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Abstract: The world is fighting infectious diseases. Therefore, effective antimicrobials are required
to prevent the spread of microbes and protect human health. Zinc oxide (ZnO) nano-materials
are known for their antimicrobial activities. Because of their distinctive physical and chemical
characteristics, they can be used in medical and environmental applications. ZnO-based composites
are among the leading sources of antimicrobial research. They are effective at killing (microbicidal)
and inhibiting the growth (microbiostatic) of numerous microorganisms, such as bacteria, viruses,
and fungi. Although most studies have focused on the microbicidal features, there is a lack of reviews
on their microbiostatic effects. This review provides a detailed overview of available reports on the
microbiostatic activities of ZnO-based nano-materials against different microorganisms. Additionally,
the factors that affect the efficacy of these materials, their time course, and a comparison of the
available antimicrobials are highlighted in this review. The basic properties of ZnO, challenges
of working with microorganisms, and working mechanisms of microbiostatic activities are also
examined. This review underscores the importance of further research to better understand ZnO-
based nano-materials for controlling microbial growth.
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1. Introduction

Pathogenic microbes, such as bacteria, viruses, and fungi cause infectious diseases in
humans and other living organisms. Bials kill microorganisms and inhibit their growth.
They are a broad category of compounds that prevent and treat various infectious diseases
in humans, animals, and plants [1–5]. Antimicrobials may also destroy microorganisms
that are beneficial to humans. However, other harmful microorganisms can resist the
effects of antimicrobial agents and continue to grow. The development of antimicrobial
resistance (AMR) in microorganisms is a significant global health concern, as it can render
previously effective treatments ineffective and make treating infections more difficult [6,7].
Appropriate and responsible antimicrobial use is crucial to combat AMR, ensure effective
treatment, reduce side effects, prevent infections, and maintain human and animal health.

It is crucial to shift strategies in antimicrobial fabrication to respond to AMR chal-
lenges, improve efficacy, broaden the spectrum of activities, and explore alternative sources
and approaches. This can lead to the development of more effective antimicrobial strategies
to combat infectious diseases and promote public health [8–11]. One of the benefits of
continuous advancements in nanotechnology is the introduction of nano-materials with
antimicrobial activity [12–16]. Nano-materials containing AgO, ZnO, TiO2, SiO2, and others
have good stability compared to organic materials, which is an important characteristic
of antimicrobial materials. Nanoparticles (NPs) and their composites have been shown
to have antimicrobial properties [16–22]. Metal- and metal oxide-based NPs have non-
specific broad-spectrum antimicrobial activities [23–27]. The induction of resistance by
microbes is complicated by the non-specific antimicrobial activity of NPs. These NPs are
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effective microbicidal and microbiostatic agents owing to their unique properties. The an-
timicrobial properties of polymeric composites and biopolymers have been demonstrated,
along with those of modified and unmodified NPs [28]. Blending metals and metal oxides
with polymers/biopolymers produces highly improved antimicrobial activities due to
their synergistic effects [21,29–35]. Blending refers to the mixing of metal or metal oxides
with polymers or biopolymers to form a uniform mixture. This can be achieved by melt-
ing, casting, mechanical mixing, or dissolution, depending on the characteristics of the
components.

Various materials are known for their antimicrobial activities, including silver-
based [36,37], zinc-based [12,38], and copper-based materials [39–41], chitosan [42–44], es-
sential oils [45–47], nano-materials [16,48,49], enzymes [50–52], polyhexanide
compounds [53–55], clay minerals [56,57], and noble gases [58,59]. Metal-based composites
are effective antimicrobial agents. They heal wounds, damage the microbial membranes,
and exert long-lasting effects [12,36,39]. Chitosan is natural and useful in medicinal appli-
cations. It is safe for the human body, possesses antimicrobial properties, and decomposes
in the environment [42,43]. Essential oils, which originate from plants and have a pleasant
smell, are helpful against microbes. They can be easily added to different products, although
their effectiveness varies significantly [45,46]. Nano-materials have several advantages,
including improved surface area and targeted delivery. However, their potential toxicity
to the human body and environment remains a major challenge [16,48]. Enzymes, such
as endolysin, proteases, and amylase are specific and easily breakable, but are expensive.
Polyhexanides, another class of materials, are effective against biofilm formation but may
lead to resistance and environmental damage. Clay minerals are abundant, have physical
modes of antimicrobial action, and exhibit inconsistencies in antimicrobial performance.
Noble gases are inert and non-toxic with a considerable antimicrobial performance. Reports
have indicated that further studies should be conducted on their availability, cost, and
antimicrobial mechanisms [56,57]. When choosing or fabricating antimicrobial materials
for different applications, it is important to consider their effectiveness, safety, and envi-
ronmental impact. A summary of the categories of these materials based on their active
antimicrobial agents is presented in Table 1.

Table 1. Comparison of various types of materials for antimicrobial activity.

Material Type Pros. Cons. Ref.

Silver-based
materials

• Broad-spectrum antimicrobial activity
• Long-lasting efficacy
• Low toxicity to human cells
• Intercepts biofilm formation

• Toxicity issue at high concentrations
• Environmental concerns
• Limited efficacy against some

microorganisms
• Incompatible with wound healing
• Uneconomical

[36,37]

Copper-based
materials

• Broad-spectrum antimicrobial action
• Durability and long lasting
• Fast microbial inactivation

• Toxic at high concentrations
• Unpleasant odor and taste
• Regulatory issue

[39,40]

Quaternary
ammonium
compounds (QACs)

• Broad-spectrum antimicrobial activity
• Anti-corrosion
• Long-standing residual activity
• Ease to apply

• Potential for microbial resistance
• Limited activity
• Skin irritation problem
• Activity depends on environmental

factors
• Less stable in elevated pH levels

[60,61]

Chitosan-based
materials

• Biocompatibility
• Biodegradability
• Adhesive and antioxidant properties
• Broad-spectrum antimicrobial effect

• Poor solubility in neutral pH levels
• Fluctuating antimicrobial performance
• Chelation of metal ions
• pH dependent

[42,43]



J. Funct. Biomater. 2024, 15, 103 3 of 29

Table 1. Cont.

Material Type Pros. Cons. Ref.

Essential oils

• Natural origin
• Aromatherapeutic behavior
• Broad-spectrum antimicrobial activity
• Eco-friendly
• Less likely of resistance

• Fluctuating performance
• Allergies and sensitivity
• Volatility and evaporation
• Storage and shelf life
• Limited perseverance

[45,46,62]

Nano-materials

• High surface area
• Easy penetration
• Targeted delivery
• Controlled release
• Less resistance development

• Toxicity issue
• Limited understanding of prolonged

activity
• Fabrication challenges
• Agglomeration problem
• Standardized testing protocol

deficiency

[16,48]

Enzymes

• Biological origin
• Biodegradability
• Low toxicity to humans
• Precision
• Responsive to environmental factors

• Dependent on environmental
conditions

• Limited spectrum of activity
• Sensitivity to processing conditions
• Limited shelf life

[50–52]

Polyhexanide-based
materials

• Low toxicity
• Broad-spectrum antimicrobial activity
• Against biofilm formation
• Long-lasting antimicrobial action
• Easy solubility

• Limited activity
• Allergic issues
• Resistance issues
• Potential staining
• Environmental persistence

[53–55]

Clay minerals

• Abundant and natural
• Broad-spectrum antimicrobial activity
• pH stability
• Non-toxicity
• Biocompatibility

• Fluctuating performance
• Water solubility problem
• Potential environmental impact
• Particle aggregation
• Cytotoxicity issue
• Instability in unfavorable environment

[56,57]

Noble Gases

• Inert nature
• Non-toxicity
• High diffusivity
• Broad-spectrum antimicrobial action

• Uneconomical
• Unstable in composites
• Lack of clarity in mechanism
• Anesthesia issue at elevated levels
• Management problem
• Restricted penetration

[58,59]

Zinc-based materials

• Broad-spectrum antimicrobial activity
• Low toxicity
• Biocompatibility
• Eco-friendly
• Less likely resistance

• Limited solubility
• Fluctuating performance among

microbes
• Probable accumulation in body

[12], This
work

ZnO-based nano-materials are proven materials for various applications, including
antimicrobial action [63]. In biomedical applications, ZnO exhibits selective toxicity, biocom-
patibility, a reactive oxygen species-generating ability, and photochemical stability [64–66].
According to the U.S. Food and Drug Administration (21CFR182.8991), ZnO is a safe
(GRAS) material. Furthermore, ZnO inhibits the growth of microbes and has been used
to preserve and control the spoilage of different types of foods [67]. Mechanisms, such as
reactive oxygen species generation, Zn2+ release, NP penetration, and membrane deteri-
oration, have been suggested for the antimicrobial actions of ZnO NPs [12,68–72]. These
mechanisms can be categorized as chemical or physical. Chemical attacks (microbicidal)
kill microorganisms, whereas physical interferences (microbiostatic) inhibit their growth.
Although a chemical attack is intended to kill microbes, it can inhibit growth if the con-
centration of the agent is too low. For healthcare applications, ZnO-based nano-materials
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must be further evaluated to ensure their safety and efficacy before their widespread use.
Furthermore, these nano-materials should be carefully evaluated for their potential toxicity
to minimize their adverse effects on humans, animals, and plants. The advantages and
drawbacks of these two mechanisms are summarized in Table 2.

Table 2. Comparison of microbicidal and microbiostatic mechanisms.

Method Pros. Cons.

Microbicidal

• Disease prevention. Microbicidals play a key role
in preventing the spread of infectious diseases.
They help eliminate or control microbes that can
cause illnesses in humans. By killing or inhibiting
the growth of harmful microbes, they can reduce
the risk of infections [73].

• Improve hygiene. Microbicidals are commonly
used in cleaning and sanitization practices. They
can effectively disinfect surfaces, equipment, and
objects, promoting good hygiene. Hospitals,
laboratories, food processing facilities, and public
spaces pose special risks of contamination [74].

• Health impact. Microbicidals have had a
significant impact on public health by controlling
the spread of infectious diseases. A number of
pathogens have been reduced through their use,
improving the health outcomes of people in
general [75].

• Versatility. Microbicidals come in various forms,
including liquids, sprays, wipes, and gels. This
versatility allows for easy application on different
surfaces and in various contexts. They can be used
on skin, medical equipment, household surfaces,
and even in water treatment processes [76].

• Resistance development. The overuse or misuse
of microbicidals can contribute to the
development of microbial resistance.
Microorganisms have the potential to adapt and
evolve, leading to a reduced effectiveness of
certain microbicidal agents over time. This is a
significant concern in healthcare sectors where
multi-drug resistant bacteria can emerge [77].

• Environmental impact. Some microbicidal
compounds have adverse effects on the
environment. When disposed of improperly or
released into water bodies, they can contaminate
ecosystems and impact aquatic life. Additionally,
the production and disposal of microbicidals can
contribute to pollution and waste generation [74].

• Collateral damage. Microbicidals are designed to
target and eliminate microbes, but they can also
affect useful microbes. In some cases, the use of
microbicidals can disrupt the natural balance of
microbial communities, both externally on
surfaces and internally in the human body. This
can have implications for the overall health and
functioning of ecosystems and humans [78].

• Safety concerns. Certain microbicidals may pose
health risks if used incorrectly or in excessive
quantities. Some individuals may develop allergic
reactions or skin irritations when exposed to
certain microbicidal agents [76].

Microbiostatic

• Preservation. Microbiostatics can be used in
various industries, such as food and beverage,
pharmaceuticals, and cosmetics, to preserve the
quality (over the storage time) of products. By
inhibiting microbial growth, they prevent
spoilage, contamination, and the proliferation of
harmful pathogens [79].

• Selectivity. Microbiostatic agents can target
specific types of microorganisms, allowing for
selective control. This is beneficial when the goal
is to inhibit the growth of harmful bacteria or
fungi while leaving beneficial microorganisms
unaffected [75].

• Reduced resistance. Compared to microbicidals,
microbiostatics are less likely to induce resistance
in microbes. Since they do not kill the microbes
outright, there is less selective pressure for the
development of resistant strains. This can be
advantageous in long-term (continuous)
antimicrobial use [80].

• Lower toxicity. Microbiostatic agents generally
have a lower toxicity profile compared to
microbicidal agents. This means they are less
harmful to host cells and tissues and can be used
at higher concentrations without significant
adverse effects. This low toxicity makes them
suitable for applications where direct contact with
living organisms is required [81].

• Limited effectiveness. Microbiostatic agents
inhibit only microbial growth without killing
them. This means they may not be effective in
situations where the rapid and complete
elimination of pathogens is pivotal. Microbes may
continue to multiply once the concentration of the
microbiostatic agent decreases or when conditions
become more favorable for growth [79].

• Potential rebound growth. When the inhibitory
effect of a microbiostatic agent is removed, there is
a risk of microbe rebound growth. If the
conditions become favorable again, the
microorganisms that were previously inhibited
may resume their growth, leading to a resurgence
of the microbial population. This rebound effect
can pose challenges, especially where maintaining
long-term control is needed [82].

• Need for continuous application. Unlike
microbiocidal agents that can provide a sustained
antimicrobial effect, microbiostatic agents
typically require a continuous supply to maintain
their activity. Discontinuing the use of
microbiostatics may allow microbial growth to
resume. This can be a disadvantage when
considering cost and convenience [83].

• Interference. Microbiostatic agents can interfere
with microbial diagnostic tests by inhibiting the
growth of microbes. This interference may lead to
wrong conclusions [84].
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Microbiostatic materials or surfaces inhibit the growth of microorganisms without
killing them. Microbiostatic materials can be applied to various surfaces and products
to prevent the infection and spread of harmful microorganisms. Their numerous uses
involve healthcare settings, meal preparation, household products, and other environments
where hygiene and infection control are critical [85,86]. The inhibition of bacterial growth
is a characteristic of microbiostatic materials [23]. Second, microbiostatic materials have
long-lasting effects. A variety of microbiostatic materials are non-toxic to humans; therefore,
they are suitable for a range of applications. Microbiostatic materials help prevent the
emergence of antimicrobial resistance in addition to targeting specific microorganisms.
Although microbiostatic materials can reduce microbial growth, they are not necessarily
sterile or capable of eliminating all pathogens. To maintain their normal functions, cleaning
and proper hygiene practices are essential, along with the use of microbiostatic materials.

Several factors influence the microbiostatic activity of ZnO-based nano-materials,
including size, shape, concentration, stability, exposure time, pH, and surface properties.
Increasing the surface area of the NPs and their ability to release Zn2+ ions helps smaller
particles exhibit higher antimicrobial activity. The surface charge of the ZnO NPs can also
affect their interactions with microorganisms. Positively charged NPs have stronger antimi-
crobial effects, likely because of their enhanced binding to negatively charged microbial
cell membranes [87–90].

This review summarizes the current state of research regarding ZnO-based nano-
materials for microbiostatic activity. Additionally, microbiostatic activity evaluation meth-
ods, mechanisms of action, and factors affecting the performance of the materials are
summarized. Although there are numerous reviews regarding antimicrobial materials,
there is no single review that focuses on the selected research area. Additionally, several
reviews have been published on ZnO nanostructure-based materials with microbicidal
effects, rather than microbiostatic activities. Thus, it is worth updating the progress in
ZnO-based nano-materials with microbiostatic activities. In this review, these materials
are categorized as unmodified ZnO NPs, modified ZnO NPs, unmodified one-dimensional
ZnO nanostructures, and modified one-dimensional ZnO nanostructures. The character-
istics of these materials and their microbiostatic performances are discussed in detail in
this paper.

An extensive review of scholarly articles was undertaken through academic reposito-
ries such as Scopus, Web of Science (WoS), and PubMed to compile this comprehensive
summary. The research technique involved the utilization of search terms linked to ZnO
nano-materials, their antimicrobial properties, and the microbiostatic impact on various
microorganisms. Additionally, backward searching and scrutinizing reference lists also
served to highlight pertinent studies. The search was not restricted by a specific time range,
allowing for a comprehensive analysis of the available literature up to the present. Re-
search was chosen for its focused examination of the antimicrobial properties of ZnO-based
nanocomposites to guarantee alignment with the central theme of this analysis.

2. Brief History and Properties of ZnO

Zn is the fourth most used metal worldwide, after Fe, Al, and Cu [91]. Zn is an
essential element in the human body and is found in tissues. Zn plays a significant role
in the fight against human infections. It has a high reduction ability, thus facilitating the
formation of ZnO from Zn. The use of ZnO in nanoscience began in the 1930s [92,93].
Research on ZnO has increased drastically since 1990, although it was developed only
in 2000 BC [94,95]. Since its discovery, ZnO has been used in ointments, treatments of
different infections, and cosmetic applications owing to its biocompatibility [96]. Although
several countries, such as India, Iran, China, Germany, the USA, and France, are associated
with Zn/oxide production, large-scale ZnO production methods were introduced in the
19th century by the Americans (direct method) and France (indirect method) [94]. Three
ZnO production methods are available: (1) the direct oxidation of Zn metal, (2) ore reduc-
tion to metallic Zn with subsequent reoxidation, and (3) oxide precipitation followed by
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calcination. In the 21st century, ZnO has been extensively studied and established as an
inorganic compound with 5 × 108 kg annual production. The applications of ZnO in brass,
semiconductors, galvanization, and die casting have been discussed in detail in another
review [94]. The synthesis methods for ZnO NPs and their derivatives have been discussed
in detail elsewhere [97,98].

One-dimensional ZnO nanostructure and zero-dimensional ZnO nano-materials, such
as NPs, are among the most well-known antimicrobials. Both classes of materials are
morphologically different and exhibit different properties depending on their chemical
modifications [99]. Although nanostructures and ZnO NPs have antimicrobial proper-
ties [100,101], they are preferable for such applications [12,102]. However, note that the
NPs may also be more cytotoxic to mammalian cells, highlighting the importance of careful
consideration when using NPs for biomedical applications [103]. High efficacy, activity
against different infectious microorganisms, and cost-effectiveness are among several ad-
vantages of using ZnO NPs [17]. Researchers have investigated the antimicrobial activity
of ZnO-based materials to exploit these and other aspects, which are discussed below, after
a brief introduction to microorganisms and the associated challenges.

3. Challenges of Working with Microorganisms
3.1. Culturing and Containment Risks

Microbes are ubiquitous and cannot be observed with the naked eye. Microbial culture
is a crucial process for in vitro experiments. One of the primary risks is the contamination
of cultures with unintended microorganisms. Contamination can occur through airborne
particles, improperly sterilized equipment, or cross-contamination between cultures. Con-
tamination can lead to inaccurate experimental results and the unintentional propagation of
potentially harmful microorganisms. Certain bacteria, viruses, and fungi cause diseases in
humans, animals, and plants. Cultures of pathogenic microorganisms require strict contain-
ment measures to prevent accidental exposure or release. Laboratory-acquired infections
can occur if proper precautions are not taken, posing a risk to laboratory personnel and
the community. Accidental spills or leaks of cultures, contaminated media, or waste can
occur during handling, transfer, or disposal. This can lead to environmental contamination
or the spread of microorganisms. To reduce the risk of spills and leakages, it is crucial
to follow proper containment protocols. These include the use of spill kits, biohazard
bags, and appropriate waste disposal methods. Cultivating microorganisms that possess
antibiotic-resistance genes can contribute to the proliferation of antibiotic resistance in the
environment. If microorganisms that resist antibiotics are set free, or if their genetic material
is transferred to other organisms, the effectiveness of antibiotics in medical and veterinary
treatments may be impeded. Appropriate containment measures and the responsible use
of antibiotics are crucial to mitigate this risk [104–106].

To mitigate these risks, laboratories should follow specific biosafety guidelines and
regulations, such as the ones provided by the Centers for Disease Control and Prevention
in the United States or the World Health Organization [106–108]. These guidelines classify
microorganisms according to their potential risks and suggest suitable levels of containment
and safety measures for each category. Furthermore, it is crucial to ensure the safety of
culture and containment practices through the regular training of laboratory personnel,
proper waste management, and strict adherence to standard operating procedures.

3.2. Development of Resistance

As discussed earlier, the AMR of microbes refers to the microbe’s ability to resist the
effect of the antimicrobial agent to which it was designed to eliminate them and is one
of the most challenging issues in public health and sustainable economic development.
A highly influential report estimated that approximately 10 million people could perish
annually by 2050 because of AMR [68,82,109–111]. In addition to being a major global
health problem, AMR has become a challenging problem for researchers designing and
synthesizing drugs for specific microbes that are not vulnerable to resistance. AMR can
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arise from natural processes (intrinsic), genetic mutations (acquired), inaccurate diagnoses,
and the overuse or misuse of drugs. As depicted in Figure 1, the molecular mechanisms
of AMR include the inactivation of antibiotics, target protection, target site modification,
active efflux, target bypass, decreased influx, and downregulation [112–115]. These factors
have been discussed in detail [116,117]. Inconsistencies in duplicating the performance of
the materials include the results of antimicrobial resistance and non-standardized testing
methods of antimicrobial activity (agar dilution and disk diffusion) [118].
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Integrated R&D programs are necessary to overcome AMR, and these efforts require
highly trained experts and monetary investments. Nano-materials, especially NPs, can
overcome the capacity of microbes to develop resistance owing to their unique characteris-
tics [14]. Creating societal awareness regarding the proper use of drugs could minimize
this overall problem. Most antimicrobials, either for humans or animals, are inexpensive
and available in healthcare centers. Thus, enhancing awareness of the proper use, handling,
and management of waste is crucial. While antimicrobial activity tests are performed
on a laboratory scale (as observed in most reports), the low concentration of microbes
tested for large amounts of antimicrobial agents is not representative of the actual situation.
Similarly, in vitro experiments may provide reproducible performances, but the reality test
(in human or animal bodies) may not have a similar effect. Such tests would highlight only
the potential for the intended purposes.

4. Antimicrobial Activity of ZnO
4.1. Time Course of ZnO for Antimicrobial Activity

Durable antimicrobials provide long-term defense against germs. They work well
in numerous applications because they do not require repeated applications. A US Envi-
ronmental Protection Agency (EPA) report showed that the EPA endorsed a long-lasting
antimicrobial agent in 2020 [119]. As a part of this continuous effort, researchers are
exploring long-lasting antimicrobial materials for public use. Among these, ZnO-based
materials have emerged as promising candidates owing to their distinctive physicochemical
characteristics and broad-spectrum efficacy. The time course of the antimicrobial action
of ZnO-based materials is a compelling process affected by different factors, such as the
constituents of the composite, concentration, and microbial target. According to the avail-
able reports, ZnO-based materials can be effective for minutes [12,120], hours [12,121],
days [122–124], weeks [125,126], and months [126]. The most long-lasting antimicrobials
are synthesized through the methods of ZnO NPs incorporation, encapsulation, surface
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coating, and slow-release formulations [124–126]. These approaches involve the incorpora-
tion of antimicrobial agents into materials or coatings to provide sustained protection for
various applications [127]. An overview of the time course of the antimicrobial activity of
ZnO-based materials is provided in Table 3.

Table 3. Time course of ZnO-based materials for antimicrobial activity.

Activity Time Course Note Ref.

Immediate contact and
interaction Initial minutes

• When ZnO-based antimicrobials make contact with
microbes, immediate interaction initiates.

• Adhesion and physical contact to microbial surfaces occur,
and ZnO NPs start to release Zn2+ ions.

[12,120]

Early disruption of microbial
membrane Minutes–hours

• ZnO NPs, especially in nano size, disrupt microbial
membranes within the early hours.

• Involves the generation of reactive oxygen species (ROS),
cell membrane damage, and interference with important
cellular activities.

[12,121]

Zn2+ ion release and
intracellular influence

Hours–days

• In hours to days, ZnO-based materials continue to release
Zn2+ ions, and they penetrate microbial cells, leading to
DNA damage, enzyme inhibition, and interference with
signaling activities.

[122,123]

Microbial growth inhibition Days

• As Zn2+ ions accumulate, the growth and reproduction of
microbes are inhibited.

• ZnO-based materials exert a bacteriostatic or fungistatic
effect, preventing the proliferation of microbes.

[124]

Continuous antimicrobial
activity Days–weeks

• Antimicrobial action is sustained for prolonged time due
to ZnO NPs.

• It involves maintaining the effective amount of Zn2+ ions
or other active agents, prohibiting microbial expansion
and biofilm formation.

[125]

Long-term residual effects >Weeks

• ZnO-based composites can produce residual effects,
providing continuous antimicrobial activity for an
extended period.

• Especially important in surface coatings.

[126]

Adaptation and resistance
dynamics Weeks–months

• Microbes might develop adaptation to ZnO-based
antimicrobials over time.

• Continuous exposure can lead to microbial strains with
decreased susceptibility, spotlighting the relevance of
continuous assessment.

[126]

4.2. ZnO NP-Based Materials

Gram-negative and Gram-positive bacteria are classified according to their cell wall
type. Both categories contain a peptidoglycan layer and a cytoplasmic membrane. Gram-
negative bacteria also contain lipopolysaccharides in their outer membranes, whereas Gram-
positive bacteria contain polymeric technoic acids [14]. Both bacterial membranes have
negative charges due to carboxylate- and phosphate-containing groups (Gram-negative
and Gram-positive, respectively) [72]. The negative charges on the membrane serve as
binding sites for metals and other environmental conditions. NPs’ antimicrobial action is
through reactive oxygen species generation, disruption, penetration, and interactions with
proteins and DNA [128]. Figure 2 shows the mechanisms underlying the antimicrobial
activities of ZnO nanostructures.
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Figure 2. Antimicrobial activity mechanism of ZnO nanostructures. Reprinted from Ref. [129].

The antimicrobial activity of ZnO NPs can be enhanced by modifying their surface
properties, such as by coating them with polymers, peptides, or other biomolecules, which
can improve their stability and selectivity toward target microorganisms. ZnO NPs exhibit
relatively low toxicity in mammalian cells, making them promising candidates for devel-
oping novel antimicrobial agents for various biomedical applications, including wound
healing, dental materials, and medical implants [12,130,131]. As shown in Table 4, unmodi-
fied ZnO NPs show considerable potential as microbiostatic agents and can be used in a
variety of applications to prevent the growth of microorganisms.

Researchers have used unmodified ZnO NPs for microbiostatic activities against dif-
ferent microorganisms, such as Streptococcus mutans (S. mutans) [132], Pseudomonas putida (P.
putida) [133], Streptococcus pyogenes (S. pyogenes) [134], Staphylococcus epidermidis (S. epider-
midis), Enterococcus faecalis (E. faecalis), Bacillus subtilis (B. subtilis), Escherichia coli (E. coli),
Proteus vulgaris (P. vulgaris), Salmonella typhimurium (S. typhimurium), Shigella flexinari (S. flex-
inari), Pseudomonas alcaligenes (P. alcaligenes), Enterobacter aerogenes (E. aerogenes) [135], My-
cobacterium tuberculosis (M. tuberculosis) [136], Staphylococcus aureus (S. aureus), Pseudomonas
aeruginosa (P. aeruginosa), Serratia marcescens (S. marcescens), and Klebsiella pneumonia (K.
pneumoniae) [137]. These ZnO NPs were either purchased from the market or synthesized
using different methods (refer to Table 4). The common findings of these reports are as
follows: (1) bulk ZnO is less toxic (toward microbes) than ZnO NPs and (2) the toxicity
of ZnO NPs depends on the size of the NPs, visible light, and dose of the NPs. Note that
particle size and light play significant roles in microbiostatic activity, especially for ZnO
NPs, compared to other metal–metal oxide NPs [27]. The abscissa and ordinate in Figure 3A
show the time (min) and changes in lux output (relative light units, RLUs), respectively,
for a P. putida strain exposed to 0 and 1 mg/L ZnO NPs. From 0 to 60 min, there was a
light output loss from the biosensor, indicating the toxicity of the ZnO NPs toward the
strain. Similarly, as the size of the ZnO NPs was increased from 12 to 212 nm, the number
of viable cells recovered increased from approximately 7% to 82% (Figure 3B), showing that
the smallest size (12 nm) inhibited the growth of the S. aureus strain by approximately 97%.
According to these reports, the bacteriostatic activity of ZnO NPs was achieved through
the release of Zn2+ ions and generation of reactive O2 species (ROS). In addition, some
microbes, such as E. coli, may lose their integrity after exposure to ZnO NPs [138].
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Table 4. Microbiostatic activity and other characteristics of bare ZnO NPs.

Material Target Microbe Time, Temp Synthesis Method Note Ref.

ZnO NPs

S. mutans 24 h, 37 ◦C Precipitation–
diffusion

The inhibition ability was determined
using the liquid dilution method. The
minimum inhibition concentration (MIC)
was found to be 500 ± 306.18 µg/mL. Size
reduction in the NPs increases the contact
surface and improves the performance. NP
size = 125 nm

[132]

E. coli, S. aureus
P. aeruginosa, E.
faecalis, P.
aeruginosa, A.
baumannii

24 h, 37 ◦C Plant-mediated
biosynthesis

Aristolochia indica leaf was served as a
source for the NP synthesis. The MIC was
determined via Macro-broth dilution. With
a size of 22.5 nm and zeta potential of
−21.9 ± 1 mV exhibited, the MIC increased
from 25 to 200 µg/mL. NP size = 50–70 nm.

[139]

Pseudomonas
putida KT2440 24 h, 28 ◦C N/A

Commercial ZnO NPs were used. Assayed
via dilution plating on salt-free Luria Broth.
Bulk equivalents of these NPs showed no
inhibitory activity, indicating that particle
size was determinant in activity. Zn ions
and nano-ZnO were effective bacteriostatic
agents, unlike the bulk-ZnO in 10 mg
Zn/L. NP size < 100 nm.

[133]

S. pyogenes 24 h, 37 ◦C Commercial
product

Shape: Spherical with rod mixture. The
turbidity method was used to determine
the bacteriostatic effect of ZnO NPs. The
turbidity of the bacterial suspension
treated with 10, 50, and 100 µg/mL of ZnO
was reduced by 35.75 ± 5.28, 70.29 ± 6.86,
and 81.18 ± 5.70%, respectively, within
24 h. Binding ZnO to bacterial cell wall:
Electrostatic force between Zn+ and
anionic groups on bacterial cell wall. NP
size = 31.4–66.3 nm.

[134]

S. epidermidis, S.
pyogenes, E.
faecalis,
B. cereus,
P. vulgaris,
S. typhimurium
S. flexinari, P.
alcaligenes,
E. aerogenes

Room temperature
and solvothermal

Methicillin resistant and sensitive strains
were tested. A 4–7 mM colloidal
suspension of ZnO NPs inhibited > 95% of
growth for most of the microorganisms,
except S. typhimurium, as its growth was
inhibited by 50% under ambient lighting
conditions. The release of free Zn2+ ions
from ZnO had minimal effect on the
performance. Bacteriostatic activity of ZnO
NPs: through the accumulation of NPs in
the cytoplasm or on the outer membranes.
NP size = 12–307 nm.

[135]

M. tuberculosis 24 h, 37 ◦C Chemical
precipitation

A Microplate Alamar Blue Assay (MABA)
was used to determine the MIC of ZnO;
1 µg/mL of ZnO was the lowest
concentration inhibiting the growth of the
bacteria. ZnO NPs did not show
bactericidal effect against M. tuberculosis.
NP size = 9.3 ± 3.9 nm.

[136]

S. epidermidis, S.
pyogenes, S.
marcescens, K.
pneumoniae,
P. aeruginosa

24 h, 37 ◦C Facile microplasma

Shape: Nanosheets (40–50 nm size),
nanodrums, and nanoneedles. ZnO used:
1 mg/mL.
The antibacterial activity of the ZnO
nanostructures was determined using the
Agar well diffusion method. A maximum
inhibition zone of 21 mm was recorded for
S. marcescens. Growth inhibition was
higher in ZnO dissolved in dimethyl
sulfoxide than that of dry ZnO powder.
Mechanism: release of Zn2+ ions and a
higher surface area-to-volume ratio.

[137]
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As discussed above (Table 4), ZnO NPs have gained significant attention in recent
years owing to their microbiostatic activities. Although they offer several advantages, they
also have certain drawbacks that need to be considered. ZnO NPs can agglomerate and
lose their desired properties, such as surface area and reactivity, owing to their inherent
tendency to form aggregates. Aggregation can affect stability, dispersion, and overall
antimicrobial efficacy. Another problem is their nonspecific activity; ZnO NPs exhibit
broad-spectrum antimicrobial activity, which implies that they can target a wide range of
harmful and beneficial microorganisms. Thus, to minimize the associated concerns and
gain additional uses, the modification of ZnO NPs is vital.

Chemically modified ZnO NPs show promise for microbiostatic applications. The
antibacterial properties of the NPs were enhanced through the the addition of several
chemical groups. Some of the most commonly used modifications include coating ZnO
NPs with metals/oxides [23,140–143], organic compounds, and polymers [137,144–148]
(Table 5). Some advantages of polymeric NP composites for antimicrobial activity [149–152]
are as follows. (1) Controlled release: Polymeric NP composites can be designed to have a
controlled release of antimicrobial agents. A sustained antimicrobial effect can be main-
tained by releasing antimicrobial agents at a controlled rate over time. (2) Targeted delivery:
polymeric NP composites can target specific microorganisms. Therefore, this can increase
antimicrobial effectiveness and reduce side effects by delivering the agents directly to the
site of infection. (3) Improved stability: Polymeric NP composites can improve the stability
of antimicrobial agents by reducing their degradation. This can increase their shelf life
and ensure that they are effective for longer periods. Polymeric NP composites reduce the
toxicity of antimicrobial agents. Polymeric NP limit the interaction of agents with healthy
cells and tissues, thereby reducing the risk of toxicity. (4) Enhanced penetration: Polymeric
NP composites enhance the penetration of antimicrobial agents into biofilms and other
difficult-to-reach regions. This can improve the effectiveness of the agents and reduce
the risk of resistance. A range of advantages make polymeric NP composites effective
antimicrobial agents. In addition, modifiers have been used to solve the ZnO NP aggre-
gation problem during antimicrobial tests [153,154]. Furthermore, ZnO NPs have been
enhanced with an ionic liquid by acting as both an antimicrobial agent and a dispersion
medium (Figure 4) [147]. In this study, two ionic liquids were used to disperse ZnO NPs,
namely, choline acetate and 1-butyl-3-methylimidazolium chloride, abbreviated as IL1 and
IL2, respectively, and tested against E. coli, B. subtilis, K. pneumoniae, and S. epidermidis.
The highest efficiency was obtained when the ZnO NPs were dispersed in IL1 and IL2
(ZnO + IL1 and ZnO + IL2) and tested against S. epidermidis (Figure 4D). The ZnO NPs
were dispersed in phosphate-buffered saline (PBS) for comparison.
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Figure 4. Growth inhibition studies of ZnO+PBS, ZnO+IL1, ZnO+IL2, IL1, IL2, and gentamicin at
the concentration range of 50−120 µg/mL in (a) E. coli, (b) B. subtilis, (c) K. pneumoniae, and (d) S.
epidermidis. PBS-treated cells were treated as a negative control. Error bars represent standard error
with respect to the mean of three biological replicates. ** p < 0.001, *** p < 0.0001. Reprinted with
permission from Ref. [147]. Copyright 2018 American Chemical Society.

Liu et al. reported the role of UV irradiation in enhancing the bacteriostatic activity of
ZnO NPs supported by ethylcellulose/gelatin (EG) fibers against E. coli and S. aureus [144].
As shown in Figure 5A, EG fibers containing 1.5 wt. % ZnO NPs (Z1.5-EG) have shown
better antimicrobial activity with UV exposure (UV Z1.5-EG) than UV-protected (Dark
Z1.5-EG) materials against the target strains. The EG fiber without ZnO NPs but with UV
exposure (UV Z0-EG) was also tested against the selected microbes and showed almost no
antimicrobial activity (Figure 5B). OD600 (shown in the ordinate of Figure 5A) is the optical
density at 600 nm, where the bacterial culture was measured [155].

In another study, mixtures of metal oxides and ZnO NPs were prepared and their
synergistic effects on antimicrobial activity were investigated [143]. The antimicrobial
activities of the materials (ZnO−CuO, ZnO−Ag2O/Ag, and ZnO−SnO2 NPs, prepared
using the in situ reduction method) increased as their concentration increased. Of these
mixed metal NPs, ZnO−AgO2/Ag showed the best performance even at low concentra-
tions (50 µg/mL) in 3 h against P. aeruginosa, A. baumannii, K. pneumoniae, and C. albicans.
In comparing the band energy gaps (Eg) of the bimetallic oxide NPs, ZnO−AgO2/Ag
produced the lowest value (1.98 eV) (Figure 6), and the authors hinted that there might be
a relationship between the Eg and antimicrobial performance, although clear evidence is
lacking. Another report [156] indicated that a reduction in Eg increased the photocatalytic
activity of NPs. This might enhance the generation of ROC, subsequently increasing the
antimicrobial activity. Generally, bimetallic mixed-oxide NPs show better antimicrobial
efficiency than single-metal oxide NPs. Other ZnO NP-based materials are listed in Table 5,
including the type of material, target microorganism, synthesis method, particle size, and
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other characteristics. The detailed synthesis mechanisms of ZnO NPs and their composites
are discussed in another review [157].
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Table 5. Microbiostatic activity and other characteristics of modified ZnO NPs.

Material Target Microbe Time, Temp Synthesis Method Note Ref.

ZnO-EG a E. coli and S.
aureus 24 h, 37 ◦C Electro-spinning

Antimicrobial activity was performed
using the disc diffusion method; 1,
1.5, and 2 wt.% ZnO NPs showed
inhibitory diameters of 0.69, 1.30, and
1.61 mm/mg against E. coli and 0.75,
1.17, and 1.33 mm/mg against S.
aureus, respectively. Efficiency was
enhanced via UV irradiation.
Excellent hydrophobicity, water
stability, and antibacterial
performance. NP size = 30 nm.

[144]

ZnO-GPTMS b E. coli and S.
aureus 24 h, 37 ◦C

Sol−gel method
and surface
modification

The preparation of the bacterial
inoculum was carried out using the
McFarland scale. The reaction time of
the ZnO NP synthesis did not make
changes in size or antibacterial
activity. Antibacterial results with
different treatments were better for S.
aureus compared to E. coli.
Parameters such as dyeing, softening,
and number of washes did not affect
the efficiency. NP size = 5 nm.

[145]

ZnO-L-RMGIC
c Cariogenic 24 h, 37 ◦C Probe sonication

NP size ranged from 10 to 150 nm.
Zinc ion was released from the NPs.
The highest Zn ion releases over 1, 14,
and 28 days were 12.59, 13.5, and
14.1 mg/L, respectively. After 24 h,
the highest and the lowest bacterial
count were 2.79 × 104 and
1.5 × 103 cfu/mL, respectively.

[146]

ZnO-ILs d

E. coli,
B. subtilis,
K. pneumoniae,
and S. epidermidis

24 h, 37 ◦C Precipitation and
dispersion

ZnO NPs (60 nm) were dispersed in
choline acetate and
1-butyl-3-methylimidazolium
chloride to avoid aggregation. The
ionic liquids served for dispersion
and as an antibacterial agent. ZnO
NPs exhibited the highest
antibacterial activity in
1-butyl-3-methylimidazolium against
S. epidermidis. The production of ROS
increases efficiency.

[147]

ZnO-NFC e
S. aureus, B.
cereus, and K.
pneumoniae

20/24 h, 30/37
◦C

Electrostatic
assembly

The AATCC 100 standard test
method was used to assess the
antimicrobials activity. In total, 4 mg
of the composite suspension (100 µL
of nutrient broth) or 1.5 cm by 1.5 cm
specimens of a coated paper sheet
(100 µL of a solution of 12.5% diluted
nutrient broth) were used. The test
was performed in the presence and
absence of light.
NP size = 40.7 ± 14.5 nm.

[158]
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Table 5. Cont.

Material Target Microbe Time, Temp Synthesis Method Note Ref.

ZnO-
PVP/PVA/PGA
f

E. coli and S.
aureus 24 h, 37 ◦C Hydrothermal

ZnO NPs were stabilized using PVP,
PVA and PGA polymers;
2.1 × 107 CFU/mL and
4.1 × 107 CFU/mL of S. aureus and E.
coli, respectively, were used. Cell
reduction activity of ZnO NP was
performed using the colony count
method in liquid.
NP size = 30–100 nm.

[159]

ZnO-
PDDA/RMGM
g

E. coli 48 h, 37 ◦C Hydrothermal

The standard plate counting method
was used for the antimicrobial effect.
About 107 CFU/mL of E. coli was
used. It is reusable with a rate of over
98%. NP size = 16.95 nm.

[160]

ZnO, ZnO-PVA
h

E. coli and S.
aureus 24 h, 37 ◦C Solvothermal

Antimicrobial activity was analyzed
using an agarose diffusion assay. The
density of bacterial cells in the liquid
cultures was measured at a 600 nm
wavelength. Cell suspension for
antibacterial activity was 1 × 105

colony-forming units (CFUs) mL−1.
The MIC was determined using a
modified resazurin method. In total,
100 µL of nutrient broth or sterile
saline was used on the plates, and a 5
× 106 CFU/mL bacterial suspension
was added. ZnO-PVA was used for
anti-infection (female mice, 5 × 106

CFU/mL E. coli in 50 µL of sterile
phosphate-buffered saline). NP size =
4 nm.

[161]

ZnO/SBA i E. coli and S.
aureus 24–72 h, 37 ◦C

Co-condensation/
impregnation/
calcination

In total, 2 mg of ZnO/SBA powder
was added to 20 mL of LB agar, and
100 µL of each of S. aureus (105 CFU
mL−1) and E. coli (105 CFU mL−1)
were used. Photocatalytic
antibacterial activity. SBA/ZnO
showed a bacteriostatic effect with
inhibition rates of 32.61 and 38.33%
against E. coli and S. aureus,
respectively. NP size = 40 nm

[162]

ZnO/Ag-Haw
j

E. coli and S.
aureus 24 h, 37 ◦C

Template-oriented
precipitation/sol–
gel method

ZnO/Ag-HAw was sintered at 600
C for 10 h before use. ZnO/Ag-HAw
showed non-cytotoxicity, and ZnO
had an average particle size less than
30 nm. Monkey bone marrow
mesenchymal stem cells were used.
Antimicrobial activity was
investigated using the plate
colony-counting method. The
measured ZnO in the sample was
9.97 wt.%, which was about 66.5% of
the theoretical value. The material
had a better antibacterial effect
against S. aureus than E. coli.

[140]
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Table 5. Cont.

Material Target Microbe Time, Temp Synthesis Method Note Ref.

ZnO-PLGA k E. coli 24 h, 37 ◦C

Laser
ablation/low-
temperature
technology

Rod-like ZnO with an average
hydrodynamic NP diameter of 47 nm
(90% ZnO and 10% metallic Zn). The
number of cells on surface of the
composite with 0.001% and 0.01%
ZnO decreased by 2 and 10 times,
respectively. The PLGA–ZnO NP
composite containing 0.1% ZnO NPs
had bacteriostatic properties.
At ZnO NP concentrations of 0.001%,
0.01%, and 0.1%, the rate of
8-oxoguanine formation in DNA
increased 1.5, 2.3, and 2.8 times,
respectively. PLGA had no
antibacterial effect.

[163]

ZnO/PVA/Cel
l

C. albicans,
E. coli, and
S. aureus

24 h, 30/37 ◦C Molding

An antibacterial test was performed
using the viable shake-flask method.
Colony: 105–106 CFU/mL. Solution
shaken at 150 rpm at a certain
temperature (bacteria: 37 ◦C, fungus:
30 ◦C) for 24 h in a water bath
oscillator. The thickness of the film
was 63–69 µm. Zn2+ reached a
maximum release value of
4.20 mgL−1 after 24 h.

[164]

ZnO-PHB m E. coli and
S. aureus

24 h,
37 ◦C

Electro-spinning
and
electrospraying

It has an average porosity of around
85% and is thermally stable, and 3
and 5 wt.% ZnO were used to form
the composite. The growth inhibition
by ZnO-PHB was about 95–97%. The
PHB alone did not inhibit bacterial
growth. NP size = 8–20 nm

[165]

ZnO-PLA-
SiO2

n S. aureus 18 h,
37 ◦C

sol–gel method
and coating

When 1.5% ZnO and 1.5% SiO2 were
used, the highest growth inhibition
was 20%. SiO2 reduced the bacterial
inhibition capacity. With an increase
in ZnO and SiO2 contents, the
bacteriostatic effect was disturbed.
Only PLA + 1% ZnO was effective
bactericidal (90% bacterial cell
growth inhibited); 1% ZnO + 1%
SiO2—bacteriostatic property.

[166]

ZnO/PAN@NFMs
o

E. coli and
S. aureus

24 h,
37 ◦C

Solution
blow-spinning

Antimicrobial activity was evaluated
using a plate count method assay. For
S. aureus, the bacteriostatic rate can
reach 100%. For E. coli, the best
antibacterial effect was achieved
when the mass of ZnO NPs was
5 wt.%, and the bacteriostatic rate can
reach 99.9%. The bacteriostatic rate
for E. coli remained 99% after
10 cycles. NP size = 32.8–40.7 nm

[167]
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Table 5. Cont.

Material Target Microbe Time, Temp Synthesis Method Note Ref.

ZnO/TiO2
p E. coli and

S. aureus
24 h,
37 ◦C Hydrothermal

Size: 100 nm ≥ diameter of the
particles, and the composite
displayed a rhomboid shape.
Synthesis temperature affects the
performance. The maximum
bacteriostatic activity reached 99 and
90% against S. aureus and E. coli,
respectively. Antibacterial
mechanism: through the ROS
formation and release of Zn2+ ions.
The smaller the size of the ZnO/TiO2
nanoarray, the stronger the
piezoelectric and antibacterial
activity.

[23]

ZnO-
SCF/PEEK q

E. coli and
S. aureus

24 h,
37 ◦C

In
situ/hydrothermal

The addition of ZnO improves the
binding force between the SCF and
PEEK. The composite has good wear
resistance too. The composition of
ZnO, SCF, and PEEK with 7.5, 15, and
77.5 wt.%, respectively, has the best
antimicrobial effect. It produced
diameters of 28.9 and 22.2 mm for E.
coli and S. aureus, respectively.

[148]

Sb-ZnO
Mg-ZnO

E. coli,
S. aureus,
Saccharomyces,
and
A. niger

18/24 h,
37 ◦C Sol–gel method

The bacteriostatic rate of Sb-doped
ZnO was only 12% as the plates were
incubated in the dark. Under
irradiated incubation, Mg-ZnO
showed an improvement in its
bacteriostatic rate from 9.8% without
irradiating to 83.5%. However, the
bactericidal effect was higher than the
bacteriostatic effect.

[142]

CTS/-ZnO r E. coli and
S. aureus

24 h,
37 ◦C

Room temp. and
casting

A nano-ZnO solution was prepared
with particle sizes of 5 µm, 100 nm,
and 50 nm. The smaller the particle
size of the ZnO, the greater the
bacteriostatic activity observed. The
composite material had a better
inhibitory effect on S. aureus than on
E. coli. The material containing 0.3%
of 50 nm nano-ZnO had the best
antibacterial effect on both target
microbes.

[168]

CA/ZnO/Ag
NPs s

E. coli and
S. aureus 24/108 h, 37 ◦C Electro-spinning

Antibacterial activity was evaluated
using the Kirby Bauer disc diffusion
assay, performed on an agar plate
and in liquid medium. The material
effectively inhibited the growth of
both the strains up to 108 h; 100%
bactericidal effect (0% viable cells)
against both strains.
NP size = 17.85 nm.

[141]
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Table 5. Cont.

Material Target Microbe Time, Temp Synthesis Method Note Ref.

ZnO-carvacrol C. jejuni 48 h, 37 ◦C N/A

ZnO NPs and carvacrol were tested
separately and combined. ZnO NPs:
<12.5 µg/mL had little inhibition
effect, and bacteriostatic and
bactericidal effects with 25 and 50
µg/mL, respectively. Synergistic:
carvacrol had a better effect than ZnO
NPs. ZnO NP effect: physically
induce cell leakage.

[169]

ZnO-Mk t

S. aureus, L.
fusiformis, P.
vulgaris, and Pr.
vermicola

24 h, 37 ◦C Co-precipitation

The microbiostatic effect of Mk-ZnO
NPs was determined through the
MIC, live and dead, and antibiofilm
assay. Mk-ZnO NPs inhibit the
growth of Gram-positive and
Gram-negative bacteria at 40 and 50
µg/mL, respectively. A 90–50% cell
viability at concentrations of 10–100
µg/mL. It also exhibited a mosquito
larva controlling capacity.
NP size = 10–15 nm.

[170]

ZnO@PVA/KGM
u

E. coli and B.
subtilis 24 h 37 ◦C

Electro-spinning
and
ultra-sonication

The material was treated @140 ◦C in
citric acid to improve water
insolubility. The highest antibacterial
activities for E. coli and B. subtilis
were found in 1.0 and 2.0 wt.%
ZnO@PVA/KGM, respectively. When
the ZnO content is >1.0 wt.%, the
antibacterial activity for E. coli
decreased. Reason: as the value of
ZnO NPs increased, the particles
gathered into clusters randomly. The
material has good photocatalytic
activity and filtration efficiency. NP
size = 30 ± 10 nm.

[171]

ZnO-ALG v E. coli 48 h, 37 ◦C Electro-spinning

Thin and homogeneous nanofiber
with a size of 100 ± 30 nm. It
exhibited good stability for more than
10 days in physiological conditions. It
has similar mechanical properties as
human skin. It has 21.0 ± 3.5 MPa
and 6.0 ± 1.3% in tensile strength and
elongation break, respectively.

[172]
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Table 5. Cont.

Material Target Microbe Time, Temp Synthesis Method Note Ref.

ZnO-MO w

P. aeruginosa, A.
baumannii, K.
pneumoniae, and
C. albicans

3–24 h, 37 ◦C Solvo-
chemical/reduction

ZnO−Ag2O/Ag, ZnO−CuO, and
ZnO−SnO2 composite NPs (<4 nm)
were synthesized to gain
broad-spectrum activity. The broth
dilution method showed the MIC for
A. baumannii as the best result. The
antibacterial activities of the samples
were investigated using the Luria
broth (LB) method. Highly effective
antibacterial activity was obtained at
12 h of incubation, and the
ZnO−AgO2/Ag composite was the
best. ZnO−AgO2/Ag showed high
antibacterial activity after just 3 h at a
50 µg/mL.

[143]

a ZnO-ethylcellulose/gelatin, b ZnO-(3-glycidyloxypropyl)trimethoxysilane, c ZnO-lignin-resin-modified glass
ionomer cement, d ZnO-ionic liquids, e ZnO-nanofibrillated cellulose, f ZnO-polyvinyl pyrrol-idone/polyvinyl
alcohol/and poly (L-glutamic acid), g ZnO-cation polyelectrolyte diallyl dimethylammonium/chloride Red
Mud Granular Material, h ZnO-poly(vinyl alcohol), i ZnO-Santa Barbara Amorphous, j ZnO-Ag-hydroxyapatite
whiskers, k ZnO-poly (lactic-co-glycolic acid), l ZnO-Polyvinyl alcohol/Cellulose, m ZnO-poly(3-hydroxybutyrate),
n ZnO-polylactic acid/silica, o ZnO/polyacrylonitrile hybrid nanofiber mats, p ZnO-titanium dioxide, q ZnO-
surface of acidified short carbon fiber/Poly(ether ketone), r chitosan-ZnO, s Cellulose acetate/ZnO/Ag NPs,
t ZnO-Murraya koenigii berry, u ZnO@poly(vinyl alcohol) (PVA) and konjac glucomannan, v ZnO-Alginate,
w ZnO-metal oxides.

4.3. One-Dimensional ZnO Nanostructures and Their Composites

Although ZnO NPs have a higher surface area and potentially enhanced antimicrobial
properties, the one-dimensional ZnO nanostructure demonstrates significant antimicrobial
activity. The particle size, surface area, and zinc ion release rate can affect the effectiveness
of one-dimensional ZnO nanostructures. However, note that studies primarily focus on
ZnO NPs due to their unique properties and potential applications. When one-dimensional
ZnO nanostructures come into contact with an appropriate medium, they release Zn2+

ions, thereby exhibiting antimicrobial activity. This property has been utilized in various
applications, where the antimicrobial activity of ZnO helps prevent the growth of harmful
microorganisms, which is a microbiostatic effect (Table 6).

Accordingly, one-dimensional ZnO nanostructures with different shapes, such as
polypropylene-modified ZnO nanowires (ZnO NW-PP), ZnO nanorods (ZnO NR), ZnO rods,
ZnO plates, and ZnO nanospheres, have been synthesized using different methods and tested
for microbiostatic activity against selected microorganisms (refer to Table 6) [173–176]. Wang
et al. prepared ZnO nanospheres and ZnO nanorods and loaded them onto the surfaces of
titanium and titanium–zirconium (Ti-Zr) implants to enhance their antimicrobial activities
against S. aureus and E. coli [175]. As indicated in Figure 7A–D, the materials showed
>95% antimicrobial activity after 48 h against both microbes. ZnO nanospheres and ZnO
nanorods were also separately loaded onto the surfaces of the implants and showed less
antimicrobial activity after 6 h of their composites. However, the ZnO nanorods exhibited
almost equivalent effects as the composite material after 48 h. The ZnO nanorods exhibited
better long-term antibacterial activity than the ZnO nanospheres owing to the slow release
of their larger particles (compared to the ZnO nanospheres). However, the nanospheres
were released faster because of their smaller particle size and showed better short-term
antimicrobial activity against the target microbes.
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Table 6. Characteristics of one-dimensional nanostructures of ZnO-based materials and their micro-
biostatic activities.

Material Target Microbe Time Temp Synthesis Method Note Ref.

ZnO NW@PP a E. coli
B. subtilis

24 h,
37 ◦C

Chemical bath
deposition

An antimicrobial test was performed
with the presence of fluorescent light.
Clear growth inhibition was observed
for B. subtilis, but almost not for E.
coli. A plasma treatment was used
before the chemical bath deposition.

[173]

ZnO NR b

S. aureus
B. subtilis
E. coli
A. aerogenes

Hydrothermal

The rods have an average diameter
and length of 45 and 250 nm,
respectively. In the presence of
different concentrations of ZnO NR,
S. aureus and B. subtilis did not show
any growth even at a lower
concentration of 100 µg/mL. For E.
coli and A. aerogenes, a 500 µg/mL
concentration was enough for
inhibition observation.

[174]

Ti-ZnO NRS c E. coli
S. aureus

24 h,
37 ◦C Hydrothermal

Different ZnOs produced good
long-term antibacterial effects and a
poor short-term antibacterial effect
with E. coli, due to the weak
bacteriostatic property of ZnO against
E. coli. Antibacterial effect: due to the
rapid release of ZnO nanospheres.

[175]

ZnO-rod
ZnO-plate

E. coli
S. aureus

24 h,
37 ◦C

Combustion, O2
annealing

Nano-sized/one-dimensional rod
and nano-sized/one-dimensional
plate ZnO were prepared from
commercial ZnO (bulk).
Nano-sized/one-dimensional rod:
diameter = 30 to 180 nm and length =
100 to 300 nm.
Nano-sized/one-dimensional plate:
width = 40 to 250 nm and length = 80
to 350 nm. One-dimensional ZnO
size = 30 nm to 300 nm.
Oxygen-annealed ZnO showed
slightly higher antimicrobial activity
than the unannealed ZnO against the
target strains. After UV irradiation,
the antimicrobial activities of the
oxygen-treated materials increased by
around 19%.

[176]

a ZnO-nanowires@polypropylene membrane, b ZnO nanorods, c Titanium–ZnO nanorod–nanosphere hierarchical
structure.
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Generally, ZnO-based nano-materials with elongated shapes, such as nanorods or
nanowires, appear to be more effective in penetrating and disrupting microbial cells,
leading to improved microbiostatic activity against target microbes. In addition, the shape
of the ZnO-based nano-materials can influence their physicochemical interactions with
microbial cells. Moreover, ZnO-based nano-materials with rough or porous surfaces tend to
have larger surface areas than those with smoother surfaces, leading to improved efficacy.

5. Conclusions and Outlook

Nano-materials modified with ZnO have recently attracted significant attention be-
cause of their potential antimicrobial properties. Several studies have demonstrated the
microbiostatic activity of these materials against bacteria, fungi, and viruses. The broad-
spectrum activity of this microbial compound is important because it targets a wide variety
of pathogens and reduces the risk of microbial resistance. Numerous studies have shown
that ZnO NPs exhibit a strong microbiostatic activity. ZnO releases zinc ions (Zn2+) that
penetrate microbial cells and disrupt their structure and function. In addition to releasing
zinc ions, light and moisture can generate reactive oxygen species from ZnO NPs. It is
possible to cause oxidative stress and damage microbial cell components with ROS, such
as superoxide and hydroxyl radicals. Researchers have explored various strategies for
enhancing the Zn2+ release and maintaining the microbiostatic activity of ZnO. The surface
modification of nano-materials with ZnO NPs or other organic materials enhances the
dispersibility of the particles and stability of the overall structure. Zn2+ can also be sus-
tained using controlled-release systems, ensuring prolonged antimicrobial efficacy. Among
other applications, biomedical devices, wound healing, and food packaging benefit from
nano-materials’ antimicrobial effects.

For practical applications, several challenges must be overcome despite the nano-
materials’ promising microbiostatic properties. Standardized testing protocols are required
to address concerns regarding cytotoxicity and potential environmental impacts. ZnO-
based nano-materials should be investigated for improved biocompatibility and safety
profiles, as well as better microbiostatic efficacy evaluation procedures. Additionally,
these materials have long-lasting antimicrobial potential for public use; however, further
investigation is required.

Nano-materials based on ZnO have demonstrated significant potential in microbio-
static applications. Their strong antimicrobial activity, broad-spectrum activity, and tunable
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properties make them attractive candidates for healthcare and food safety applications.
However, research and development are required to address these challenges and ensure
the safety and effectiveness of practical applications. Additionally, to enhance the micro-
biostatic activity, it is important to consider the impact of shape during the design of the
materials. Shaping ZnO nano-materials enhances their interactions with microorganisms,
improves the penetration and disruption of cell membranes, and increases the release of
antimicrobial agents.
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