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Abstract: Intracellular delivery, the process of transporting substances into cells, is crucial for various
applications, such as drug delivery, gene therapy, cell imaging, and regenerative medicine. Among
the different approaches of intracellular delivery, mechanoporation stands out by utilizing mechanical
forces to create temporary pores on cell membranes, enabling the entry of substances into cells. This
method is promising due to its minimal contamination and is especially vital for stem cells intended
for clinical therapy. In this review, we explore various mechanoporation technologies, including
microinjection, micro–nano needle arrays, cell squeezing through physical confinement, and cell
squeezing using hydrodynamic forces. Additionally, we highlight recent research efforts utilizing
mechanoporation for stem cell studies. Furthermore, we discuss the integration of mechanoporation
techniques into microfluidic platforms for high-throughput intracellular delivery with enhanced
transfection efficiency. This advancement holds potential in addressing the challenge of low trans-
fection efficiency, benefiting both basic research and clinical applications of stem cells. Ultimately,
the combination of microfluidics and mechanoporation presents new opportunities for creating
comprehensive systems for stem cell processing.

Keywords: microfluidic; intracellular delivery; mechanoporation; stem cells

1. Introduction

Intracellular delivery is an important technique in molecular and cell biology research,
which introduces biomaterials into cells for investigating the regulation of gene expression,
functions of genes of interest, protein–protein interactions, the sub-cellular localization of
proteins, and for genome editing and gene therapy [1]. In recent decades, many effective
methods have been established to achieve intracellular transport with higher efficiency.

Cell transfections with DNA can be divided into transient transfections and stable
transfections according to the expression duration of the exogenous biomaterials in cells. In
transient transfections, exogenous DNA does not integrate into the host chromosome and
only lasts for several days because of the dilution upon cell divisions [2]. On the contrary,
the stable transfection of exogenous DNA could be integrated into host genomes and then
express target genes or proteins constitutively in the cells depending on the regulatory
sequences applied to drive the expression [3]. Currently, traditional transection methods
can be divided into three categories [4]: (1) biological transfection methods mediated
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by viral vectors, including lentivirus, adenovirus, and adeno-associated viruses [5–9];
(2) chemical transfection methods using different transfection media, such as calcium
phosphate [10], liposome [11], and cationic polymers [12,13]; and (3) mechanical methods
to achieve transfections through the disturbance or destruction of cell membranes, such as
electroporation [14], microinjection [15,16], the gene gun method [17], and acoustic hole
effect-mediated transfections [18,19].

The transfection of biomaterials into cells has greatly improved our understanding
of gene function and regulation. However, the above methods have their own shortcom-
ings that limit the applications of transfections into different types of cells, especially for
stem cells. For a viral vector-mediated transfection, although it exhibits high transfection
efficiency with the continuous and stable expression of exogenous genes [20], there are
safety concerns, because the insertion site of the viral vectors into the host genome is
uncertain. This uncertain gene integration may cause the activation of proto-oncogenes,
the inactivation of oncogenes, RNA splicing, and gene fusion, thus posing a risk of carcino-
genesis [21–24]. For chemical transfection methods, although the transfection efficiency has
been improved after liposome modification [25], it is still expensive, and the transfection
efficiency is still low for stem cells. Mechanical transfection methods have been successfully
applied to different cell types with high efficiency, including stem cells [15,18,26,27]. How-
ever, they require specific equipment and complex operation processes, which significantly
increase cell mortality [16,18,26,28]. Therefore, we expect an intracellular transfection
method that is suitable for many cell types, with high transfection efficiency, cell biosafety,
economy, ease of operation, and so on. Emerging microfluidic technology [29,30] is promis-
ing due to its low solvent consumption, low counter dose, small cell-like volume, and a
relatively high transfection efficiency and cell survival rate. It can be applied to a wide
range of applications. In addition, the microfluidic environment is close to the diameter of
cells, which is conducive to single-cell research and even in situ visual observations and
real-time monitoring [31–36].

Although there exist several excellent reviews on mechanoporation [37–39], there is
no review particularly targeting stem cells. We particularly selected mechanoporation
approaches that are integrated with microfluidic chips for intracellular delivery to stem
cells with high throughput and a low dead rate. In this review, we introduce different
methods based on microfluidic transfections, including microinjection [31,32,40–43], mi-
cro/nanoneedle arrays [44–48], cell squeezing based on mechanical confinement [33,34,49],
and cell squeezing based on hydrodynamic manipulation [35,36]. Furthermore, we briefly
introduce the current progress for applying microfluidic methods in stem cell research,
highlighting the advantages and limitations.

2. Microfluidic-Based Mechanoporation

As a critical step in microfluidic cell transfections, membrane disruption-based intracel-
lular delivery methods drew a lot of attention from researchers [50,51] and can be classified
into electroporation [52–57], optoporation [58–62], magnetoporation [63–65], acoustopo-
ration [66–69], and mechanoporation [34,48,70–73] based on pore creation mechanisms.
While each technique above possesses its own set of advantages, it is important to note
that all except for mechanoporation rely on an external energy field to disrupt the cell
membrane. However, this dependence on external energy fields can potentially impact
the biological function and viability of the cells being manipulated [74–76]. Therefore, this
review focuses on the mechanoporation techniques that are independent of an external
energy field. We will discuss four different mechanoporation techniques that employ only
mechanical structures without causing severe damage to cell membranes. Based on the dif-
ferent microfluidic device structures, microfluidic-based mechanoporation methods can be
classified as microinjection (Figure 1a), micro/nanoneedle arrays (Figure 1b), cell squeezing
based on mechanical confinement (Figure 1c), and cell squeezing based on hydrodynamic
manipulation (Figure 1d). All these methods exhibit advantages, such as high transfection
efficiency, high throughput, ease of handling, and high cell viability [34,48,70–73].
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Figure 1. Microfluidic-based mechanoporation methods. (a) Microinjection; (b) micro/nanoneedle
arrays; (c) cell squeezing based on mechanical confinement; (d) cell squeezing based on hydrody-
namic manipulation.

2.1. Microinjection

Microinjection, ever since its inception in the previous century [77], has remained a
commonly utilized method for single-cell transfections due to both its straightforward
concept and ease of manipulation. By inserting a glass micropipette into specific positions
of individual cells [78], almost any cargo can be successfully delivered into the cells via mi-
croinjection. This versatile technique finds applications in various areas, including in vitro
fertilization and nuclear transfer for cloning [79]. As one of the traditional microinjection
schemes, the AFM (atomic force microscopy)-based microinjection is adopted for the precise
intracellular delivery to single cells by functionalizing antibodies to the AFM probe [38,80]
or through the hollow AFM cantilever [81]. Benefiting from a size of 200–300 nm and a high
aspect ratio structure, the AFM tip can penetrate the cell and adhere to the substrate with
proper force and cause little or no damage to the cell membrane [39]. However, one major
limitation of this approach is its low throughput and limited suitability for suspended
types of cells, since it depends on the surface adhesion property of cells. The introduction
of microfluidic techniques provides a platform to better manipulate all types of cells for
microinjections, improving the intracellular delivery throughput and enabling suspension
cell transfections [31,32,40–43].

By integrating microinjection and microfluidic techniques, Adamo and Jensen pro-
posed a microneedle-immobilized microfluidic microinjection device [31]. As shown in
Figure 2(ai), in this device, single cells were driven by fluid streams from channel A to
channel B and transfected by immobilized microneedles while valve 1 was opened and
valve 2 was closed. After cell transfection, the cells were driven by fluid streams from
channel B to channel C by closing valve 1 and opening valve 2. The experimental results
showcase an approximate throughput of 1 cell in 5 min, conducted with HeLa cells [31]. To
enhance the throughput of the microinjection system, Liu and Sun presented a vacuum-
based cell-holding device for single-cell immobilization and applied this device to a mouse
zygote microinjection [40]. In this study, mouse zygotes were immobilized into arrays of
5 × 5 through-holes (Figure 2b), making cell capture and immobilization easier and allow-
ing for the transfection of a total amount of 200 s at a speed of 9 cells/min, substantially
improving the throughput of traditional microinjection methods. The experimental results
demonstrate the progression of zygotes into the blastocyst stage after microinjection, pro-
viding evidence for the claim that the microneedle-immobilized microfluidic microinjection
device would not affect embryo survival and development [40].

To improve injection automation for effective transfections [32,41–43], an automated
quantitative microinjection platform was developed by Chow et al., showcasing the ability
to deliver precise quantities of materials into cells [32]. By immobilizing cells in a microflu-
idic chip and injecting a certain amount of substances through an injection pressure- and
time-controlled micropipette to cells one by one (Figure 2c), this microinjection platform
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achieved a precise single-cell microinjection. This microinjection platform, which was
applied to human foreskin fibroblast cells, achieved about 80% transfection efficiency and
82.1% cell viability. However, this microinjection still suffers from low throughput, limiting
its application to larger amounts of cells.
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Figure 2. Microinjection. (a) A schematic illustration of the microfluidic-based single-cell microinjection
system. (i) Cells are driven from Channel A to Channel B by fluid stream. (ii) Cells are transfected by
immobilized microneedle. (iii) Cells are driven from Channel B to Channel C by fluid stream. Reprinted
and modified from Ref. [31]. (b) The vacuum-based cell-holding device for single-cell immobilization.
Reprinted and modified from Ref. [40]. (c) A workflow illustration of the automated quantitative
microinjection platform. Reprinted and modified with permission from Ref. [32].

2.2. Micro/Nanoneedle Arrays

Compared with microinjections with a single pipette, the integration of micro/nanoneedles
into microfluidic-based devices could achieve high-throughput and efficient single-cell
transfections. Microfabrication techniques can fabricate different micro/nanoneedle array
structures in a straightforward and convenient fashion [44,45].

Zhang et al. proposed a microfluidic microneedle device with massively parallel
microinjector arrays, enabling a superhigh throughput microinjection [46]. As shown
in Figure 3a, this device operates by attracting the cell onto the hollow penetrator dur-
ing aspiration-based captures. Subsequently, exogenous cargos are injected into the cell
through the resulting membrane pore before the cells are released by a positive aspiration
flow. Each microinjector in the microneedle array incorporates a hollow penetrator with
a sub-micron tip with a base of approximately 1–2 µm in diameter. In this device, the
negative and positive aspiration flows ensure the minimal force required for cell capture
and penetration, since they allow for the minimal stress of the sub-micro tip to penetrate
the cell membrane. Moreover, the massively parallel microinjector array, which refers
to 100 × 100 capture sites, realizes an ultrahigh throughput microinjection. Further ex-
perimental results exhibit a transfection efficiency of approximately 93% at a flow rate
of 40 µL/min using an immortalized human T lymphocyte cell line-applied propidium
iodide dye [47]. In the case of delivering a green fluorescent protein plasmid, efficiency
rates of 82% in the primary human T cells were achieved, with over 87% cell viability.
Overall, this microfluidic microneedle device demonstrates high efficiency and throughput
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capabilities for microinjections, showcasing its potential in various cellular transfection
applications [47].

Furthermore, Huang et al. devised a microfluidic nanoneedle device including a
silicon nanoneedle array along with the staggered herringbone channel design [48]. In this
design, as depicted in Figure 3b, a PDMS structure featured a channel on its top surface,
which was composed of periodically staggered herringbone grooves. By incorporating
two asymmetrically shifted groups of staggered herringbone grooves, this configuration
facilitated the chaotic mixing of the substances introduced through the inlet port. Unlike
microinjections which directly deliver exogenous cargos into the cells, exogenous cargos
are diffused into the cell after the cells collide with the nanoneedle array and then form
pores on the cell membrane. The experimental results, achieved with human embryonic
kidney cells, demonstrate transfection efficiency of over 20% and cell viability exceeding
95% while transfected with GFP-expressing plasmids [48].
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from Ref. [48].

2.3. Cell Squeezing Based on Mechanical Confinement

In response to the drawbacks of microinjections and micro/nanoneedle arrays poten-
tially causing irreversible damage to cell membranes, researchers developed mechanical
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confinement-based cell-squeezing strategies. In these methods, the cell membrane un-
dergoes rapid mechanical deformation when passing through a microfluidic constriction
smaller than its size, leading to the formation of transient holes. These holes are recoverable,
meaning that the damage caused to the cell membrane is almost negligible.

Sharei et al. [33] demonstrated cell squeezing based on the mechanical confinement
method for cell delivery, in which multiple cells undergo mechanical squeezing simul-
taneously when passing through parallel micro-constriction channels. Figure 4a clearly
demonstrates that when cells were subjected to a constriction channel narrower than their
size, a temporary disruption of the cell membrane was observed. Transient pores were gen-
erated, which promoted intracellular delivery based on the diffusion of biomaterials into
the cell. This method achieves an average throughput rate of 20,000 cells per second, which
is significantly higher than that of the microfluidic device that employs the aforementioned
microinjections and micro/nanoneedle arrays, exhibiting about 75% delivery efficiency and
a maximum of 95% cell viability while transferring blue-labeled 3 kDa dextran molecules
into HeLa cells [33]. By introducing key transcription factors (Oct4, Sox2, c-Myc, and
Klf-4) required for stem cell pluripotency into human fibroblast cells [82], Sharei et al.
implemented cell reprogramming. The identification of transformed colonies expressing
embryonic stem cell markers reveals the morphological transformation in human fibroblast
cells and the effect on gene expression, providing more possibilities for cell therapy and
regenerative medicine.

To further enhance cell delivery efficiency, Modaresi et al. introduced a microfluidic
platform to perform double cell deformation [34]. Figure 4b illustrates two microfluidic
device designs, one allowing for single deformation (Figure 4(bi)) and the other allowing
for double deformation (Figure 4(bii)). In the case of the first design, cells were subjected
to continuous paralleled constrictions, which were 20 µm in length and 8 µm in width,
permitting single deformation. Conversely, the second device translated one side of the nar-
row channel in the first design to create staggered squeeze constrictions with an 8 µm gap,
enabling double transformation. The experiments showed that the double-deformation
approach resulted in the higher delivery efficiency of biomaterials into cells compared to
the single deformation method while applying human adipose-derived stem cells that were
transfected with Dex-FITC. This device, which allows for cell double deformation, is supe-
rior for delivering small-sized exogenous materials, achieving an 85% delivery efficiency
and improving cell viability to 95%, while maintaining a higher throughput. Furthermore,
it did not induce the cell apoptosis associated with the single-deformation method.

Joo et al. proposed a microfluidic device for droplet mechanoporation, where cells
encapsulated with biomolecules in one droplet are transported through multiple constric-
tions to prevent cell damage and increase cell viability [49]. This device, as illustrated in
Figure 4(ci), comprises two parts: the droplet generator and the cell-squeezing sections.
By injecting oil through separated inlet channels and utilizing a droplet generation tech-
nique [83], cell-biomolecule-encapsulated droplets are formed, leading to an increasing
localized concentration of biomolecules that enhances cell delivery efficiency. As cells
traverse through the constrictions within droplets, they experience a synergistic effect
of convection and diffusion-mediated transport. This dynamic combination enables the
efficient delivery of biomolecules through the cell membrane (Figure 4(ciii)). This method
maximizes transfection efficiency, with a remarkable 98% achieved in a high throughput of
1 million cells per minute, and provides a minimum cell survival rate of 80%. Moreover,
since each droplet carries the required cargo and most of the microchannel is occupied by
carrier oil, significantly less cargo is utilized, minimizing the risk of clogging issues.
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Figure 4. Cell squeezing based on mechanical confinement. (a) An illustration of the delivery hypothe-
sis, whereby the rapid deformation of a cell, as it passes through a microfluidic constriction, generates
transient membrane holes. Reprinted and modified with permission from Ref. [33]. (b) Two designs
of a microfluidic cell deformation device. (i,ii) Schemata of the two designs. (iii) An illustration of
the cell-squeezing process in two different cell deformation devices. Reprinted and modified from
Ref. [34]. (c) The droplet squeezing platform design. (i) A schematic of a droplet squeezing mi-
crofluidic device. (ii) An illustration of the working flow of the platform and high-speed microscope
images that show the three stages of the cell in the platform; (1) encapsulation, (2) deformation, and
(3) restoration. (iii) A schematic diagram illustrating the delivery mechanism of droplet squeezing,
owing to a convection-based cargo transport. Reprinted and modified with permission from Ref. [49].
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2.4. Cell Squeezing Based on Hydrodynamic Manipulation

As explained in Section 2.3, although cell-squeezing-type microfluidic devices based
on channel confinement can achieve high-throughput cell deformation, they often suffer
from cell membrane damage caused by the narrow channels as well as device failure due
to clogging. To overcome these challenges, researchers explored hydrodynamic forces to
control single cells stretching or squeezing in a microchannel. During this process, transient
pores are generated on the cell membrane, facilitating the delivery of exogenous material
through a blend of fluid convection and diffusion. The risk of microchannel clogging and
cell lysis is significantly reduced, since the cells are not squeezed using constriction channels.
Hydrodynamic techniques for creating transient nanopores offer several advantages, such
as a simple design, inexpensive equipment requirements, and the capability to achieve the
high-throughput intracellular delivery of diverse biomaterials into a broad spectrum of cells.

Kizer et al. reported a hydrodynamic manipulation-based cell-stretching approach [35]
that effectively eliminated the possibility of the device clogging observed in earlier designs
(Figure 5(ai)). In this proposed system, transient pores were formed on the cell membrane
through the rapid hydrodynamic shearing of the cells, and the stagnation point, at which
the transient fluid velocity is zero, is generated by two fluids with the same velocity but in
opposite directions. As the cells approached the cross-section, they experienced hydrody-
namic stretching and reached the maximum degree of deformation at the stagnation point,
leading to the generation of transient membrane nanopores (Figure 5(aii)). Due to the rapid
exchange of cytosol and external fluids across the cell membrane, this method facilitated
convection-based intracellular delivery during the cell-stretching process (Figure 5(aii)),
showing that transfection efficiency increased as the flow rates (i.e., Reynolds number)
increased, while the cell viability decreased as the Reynolds number increased. Therefore,
a suitable Reynolds number is the key to balancing transfection efficiency and cell viability.
As a result, the experimental results demonstrate the successful delivery of DNA into
various cell types, such as K-562, MDA-MB-231, HeLa cells, and so on, with a transfection
efficiency of over 90%, an approximately 80% cell viability, and a remarkable throughput of
over 1,600,000 cells per minute when the Reynolds number equals to 189. This approach
showcased its effectiveness in achieving efficient delivery while maintaining cell viability
by carefully controlling the Reynolds number to optimize the performance.

To simplify operations and improve the efficiency of material transportation, J. Hur et al.
introduced a hydrodynamic manipulation-based cell-stretching intracellular delivery plat-
form [36]. The device contained a T-shaped microchannel equipped with a small cavity,
which provided the intrinsic inertial flow to deform the cell passing by. In the T-shaped
microchannel, cells are exposed to elongational flows, enabling their lateral migration
toward the center of the channel through intrinsic inertial flow. This mechanism allows
for the uniform stretching of cells. As illustrated in Figure 5b, each cell hit into the cavity
due to the force of elongational flows, leading to a collision-induced deformation. Sub-
sequently, the cells were released from the cavity and reached maximum deformation at
the stagnation point and then underwent slight cell stretching downstream while moving
to the outlet. This study applied the cell delivery mechanism, which involves a mixture
of a convection and diffusion-based solution exchange across the cell membrane during
the cell-stretching and -recovering processes. J. Hur et al. achieved a knockdown of the
ITGA1 gene by delivering siRNA into Hela cells using this cell-stretching device. Cells
subjected to this microfluidic cell-stretching device exhibited a near-complete suppression
of the ITGA1 gene expression, with a knockdown efficiency of 97% [36], indicating the
tremendous potential of this technique in genetic editing. Overall, this intracellular delivery
platform offers several advantages, including a high delivery efficiency of up to 98%, a
high throughput of up to 1 million cells per minute, simplicity in operation, low material
costs, and the ability to deliver various cell types and biomaterials.
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of the fluidic cell-stretching platform. High-speed microscope images showing the three stages of cell
deformation (1)~(3). All arrows indicate the main flow direction (scale bars: 15 µm). Reprinted and
modified with permission from [36]. Copyright (2020), American Chemical Society.

2.5. Summary

In this section, four different microfluidic mechanoporation methods were discussed,
and each of them has its advantages and disadvantages (Table 1). Due to the accurate cargo
delivery by inserting the micropipette into cells, microinjections ensure uniform transfec-
tions and achieve high transfection efficiency. Nevertheless, this method has limitations,
such as low throughput rates and a high cost, which arises from the need for special-
ized expertise and expensive devices. Compared with microinjections, micro/nanoneedle
arrays offer advantages, such as higher throughput and ease of use, as they allow for
the simultaneous perforation of multiple cells. However, the manufacturing process of
micro/nanoneedle arrays is usually complex and costly. Also, the effectiveness of this
approach is dependent on the cell type utilized, as optimal results can typically be achieved
with adherent cells. As for cell squeezing based on mechanical confinement, this has the ad-
vantage of high throughput and the ability to achieve intracellular delivery for a wide range
of cells on the one hand and has the disadvantages of device clogging and non-uniform
transfections. Instead of transforming cells by narrow channels in the microfluidic device,
cell squeezing based on hydrodynamic manipulation avoids the issue of device clogging
and maintains high throughput at the same time. Meanwhile, it also has the drawback of
non-uniform transfections.
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Table 1. Comparison of four microfluidic mechanoporation methods.

Microfluidic
Mechanoporation

Method
Advantages Disadvantages Throughput

(Cells/min)
Cell

Viability

Microinjection
Uniform transfection High cost

<100 82.5%High transfection
efficiency Low throughput rates

Micro/nanoneedle
arrays

Higher throughput than
microinjection

Complex and costly
manufacturing >10,000 95%

Ease of use Dependent on the
cell type

Cell squeezing based
on mechanical
confinement

High throughput Device clogging >1,000,000 95%Suitable for a wide range
of cells

Non-uniform
transfections

Cell squeezing based
on hydrodynamic

manipulation

High throughput Non-uniform
transfections

>1,600,000 80%
No device clogging

3. Application of Mechanoporation in Stem Cells

Stem cells are critical for the homeostasis of tissues and organs. Upon each cell division,
the daughter cells can maintain as stem cells (self-renewal) or initiate a differentiation
program for functional cells to replace the old, dead, or damaged cells. Understanding
how the self-renewal and differentiation of stem cells is balanced is critical for clinical
applications. Exogeneous gene expression and genome editing are both crucial for not only
understanding how stem cells are regulated but also for the application of gene-edited cells
for clinical purposes, highlighting the importance of delivering biomaterials into stem cells.

They possess self-renewal and differentiation capabilities, thus holding broad prospects
for basic research and clinical applications. Human embryonic stem cells (hESCs) were
first isolated in 1998, and since then, several adult stem cells, induced pluripotent stem
cells (iPSCs), have been isolated as important models for basic research [84–86]. Due to the
unique self-renewal and differentiation potential of stem cells, stem cell therapy has the
potential to treat diseases, such as heart disease and type I diabetes [87,88].

Intracellular transfection technology is a crucial step for applications of stem cells,
since it can introduce exogenous genes or small molecule drugs into stem cells, thereby
changing the transcriptome state and physiological functions of stem cells for different
purposes. For example, transfecting CRISPR-related components into cells can be used for
the gene editing of stem cells [89]„ and transfecting small molecules into stem cells can be
used to mark them, which can be applied to stem cell therapy [90,91].

3.1. Comparison of Different Transfection Methods in Stem Cells

In order to conduct stem cell research and application, many technical problems must
be solved, one of which is how to efficiently deliver external genes or drugs into stem
cells through intracellular transfection. To improve delivery efficiency, scientists have
established different means to optimize the delivery scheme (Figure 6). Common stem
cell-transfection techniques include chemical transfections, electroporation, and viral vector
transfections [92–95]. Although these methods can successfully introduce exogenous genes
or small molecules into stem cells, there are many limitations (Table 2).

Chemical transfections suffer from the cytotoxicity of the transfection material and the
low transformation efficiency in primary cells and stem cells [96]. Electroporation applies
an electric field across the cells to perforate the cell membrane, achieving higher transfection
efficiency, although specialized equipment and manual handling are required. In addition,
electrical cell perforation causes a high cell death rate and low stability [56,97,98]. Viral
vector-based transfections can achieve high-efficiency transfections, but there are biological
safety issues, and the random insertion of viral vectors into the genome may lead to
a disruption of local genes, resulting in unexpected risks, such as cell death [99]. It is
essential to apply the transfection method with high transfection efficiency, a high survival
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rate, easy operation, low cost, and the large-scale operation of cells for different types of
stem cells, enabling the application of stem cells and stem cell-derived functional cells for
regenerative medicine.

As mentioned above, mechanoporation is a new type of transfection method, which
promotes cell deformation through mechanical force, resulting in increased membrane
permeability. This strategy improves the incorporation of therapeutic substances, such
as DNA, RNA, and drugs, into the cells. Mechanoporation increases the transfection
efficiency and improves the survival rate of cells, thereby facilitating the research of stem
cells [36,90,91,100]. Therefore, mechanoporation may represent the best strategy for various
fields of stem cell research.
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Table 2. Comparison of different stem cell-transfection methods.

Transfection Method Advantages Disadvantages

Chemical
Transfection

Simple operation Low transfection efficiency
Toxicity of the biomaterial

Viral Carrier High transfection efficiency Low biosecurity
Instability due to random insertion

Electroporation High transfection efficiency Low stability
High mortality rate High cost due to difficult operation

Mechanoporation

High transfection efficiency
Capable of mass operation
High cell survival rate
High stability

3.2. Application of Mechanoporation in Stem Cells

Transfection efficiency and cell viability are critical for applying stem cells for clinical
applications. Due to the characteristics of less cell damage, a high cell survival rate, and
high transfection efficiency, mechanoporation has shown great prospects in the clinical
treatment of regenerative medicine.

Adipose tissue-derived stem cells (ADSCs) are one of the well-studied stem cells for
clinical applications. As shown in Figure 7, Jung et al. employed mechanically perforated
ADSCs for rapid labeling for PET/MRI imaging [90]. The patient’s own stem cells can be
used to repair or regenerate damaged joint tissue. In this context, these transplanted cells
need to be labeled with in vivo molecular imaging tools to distinguish them from the host
cells. In the follow-up treatment, it is necessary to monitor and observe the implantation,
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survival, migration, and differentiation activities to achieve the purpose of predicting
the therapeutic effects. Jung et al. applied mechanical compression to transport iron
oxide nanoparticles and 18F-FDG into ADSCs for subsequent identification by PET/MRI.
The labeling process can be completed in a very short time during the operation, and
the labeling efficiency is similar to that achieved by passive incubation for 30 min. The
detection of labeled cells found that, compared with unlabeled cells, the survival rate of
labeled cells reached 94%, and there was no increase in long-term toxicity, and even DNA
damage was lower than that of passive incubation methods.
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On the other hand, stem cells cultured in vitro are an important research system for
applications in regenerative medicine. Intracellular transfection technology can be used
to introduce specific regulatory proteins or modified enzymes to explore the regulatory
mechanisms governing the self-renewal and differentiation of stem cells. Intracellular
transfection combined with gene editing technology has also been widely used in stem cell
research. Therefore, the difficult-to-transfect feature has become a major challenge in stem
cell research.

Chung et al. used fluidic cell mechanoporation to successfully transfect primary hu-
man stem cells with plasmid DNA. Cell viability, after mechanoporation, was significantly
higher than electroporation [36]. Garcia et al. demonstrated a novel microfluidic device
for the successful transfection of mRNA into human primary T cells, natural killer (NK)
cells, and CD34+ hematopoietic stem and progenitor cells (HSPCs) via volume exchange
for convective transfections (VECTs) [100]. In addition to the role of intracellular transport,
studies have found that mechanical stretching can promote the reprogramming efficiency of
fibroblasts to functional cells, even skipping the process of reprogramming into stem cells.
When suspension cells pass through a narrow microfluidic channel, the nucleus undergoes
a rapid extrusion. This reversible nuclear deformation process can significantly reduce the
methylation level of histone H3K9 and DNA, thereby improving chromatin accessibility.
Finally, it promotes the reprogramming efficiency of fibroblasts to neurons [101].

Through these stem cell studies, scientists can better understand the properties and
functions of stem cells and apply them in various fields of regenerative medicine and
disease treatment. Mechanoporation technology is an important tool for stem cell research,
which helps scientists better utilize the potential of stem cells to achieve more effective
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therapeutic effects (Figure 8). Although this technology may still have some limitations
and challenges at present, we believe that with continuous development and updating,
mechanical perforation technology will exert more potential and make greater contributions
in applying stem cells in regenerative medicine.
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4. Outlook and Conclusions

Microfluidic mechanoporation, as an emerging intracellular delivery approach, offers
huge potential in stem cell applications due to the following advantages.

First, mechanoporation offers the precious feature of no contamination or cytotoxicity,
which is critical for stem cell study or therapy. For stem cell therapy, there must be product
control, meaning the gene-edited stem cells should be exactly edited as we expect. But other
intracellular delivery methods can introduce potential complications, such viral vectors,
chemicals, and electrical stimulations, which may bring gene mutation or contamination.
Mechanoporation only uses mechanical forces to disrupt cell membranes introducing no
chemicals or viruses. In addition, a microfluidic chip can achieve the whole function of
stem cell therapy by integrating sample processing, such as filtering and purification, gene
editing using mechanoporation, quality checks, etc., in one personalized chip, holding
promising applicational potential. Even single-cell manipulation, gene editing, and quality
checks can all be realized in one microfluidic chip.

Second, microfluidic mechanoporation has great versatility, simplicity, and low fabri-
cation costs. It allows for different types of cargos, such as nucleic acids, small molecules,
and proteins to be delivered to various types of cells. It does not require any external energy
sources, such as an electrical field or an acoustic field, and is straightforward to use. The
fabrication of a microfluidic mechanoporation device is quite mature using conventional
soft lithography or standard silicon microfabrication.

Third, microfluidic mechanoporation can offer high delivery efficiency and high cell
viability, which is critical for gene editing and stem cell therapy. Low transfection efficiency
in stem cells is one of the main bottlenecks for both basic research and clinic applications.
Human pluripotent stem cells, including embryonic stem cells and induced pluripotent
stem cells, possess the capacity to differentiate into different kinds of functional cells for cell
therapy. However, the transfection efficiency is extremely low compared with cancerous cell
lines. Furthermore, the transfection of large-size plasmid DNA or proteins is also inefficient.
Cell state, extracellular components, and other cell membrane characteristics may “protect”
stem cells from taking exogenous materials, making the traditional methods inefficient.
Mechanoporation may substantially increase the transfection efficiency, because it stretches
cells by mechanical forces. High transfection efficiency and the potential for delivering
large cargoes will trigger both the mechanistic research and translational applications of
stem cells.

Microfluidic mechanoporation technology still has a few challenges to overcome,
including a lack of precise pore size control, a relatively low transfection efficiency for some
cell types, and potential cell damages, which could be solved with a further understanding
of the mechanoporation mechanisms and optimized device and operation parameters.

With a fast-growing interest in gene-editing-relevant applications, we can foresee more
research development and commercialization in microfluidic mechanoporation technology
toward more ideal technology that features high throughput, low costs, high cell viability,
excellent reliability, and a more straightforward utilization.
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