapping
of the N-DLC interlayer was performed.
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The N-DLC interlayer and the multilayer film containing the interlayer were further
investigated via Raman mapping at different bias voltages. As shown in Figure 4, the
DLC films exhibit a uniform color distribution over a 100 µm × 100 µm area, indicating
the existence of a homogeneous chemical structure at the microscopic level [8,29]. Raman
mapping shows that N-DLC interlayers with 0 V, −100 V, and −200 V interlayer bias volt-
ages maintain homogeneity. Meanwhile, the homogeneity of the N-DLC/DLC multilayer
films was also maintained under different conditions. This suggests that the bias voltage’s
influence is insensitive to the film’s surface uniformity. Notably, even at lower energies,
the energetic particles’ contact with the NBR substrate results in an increased level of
NBR ionization. Consequently, the film experiences an inherent densification process that
enhances its consistency.

Figure 5 shows the fitted XPS C1s spectra of thin carbon films (composite film and
interlayer) deposited on NBR at different interlayer bias voltages. As shown in Figure 5a,
there are three typical peaks in the C1s spectra of the multilayer films, which represent the
sp2C=C, sp3C-C, and C-O bonds, respectively [30,31]. Of all the peaks in the multilayer
films, the C-C bond peak at 285.1 eV has the most area, which indicates a higher sp3

content in the surface DLC film. DLC films frequently contain C-O bonds because of the
film’s surface oxidation in the environment. As shown in Figure 5c, when the DLC film is
doped with nitrogen, the original spectrum of C1s is decomposed into five peaks, located at
284.4 ± 0.1 eV, 285.1 ± 0.1 eV, 285.9 ± 0.1 eV, 286.5 ± 0.2 eV, and 287.3 ± 0.1 eV. These
represent sp2C=C, sp3C-C, C=N, C-N, and C-O bonds, respectively [12]. Among the
observed peaks, the C=C bond peak at 284.4 eV has the most area. This is contrary to
the result of Figure 5a, indicating that the addition of nitrogen has a favorable effect on
the conversion of sp3C-C bonds to sp2C=C. This discovery aligns with the conclusions
reached from the Raman spectroscopy analysis. This is confirmed by the variation of the
sp2C=C/sp3C-C ratio, the results of which are shown in Figure 5b,d.
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It is worth mentioning that, when nitrogen is doped into the DLC film, two peaks ap-
pear: C=N (285.9 ± 0.1 eV) and C-N (286.5 ± 0.2 eV); sp3C-N indicates that sp3-hybridized
carbon atoms are bonded to nitrogen atoms to form σ bonds; and sp2C=N means that
the sp2-hybridized carbon atom is bonded to the nitrogen atom to form a σ+π double
bond [12,32,33]. The results show that the nitrogen and carbon atoms in the multilayer
films are well bonded. The corresponding content percentages of sp2C=C and sp3C-C
obtained from the fitting results are shown in Figure 5b,d, which are consistent with the
Raman-derived 0.92, 0.89, and 0.91 (ID/IG) for the N-DLC/DLC composite coatings. N1s
spectra of the interlayer were also decomposed into sp2N=C and sp3N-C bonds. The
change tendency of sp2N-C/sp3N-C is the same as that shown in Figure 5d. The detailed
information can be seen in the Supplementary Materials and Figures S2 and S3. In partic-
ular, the N-DLC interlayer sp2/sp3 results of 1.09, 1.03, and 1.10 (M1, M2, and M3, come
from Figure 5d) are significantly different from the multilayer films with sp2/sp3 values of
less than one. This is because N doping encourages the film’s graphitization process [25].
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3.2. Mechanical Properties

The hardness and Young’s modulus results of the DLC and multilayer films were
calculated using the Oliver–Pharr method and are shown in Figure 6a. Owing to the
natural elasticity and viscous flow of NBR, high loading and duration may cause the
recorded Young’s modulus value to rise [34]. Therefore, the nanoindenter was maintained
at the maximum indentation load (1 mN) for 10 s while compensating for temperature
drift in order to reduce the inaccuracy [8,35]. It should be noted that the indentation
rebound depth exceeds 600 nm throughout the loading process, which is greater than
the thickness of the composite film, which is about 170 nm. It should be noted that by
appropriately regulating the discharge settings, the deposition rate is guaranteed to be
extremely reproducible from run to run, minimizing the disparities in the groupings’ film
thicknesses. Therefore, the total hardness of the NBR, N-DLC interlayer, and DLC should
be the measured hardness value [36]. The general characteristics of materials are more
realistic in real-world applications. As a result, the rubber and film’s composite hardness
and modulus are more practically significant.

The Young’s modulus (E) and hardness (H) of the films with and without a N-DLC
interlayer are significantly different, and the results are shown in Figure 6a. It is easy to see
that the hardness of the DLC films with the N-DLC interlayer is slightly higher than that of
the DLC without the interlayer, with the C2 sample having the highest hardness of 17.8 MPa.
It has been shown that the hardness and Young’s modulus of hydrogen-free DLC films are
influenced by the carbon bond configuration [37–39]. In this study, the N-DLC interlayer
affects the hardness and Young’s modulus. That is, the addition of the interlayer enhances
the mechanical properties of multilayer structures, including stiffness and behavior [40].
The H/E values of pure DLC film on NBR varied from 0.092 to 0.107, and the H/E values
of DLC film with the N-DLC interlayer on NBR varied from 0.102 to 0.126; the results
are shown in Figure 6b. Higher H/E values resist the impact of the matrix and do not
fracture when a load is applied, which is associated with an increase in the mechanical
work dissipated during plastic deformation [41–43]. In this study, DLC films with the
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N-DLC interlayers have higher H/E values. The H3/E2 values can effectively characterize
a material’s resistance to plastic deformation [44,45]. The H3/E2 value of sample C2 is
0.285, markedly exceeding that of the pure DLC films (0.107–0.144), and the result is shown
in Figure 6c. According to reports, H/E and H3/E2 are significant markers for assessing a
membrane’s capacity to withstand plastic and elastic deformation, respectively [46]. As a
result, it was determined that the C2 sample in the current investigation had superior wear
resistance due to its optimal hardness, H/E, and H3/E2.

Coatings 2024, 14, x FOR PEER REVIEW 9 of 13 
 

 

world applications. As a result, the rubber and film’s composite hardness and modulus 
are more practically significant. 

 
Figure 6. (a) Hardness and Young’s modulus; (b) H/E values; (c) H3/E2 values; and (d) adhesion 
strength of NBR coated with composite film and DLC. 

The Young’s modulus (E) and hardness (H) of the films with and without a N-DLC 
interlayer are significantly different, and the results are shown in Figure 6a. It is easy to 
see that the hardness of the DLC films with the N-DLC interlayer is slightly higher than 
that of the DLC without the interlayer, with the C2 sample having the highest hardness of 
17.8 MPa. It has been shown that the hardness and Young’s modulus of hydrogen-free 
DLC films are influenced by the carbon bond configuration [37–39]. In this study, the N-
DLC interlayer affects the hardness and Young’s modulus. That is, the addition of the in-
terlayer enhances the mechanical properties of multilayer structures, including stiffness 
and behavior [40]. The H/E values of pure DLC film on NBR varied from 0.092 to 0.107, 
and the H/E values of DLC film with the N-DLC interlayer on NBR varied from 0.102 to 
0.126; the results are shown in Figure 6b. Higher H/E values resist the impact of the matrix 
and do not fracture when a load is applied, which is associated with an increase in the 
mechanical work dissipated during plastic deformation [41–43]. In this study, DLC films 
with the N-DLC interlayers have higher H/E values. The H3/E2 values can effectively char-
acterize a material’s resistance to plastic deformation [44,45]. The H3/E2 value of sample 
C2 is 0.285, markedly exceeding that of the pure DLC films (0.107–0.144), and the result is 
shown in Figure 6c. According to reports, H/E and H3/E2 are significant markers for as-
sessing a membrane’s capacity to withstand plastic and elastic deformation, respectively 
[46]. As a result, it was determined that the C2 sample in the current investigation had 
superior wear resistance due to its optimal hardness, H/E, and H3/E2. 

The bond strength of multilayer films was assessed using scratch testing to determine 
the critical breaking load between the film and the substrate, and the results are shown in 
Figure 6d. The research results show that the composite film with a N-DLC interlayer ex-
hibits a higher critical load than the pure DLC film. When a carbon atom forms four equiv-
alent sp3 hybrid orbitals through sp3 hybridization, it forms a σ bond with the lone pair of 

Figure 6. (a) Hardness and Young’s modulus; (b) H/E values; (c) H3/E2 values; and (d) adhesion
strength of NBR coated with composite film and DLC.

The bond strength of multilayer films was assessed using scratch testing to determine
the critical breaking load between the film and the substrate, and the results are shown
in Figure 6d. The research results show that the composite film with a N-DLC interlayer
exhibits a higher critical load than the pure DLC film. When a carbon atom forms four
equivalent sp3 hybrid orbitals through sp3 hybridization, it forms a σ bond with the
lone pair of electrons of the nitrogen atom, which is formed by the overlap of the two
orbitals [12,32,33]. As a result, adding nitrogen strengthens the interface’s bonding strength
and increases the stability of the chemical connections there.

3.3. Tribological Properties

Figure 7a presents the coefficient of friction (CoF) of the films and NBR substrate. The
CoF of NBR is about 1.0. Other films exhibit different properties due to the influence of the
negative bias voltage of the interlayer with different adhesion strengths. Obviously, the
CoF of the multilayer films containing the interlayer is lower than that of the pure DLC
films. During the 1800 s test, the CoF of the pure DLC films remained basically unchanged
at around 0.5. In particular, sample C2 has the lowest CoF value, from about 0.2 to 0.3,
and remains stable during the testing process, with excellent tribological properties. The
difference in CoF between the films is related to the addition of the N-DLC interlayer, which
is doped with nitrogen atoms to disrupt the carbon bonding structure [47]. The curve in
Figure 7a shows that the composite film with the N-DLC interlayer has a lower CoF. This
aligns with the outcomes of the multilayer films’ XPS C1s spectrum investigation.
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In order to investigate the abrasion resistance of DLC films on rubber substrates, film
wear measurements were carried out, and the results are shown in Figure 7b. Under dry
friction conditions, the highest wear rate was observed for NBR. Both the quantity of wear
and the coefficient of friction were considerably lower following the DLC surface deposition.
Among them, C2 with the N-DLC interlayer has the least amount of wear. This is due to
the fact that it has the largest H3/E2 and, therefore, better wear resistance [45]. In order to
better study the friction mechanism, the wear traces were analyzed via Raman analysis.

Raman spectra were also used to analyze the wear tracks of multilayer films, as seen
in Figure 8a. As shown in Figure 8b, the ID/IG increases significantly at the wear traces
relative to the composite film surface. Reducing the direct contact between friction surfaces
is facilitated via the formation of a graphite-like structure at the wear mark, as indicated
by the increase in ID/IG. The composite film’s wear scar experienced graphitization as a
result of frictional heat buildup, which encourages the transformation of sp3C-C bonds into
sp2C=C bonds. In friction applications, graphitization enhances the coating’s performance
during friction, leading to improved wear resistance and stability.
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Figure 8. (a) Raman spectra of multilayer films with different interlayer bias voltages at the wear
marks; (b) ratio of ID to IG at the corresponding wear mark; (c) morphology of the wear marks; and
(d) a scanning electron microscope image of the C2 fracture cross-section.
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There is a clear compaction layer on the wear track of the N-DLC/DLC multilayer
films, and the results are shown in Figure 8c. The formation of the compaction layer is due
to the mechanical action of the sp2-rich surface under high Hertzian stresses [30,48–50].
The formation of this compacted layer not only increases the stability of the surface but
also provides support and protection to the composite film during friction. This supporting
effect helps to minimize direct contact and reduce friction, thus enabling the composite
film to maintain a low coefficient of friction.

4. Conclusions

The bias voltage of the substrate was varied to deposit N-DLC/DLC films with
different bias voltages: 0 V, 100 V, and 200 V. The multilayer structure enhances the adhesion
force between the film and the substrate, consequently improving the mechanical and
tribological properties of DLC films. Compared to the DLC film prepared at −100 V, the
multilayer N-DLC/DLC film exhibits superior properties, including enhanced adhesion
strength, lower CoF, and reduced wear volume. The optimal performance was observed
with N-DLC/DLC biased at 100 V, demonstrating a CoF of 0.20 and a wear volume of
1.13 mg. The tribological properties of DLC films are influenced by various factors, such
as surface roughness, hardness, elastic modulus, H/E ratio, and adhesion strength. In
addition to producing unexpected outcomes, the study approach validated its influence
and promise in real-world applications.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/coatings14040515/s1: Figure S1: AFM image of the fi-
nal DLC film with that of both the substrate and N-DLC buffer layer. Figure S2: (a) XPS N1s spectra of
interlayer film deposited on NBR at different bias voltages; (b) corresponding sp2 and sp3 percentages
of sp2N-C/sp3N-C. Figure S3: N/C percentage of interlayer films deposited on NBR under different
bias voltages.
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