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Abstract: In the field of wearable thermoelectric generators, graphene-based materials have attracted
attention as suitable candidates due to their low material costs and tunable electronic properties.
However, their high thermal conductivity poses significant challenges. Low thermal conductivity
due to porous structure of the laser-induced graphene, combined with its affordability and scalability,
positions it as a promising candidate for thermoelectric applications. In this study, thermoelectric
properties of the laser-induced graphene (LIG) on polyimide and their dependence on structural
modifications of LIG were investigated. Furthermore, it was shown that increasing the laser scribing
power on polyimide results in larger graphene flakes and a higher degree of graphitization. Electrical
conductivity measurements indicated an increase with increasing laser power, due to a higher degree
of graphitization, which enhances charge carrier mobility. Our findings reveal that LIG exhibits
p-type semiconducting behavior, characterized by a positive Seebeck coefficient. It was shown that
increasing laser power increased the Seebeck coefficient and electrical conductivity simultaneously,
which is attributed to a charge carrier energy filtering effect arising from structures occurred on the
graphene flakes. Moreover, the porous structure of LIG contributes to its relatively low thermal
conductivity, ranging between 0.6 W/m·K and 0.85 W/m·K, which enhances the thermoelectric
performance of LIG. It has been observed that with increasing laser power, the figure of merit for
laser-induced graphene can be enhanced by nearly 10 times, which holds promising applications
for laser-induced graphene due to the tunability of its thermoelectric performance by changing
laser parameters.

Keywords: laser-induced graphene; thermoelectrics; thermal conductivity; wearable electronics

1. Introduction

In the growing field of wearable electronics, the quest for an efficient and sustainable
power source has taken center stage. As a result, adopting self-powered systems that har-
vest energy from the human body or the environment has become a promising approach [1].
Piezoelectric nanogenerators [2], triboelectric nanogenerators [3], and solar generators [4]
have been extensively researched as self-powered systems for energy supply. However,
piezoelectric and triboelectric generators require continuous motion, whereas solar genera-
tors need light. These dependencies can pose challenges in practical applications where
such conditions are not always present. To overcome these issues, wearable thermoelectric
generators (w-TEGs) offer a promising solution by continuously converting body heat
into electrical energy through the Seebeck effect [5–7]. The effectiveness of thermoelectric
materials is measured by a figure of merit known as ZT [8].

ZT = (S2σ)T/к (1)

Here, S represents the Seebeck coefficient, σ stands for electrical conductivity, κ indi-
cates thermal conductivity, and T refers to the absolute temperature.
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Currently, the thermoelectric generators available in the market primarily use inor-
ganic materials like Bi2Te3, PbTe, Sb2Te3 due to their high ZT values [9–12]. However, these
materials face significant challenges, including high toxicity, considerable costs, fragility,
and processing complexities [13]. As an alternative, polymers and their composites are ex-
tensively investigated. These materials offer excellent flexibility, low thermal conductivity,
and high Seebeck coefficients [14,15]. However, their electrical conductivities are often rela-
tively low for effective thermoelectric applications. Enhancing the electrical conductivity of
polymer-based thermoelectric generators through doping is possible, yet this method has
frequently been shown to be ineffective in significantly improving performance [16]. Con-
sequently, there is a significant need to develop environmentally friendly and cost-effective
thermoelectric materials with high thermoelectric figure of merit.

Graphene, graphite, graphene oxide, and carbon nanotube (CNT) are attracting atten-
tion for various energy applications due to their widespread availability and environmen-
tally friendly nature [17,18]. Both theoretical and experimental studies have demonstrated
that graphene is a promising material for thermoelectric applications due to its tailorable
band gap and high charge carrier mobility [19–22]. Despite their potential, a major chal-
lenge with graphene and graphite for thermoelectric use is their high in-plane thermal
conductivity [23]. To overcome this, recent studies have explored porous graphene foam
structures that are designed to reduce thermal conductivity while maintaining sufficient
electrical conductivity and Seebeck coefficient. However, the fabrication methods for creat-
ing these foam structures remain complex, posing challenges for scalability and practical
application [24–26].

In 2014, Lin and colleagues developed a technique to transform commercial polyimide
(PI) films into three-dimensional porous laser-induced graphene (LIG) under ambient
conditions by irradiating with a mid-infrared (MIR) CO2 laser [27]. This irradiation induces
lattice vibrations leading to localized high temperatures exceeding 2500 ◦C. Such intense
heat causes the breaking, recombining, and releasing of C-O, C=O, and N-C bonds in the
polyimide, producing a porous graphene nanostructure with pentagonal, heptagonal, and
hexagonal lattice structures [28]. The remarkable properties of LIG, such as its mechanical
flexibility, high porosity, and good electrical conductivity, along with its scalability and
ease of production, make it ideal for numerous applications [29–31]. These include gas
sensors [32], strain sensors [33], supercapacitors [34], triboelectric nanogenerators [35], and
flexible heaters [36].

LIG is a promising material for thermoelectric applications due to its high electrical
conductivity and tunable work function through laser parameters [37], which potentially
influence the Seebeck coefficient. Additionally, LIG exhibits low thermal conductivity
owing to its porous structure, a characteristic that is desirable for thermoelectric applications
[38]. Despite extensive research on LIG and its applications, there are no studies on the
thermoelectric properties of LIG in the existing literature.

In this study, for the first time, the thermoelectric properties of laser-induced graphene
were investigated. The influence of laser parameters on the Seebeck coefficient, electri-
cal conductivity, and thermal conductivity of the laser-induced graphene was examined.
Additionally, the relationship between thermoelectric properties and the structure of the
laser-induced graphene was examined using Raman spectroscopy and SEM. Enhance-
ment of the thermoelectric figure of merit (ZT) through tuning of laser parameters was
investigated.

2. Materials and Methods
2.1. Laser-Induced Graphene Fabrication on Polyimide Film

Laser-induced graphene samples were prepared by first cleaning polyimide Kapton®

films, supplied by DuPont (Wilmington, DE, USA), having a thickness of 127 µm, with
ethanol and deionized water. Subsequently, the cleaned films were scribed under ambient
conditions using a Q-switched pulse fiber laser (Raycus RFL-P50QB, Wuhan Raycus Fiber
Laser Technologies Co., Ltd., Wuhan, China) that operates at a wavelength of 1064 nm and
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has a maximum output power of 50 W. The laser beam was controlled over the surface
with a galvanometer scanner equipped with an f-theta lens of 163 mm focal length. The
scanning speed, repetition frequency, and laser power were adjustable and controlled via a
computer using EzCad2.4.11 software.

In our experiments, we explored the impact of defocusing on the quality of laser-
induced graphene (LIG) and determined that positioning the polyimide film 10.5 mm
below the laser’s focal point yielded the best results. This finding aligns with the existing
literature, which suggests that defocusing can enhance the uniformity and conductivity of
LIG by distributing the laser’s energy more evenly across the material surface [39]. With the
scanning speed set at 100 mm/s, a line step width of 0.01 mm, and a repetition frequency
of 95 kHz, we varied the laser power between 9.75 and 12 W to investigate its effects on the
thermoelectric properties of laser-induced graphene.

2.2. Characterization

The surface morphology of laser-induced graphene on polyimide substrates was ex-
amined using the Scanning Electron Microscope (Thermo Scientific™ Axia ChemiSEM,
Waltham, MA, USA). Raman measurements were conducted using Micro-Raman spec-
troscopy (LabRam 800, Horiba Scientific, Jobin Yvon, France). The excitation was provided
by a He-Ne laser with an emission wavelength of 633 nm. Sheet resistance measurements
were carried out using the standard four-point probe method with a Keithley DMM6500
(Cleveland, OH, USA). Thermal conductivity (к) values were calculated using Equation (2),
wherein the thermal diffusivity (α) and specific heat (Cp) were measured with a Netzsch
LFA 457 MicroFlash system (Netzsch Gerätebau GmbH, Selb, Germany). These measure-
ments were repeated multiple times to ensure accuracy.

к = αρCp (2)

The in-plane thermal diffusivities were measured using an appropriate in-plane holder.
To determine the density (ρ) of the samples, the total mass of each specimen was measured
using a microbalance scale. The thickness and diameter of the samples were measured
with a scanning electron microscope.

2.3. Seebeck Coefficient Measurement Setup

Seebeck coefficient measurements were conducted at room temperature using a
custom-built setup, as illustrated in Figure 1. This setup features a Peltier element to
maintain the temperature on the hot side and a heat sink to stabilize the temperature on
the cold side. To measure the temperature difference (∆T) across the sample, two K-type
thermocouples were positioned on both the hot and cold sides. The minimum four thermo-
voltage values were recorded in relation to four different ∆T values between 1 ◦C and 7 ◦C.
Thermovoltage values were measured through the chromel (positive) legs of the thermo-
couples to ensure that voltage and temperature measurements were taken precisely at the
same location on the sample. Thermocouples were spring-loaded to maintain consistent
thermal and electrical contact with the sample. A fan was attached to the top side of the
Peltier element to maintain constant temperature. Thermovoltage measurements were
performed via Keithley multimeter (DMM6500) and temperatures on TC-1 and TC-2 were
measured by Cryocon® 24C temperature controller.

In order to accurately calculate the Seebeck coefficient of the sample and eliminate any
thermovoltage contributions from the chromel leg of the thermocouple, Equation (3) was
applied [40].

Ss = −∆V/∆T + Sw (3)

Here, Ss is the Seebeck coefficient of the sample, Sw is the Seebeck coefficient of the
chromel leg of the K type thermocouple, ∆V is the thermovoltage, and ∆T is the temperature
difference. Prior to conducting measurements with the homemade setup, a constantan
sample and a nickel foil (both supplied from ULVAC) were measured using a commercial
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ULVAC ZEM-3 setup (Chigasaki, Japan), and then they were used as reference samples.
In order to calibrate the system and calculate Sw, the constantan reference sample was
measured at room temperature. Moreover, to verify the calibration accuracy, the nickel
foil was measured subsequent to the calibration process. The Seebeck coefficient of the
nickel foil was found to be −16.2 µV/K, with an error rate of 10% when compared to the
literature values [41].
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Figure 1. A sketch of home-built Seebeck coefficient setup.

3. Results
3.1. Structural Characterization of Laser-Induced Graphene

Various laser scribing power trials on polyimide indicated that the threshold value for
transforming polyimide into graphene is 9.75 W. Furthermore, the maximum power is 12 W;
beyond this value, laser-induced graphene on polyimide begins to delaminate. Figure 2
presents SEM images of six different LIG samples fabricated using varying laser powers.
It is evident that with increasing laser power, the laser scribing lines become less distinct.
Moreover, increasing the laser power also leads to the formation of larger graphene flakes.

To further investigate the structural alterations in the laser-induced graphene, Raman
spectroscopy was employed to analyze the ablated regions. In the Raman spectra, laser-
induced graphene (LIG) has three notable peaks: the D peak at approximately 1350 cm−1,
the G peak at about 1580 cm−1, and the 2D peak around 2700 cm−1. These peaks are critical
for evaluating the structural characteristics of graphene. The D peak indicates the presence
of disorder or imperfections. Conversely, the G peak reflects the first-order scattering
vibration of sp2 hybridized carbon atoms, a sign of graphitization [27]. The 2D peak results
from second-order zone-boundary phonons, with its presence and intensity depending
on the number of stacked graphene layers. It is widely acknowledged that the intensity
ratio of the D to G bands (ID/IG) serves as a critical measure of structural disorder within
graphitic materials. Lower ID/IG values indicate greater degrees of graphitization [42].

In Figure 3, Raman spectroscopy data of laser-induced graphene fabricated with
various laser powers is presented. As seen in Figure 3a, the intensity of the D peak located
at 1350 cm−1 decreases as the laser power increases. Moreover, the 2D peak located at
2700 cm−1 showed a slight increase with increasing laser power, indicating that the number
of graphene layers decreases. In Figure 3b, laser power versus D peak-to-G peak intensity
ratios is given. It shows that higher laser powers cause an increase in graphitization degree
and a decrease in structural disorders in graphene.
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power settings; (b) ID-to-IG intensity ratio as a function of laser power.

3.2. Thermoelectric Properties of Laser-Induced Graphene on Polyimide Substrate

In order to investigate the thermoelectric performance of laser-induced graphene,
multiple samples were consistently fabricated for each laser power setting. Seebeck coeffi-
cients (S) and sheet resistances (Rs) were measured for each sample. In order to calculate
the electrical conductivity (σ), the thickness (t) of the LIG layers was measured from the
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cross-sections of each sample using SEM. Electrical conductivity values were determined
using the formula below.

σ = 1/(Rs × t) (4)

In Figure 4b, electrical conductivity measurements on laser-induced graphene fabri-
cated with various laser powers are given. It can be seen that increasing laser power leads
to an increase in electrical conductivity. For the samples scribed with laser powers rang-
ing from 9.75 W to 11 W, a considerable increase in electrical conductivity was observed.
However, between 11.25 W and 12 W, no significant changes in electrical conductivity were
detected. These observations are consistent with Raman spectroscopy results, suggesting a
direct relationship between the degree of graphitization and electrical conductivity. This
correlation is possibly due to an increase in the mobility of charge carriers resulting from
increased graphitization.
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Figure 4. (a) Seebeck coefficient, (b) electrical conductivity of LIG on polyimide substrate fabricated
with various laser powers.

As shown in Figure 4a, the Seebeck coefficient of LIG is positive, indicating p-type
doping that is consistent with the existing literature [43]. It is observed that as the laser
power increases, the Seebeck coefficient of laser-induced graphene on polyimide also
increases. Interestingly, data from Figure 4 indicate a simultaneous increase in both the
Seebeck coefficient and electrical conductivity with increasing laser power. The increase in
Seebeck coefficient may be attributed to the charge carrier energy filtering effect, which
has been widely investigated for carbon allotropes and their nanocomposites [44–46]. The
charge carrier energy filtering effect suggests that at the interfaces of materials with differing
work functions, a potential barrier occurs. This potential barrier scatters low-energy carriers
while allowing high-energy carriers to transfer across the interfaces. There are several
studies suggesting that introducing defects in graphene results in charge carrier filtering
effect [47,48]. To investigate potential defects in laser-induced graphene that cause the
energy filtering effect, SEM imaging at higher magnification was conducted.

Figure 5 presents a high-magnification SEM image of LIG samples scribed with various
laser powers. It is observed that as the laser power increases, the size of the graphene flakes
also increases. Additionally, certain structures appear on the graphene flakes, becoming
more visible particularly after scribing with 11 W of laser power. It should be noted that
multiple areas were imaged using SEM, and these structures were observed to be uniformly
distributed across the sample. The band diagram in Figure 5f shows the scattering of
low-energy holes at the interface between graphene and the defect. Therefore, the increase
in graphitization degree leads to increased charge carrier mobility causing higher electrical
conductivity. Additionally, as the laser power increases, certain structures form on the
graphene flakes, resulting in an energy filtering effect, as shown in Figure 5. This contributes
to the increase in the Seebeck coefficient.
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(c) 11 W, (d) 11.25 W, (e) 12 W. (f) Energy diagram showing energy filtering at the graphene/defect
junction (red sphere is low-energy charge carriers, green sphere is high-energy charge carriers, pink
line at the center is the interface.)

To further investigate the thermoelectric performance of LIG samples, in-plane thermal
conductivity measurements were performed. Figure 6 shows the in-plane thermal conduc-
tivity measurements and calculated thermoelectric figure of merit (ZT) for laser-induced
graphene samples fabricated with various laser powers.
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Figure 6. (a) In-plane thermal conductivity and (b) figure of merit (ZT) in LIG on polyimide substrates
fabricated with various laser scribing powers.

As shown in Figure 6a, in-plane thermal conductivity values of LIG on polyimide
samples are significantly low. This can be attributed to the porous structure of the LIG,
which disrupts heat flow. The measurements reveal that thermal conductivity increases with
laser scribing power up to 11 W, after which it begins to decrease. This observation suggests
that the structures formed on the laser-induced graphene scatter not only low-energy
charge carriers but also serve as scattering centers for phonons. Moreover, the calculated
ZT values presented in Figure 6b show a significant increase after the application of 11 W
laser scribing power, attributed to the simultaneous increase in electrical conductivity and
Seebeck coefficient, and a decrease in thermal conductivity. It was observed that the figure
of merit (ZT) of laser-induced graphene (LIG) is enhanced by a factor of 10 when the laser
power is increased from 10 W to 12 W.
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4. Conclusions

In summary, the synthesis and thermoelectric characterization of laser-induced graphene
were reported. Increasing the laser power led to enhanced graphitization and the pro-
duction of larger graphene flakes, which contribute to increased electrical conductivity
through greater mobility of charge carriers. As the laser power was raised from 10 W to
12 W, an increase in electrical conductivity from 1061 S/m to 1756 S/m was observed. Also,
a simultaneous rise in the Seebeck coefficient with electrical conductivity was detected,
ranging from 4.73 µV/K to 12.77 µV/K, which is attributed to the charge carrier energy
filtering effect. Furthermore, in-plane thermal conductivity measurements exhibited rela-
tively low values, ranging from 0.6 W/m·K to 0.85 W/m·K, which positively impacts the
figure of merit (ZT) values. It was shown that the ZT value of laser-induced graphene can
be enhanced nearly tenfold by changing laser parameters. Tuning thermoelectric properties
by varying laser parameters paves the way for the further improvement of ZT values.
In particular, decorating or doping with other metals or metal oxides may significantly
enhance ZT values through band gap and interface engineering.
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