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Abstract: This paper establishes a connection between control theory for partially observed discrete-
event systems (DESs) and automated theorem proving (ATP) in the calculus of positively constructed
formulas (PCFs). The language of PCFs is a complete first-order language providing a powerful tool
for qualitative analysis of dynamical systems. Based on ATP in the PCF calculus, a new technique
is suggested for checking observability as a property of formal languages, which is necessary for
the existence of supervisory control of DESs. In the case of violation of observability, words causing
a conflict can also be extracted with the help of a specially designed PCF. With an example of the
problem of path planning by a robot in an unknown environment, we show the application of
our approach at one of the levels of a robot control system. The prover Bootfrost developed to
facilitate PCF refutation is also presented. The tests show positive results and perspectives for the
presented approach.

Keywords: positively constructed formula; automated theorem proving; discrete-event system;
supervisory control; partial observability

1. Introduction

The class of discrete-event systems (DESs) is a wildly used modeling formalism for
a large variety of man-made complex objects [1–3]. Logical DESs, as a subclass of DESs,
represent system evolution in terms of states changing in response to the occurrence of
some events at non-predetermined time instants. A logical DES is commonly represented
as a finite-state automaton, the transitions of which from state to state are labeled with the
letters of some finite alphabet and correspond to events occurring in the system. Sequences
of such transitions form the words of a regular language that describes the behavior of the
system from the high-level, or symbolic, point of view. Consequently, system properties
may be described as statements over these formal expressions.

One of the most popular ways to deal with logical DESs containing events that may
be switched off is the supervisory control theory (SCT) [4]. SCT was developed as a tool
for restricting DES behavior according to a set of constraints defined by some specification.
For example, logical DESs are extensively exploited nowadays in mobile robots and robot
group control, e.g., [5–7]. A detailed description of SCT is presented in, e.g., [1,8,9].

It is well known that formal logic aims at dealing with symbolic structures, such
as formal languages, by formulating their properties as theorems that must be proven.
Thus, studying logical DESs is naturally embraced by the paradigm of automated theorem
proving (ATP). ATP represents an implementation of a natural human reasoning process
with the help of formal logic and special computer programs called provers. Developed
to help mathematicians in producing and verification of formal mathematical proofs,
nowadays it is useful in program analysis, system verification, etc., providing results in a
wide range of areas. The latest examples include proving the 400-year-old Kepler conjecture
on sphere packing [10] and the correctness of the seL4 operating system kernel [11], not
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to mention earlier proof of the four-color theorem in graph theory [12] and the verified
C compiler CompCert [13]. A modern domain of ATP application is robotics, where it
helps mostly in planning [14] and decision making [15]. For example, in [16] for planning
and control in swarm robotics, the PDDL language is used, which is based on the classical
STRIPS-style ATP. In [17], theorem proving is applied for verification of the framework for
modeling the controllers of autonomous robots, combined with the automatic generation
of C++ code.

We suggest a new way to study and design logical DESs that is based on ATP in the
calculus of positively constructed formulas (PCFs). PCFs are first-order formulas that do
not contain the negation symbol in their syntax [18,19]. The language of PCFs is a complete
first-order language, providing a powerful tool for qualitative analysis of dynamical and
intelligent systems. Its applications include telescope orientation [20], elevators group
control [21], pursuing goals [22], and achieving targets [23]. To facilitate the inference
search in the PCF language, a prover Bootfrost is developed [24]. The most important
features of the PCF calculus and its prover implementation are the following:

• Large block data structures for representing formulas and inference rules;
• Absence of necessity to remove existence quantifiers with a skolemization procedure,

which decreases the complexity of the inference;
• Compatibility with application-specific heuristics and general logical inference control

heuristics;
• Clarity of the logical inference, which helps to find formalization errors;
• Support for the equality predicate;
• Modifiability of semantics to support nonclassical logics.

In modern ATP, wide usage of proof assistants, noted in [25], such as Isabelle/HOL
in [10], HOL Light and Isabelle in [11], or Coq in [12], instead of fully automated provers, is
caused by the fact that significant user input is often required to clarify a difficult situation
that has stumbled the inference. In addition to its other advantages, the prover Bootfrost
combines the power of automated reasoning with the ability to implement user-designed
strategies.

Our previous papers addressed how the basic problems of the supervisory control
theory (SCT) [4] for logical DESs can be solved using the PCF-based technique. The is-
sues considered so far include controllability checking to determine if a formal language
restricting DES functioning may be guaranteed by a supervisor, a supremal controllable
sublanguage of a given specification language construction, or a monolithic supervisor
realization (e.g., [26]). This paper deals with partially observed DESs, in which the oc-
currence of some events is unavailable for observation. In this case, the property called
observability of a formal language determines those specifications on DES functioning that
may be ensured by supervisory control. Some effective tests for observability have been
already suggested, e.g., in [27,28], where the former considers the observation function in
the form of a mask, and the latter is based on the algebraic operations on processes that
represent DESs. For regular languages, a fixed-point test for observability from [29] can
be effectively implemented. The test employs the operator that is also associated with the
algorithm for computing the infimal prefix-closed and observable superlanguage of a given
language. It is used in [29] to find a solution for the supervisory control and observation
problem in its general case, i.e., when a supervisor should provide a language lying in
some predefined range of languages.

This paper extends the use of PCF calculus and ATP in SCT problems. Namely, it will
be shown how the polynomial time algorithm for testing observability from [1] may be
implemented with PCFs. If observability is violated, then the conflicting strings can also
be found with the help of another PCF that will be also presented. The main advantage
of the presented PCF-based approach and the employment of the ATP technique is the
declarative description of the used algorithms. In this case, the programmer only describes
(declares) the properties of the required result, and the solution (method) is provided by the
logical programming system, as a result of searching for the logical conclusion of some goal
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statement. This is a step up from programming in imperative languages (e.g., C/C++, Java,
etc.), as the programmer does not have to worry about the low-level details of the program.

There are some tools developed for the analysis and design of controlled DESs in the
framework of SCT. Among them are TCT [30], DESUMA/UMDES [31,32], Supremica [33],
and others. Having user-friendly graphical interface and high-performance algorithms,
Supremica supports extended finite-state machines where transitions are labeled with
guards and actions in addition to events [34]. The guards and actions reference variables,
which can be declared over finite integer ranges or as enumerated type. Although a PCF-
based tool for SCT is a developing project, our approach suggests that both guards and
actions may be expressed in the form of logical statements of any kind. Unlike focusing on
large-scale industrial examples like in [35–37], the usage of PCFs and the PCF calculus for
DES control suggests exploiting logical tools for knowledge representation and processing.

The contribution of this work consists in presenting a theoretical base of the original
logical approach to handling partially observed DESs. An ATP-based technique of DES
specifications testing for observability is presented with the usage of PCF representation
of logical DESs. This paper’s structure is the following. After the necessary preliminaries
on the PCF calculus provided in the next section, in Section 3, we state the problem of
the supervisory control of partially observed DESs and present a PCF for observability
checking. Section 4 provides a PCF extracting conflicting strings. In Section 5, the PCF-
based implementation of the supervisory control of DESs is described. Section 6 is dedicated
to the prover Bootfrost and its main features. Section 7 provides a case study for the path-
following problem for a mobile robot. In the conclusion, we discuss the presented approach
and outline directions for our future work.

2. The PCF Calculus

The calculus of positively constructed formulas (PCFs) is based on the refutation of
the negation of an original statement which is to be proved. The main idea is the following:
if the negation of the statement is proved to be false, then the statement itself is true. The
language of PCFs is a special variant of the language of first-order logic (FOL), which
consists of first-order formulas (FOFs) built out of atomic formulas, or atoms, with the help
of operators &, ∨, ¬, →, ↔, quantifier symbols ∀ and ∃, and constants True and False. We
suppose the reader is familiar with the concepts of atom, literal, and term, understood in
the usual sense.

2.1. The PCF Language

Let X = {x1, . . . , xk} be a set of variables, A = {A1, . . . , Am} a set of atomic formulas, and
F = {F1, . . . , Fn} a set of subformulas. Then, the formulas ((∀x1) . . . (∀xk)(A1& . . . &Am →
(F1 ∨ . . . ∨ Fn))) and ((∃x1) . . . (∃xk)(A1& . . . &Am&(F1& . . . &Fn))) are denoted as ∀X A : F
and ∃X A : F, respectively, keeping in mind that the ∀–quantifier corresponds to the disjunc-
tion of all subformulas, and ∃–quantifier corresponds to their conjunction. If F = ∅, then
the above formulas turn to the form ∀X A : ∅ ≡ ∀X A → False and ∃X A : ∅ ≡ ∃X A&True,
since the empty disjunction is understood as False, whereas the empty conjunction is
understood as True. Let ∀X A and ∃X A be abbreviations of such formulas. If X = ∅ then
∀A : F and ∃A : F are analogous abbreviations. The set of atoms A is called a conjunct. Vari-
ables from X, bound by corresponding quantifiers, are called ∀–variables and ∃–variables,
respectively. In ∀X A, a variable from X that does not appear in the conjunct A is called an
unconfined variable. Note that ∀∅ ≡ ∀∅ : ∅ ≡ ∀True → False ≡ False.

Definition 1 (Positively constructed formulas (PCF)). Let X be a set of variables and A a
conjunct. Then, the following holds:

1. ∃X A and ∀X A are ∃–PCF and ∀–PCF, respectively.
2. If F = {F1, . . . , Fn} is a set of ∀–PCFs, then ∃X A : F is a ∃–PCF.
3. If F = {F1, . . . , Fn} is a set of ∃–PCFs, then ∀X A : F is a ∀–PCF.
4. Any ∃–PCF or ∀–PCF is a PCF.
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A PCF starting with ∀∅ is called a PCF in the canonical form. Any PCF can be repre-
sented in the canonical form. If F is a noncanonical ∃–PCF, then ∀∅ : F is the canonical
PCF, since ∀∅ : F ≡ True → F ≡ F. If F is a noncanonical ∀–PCF, then the canonical PCF is
∀∅ : {∃∅ : F} ≡ True → True&F ≡ F. Type quantifiers ∀∅ and ∃∅ are used to regularize
PCFs, i.e., to transform them to the canonical form.

The term “positively” comes from the fact that according to the definition, PCFs
contain no negation operator (¬). This is also true for the semantics of language; negation
is “concealed” in the implications that are meant following universal quantifiers. Note
that any FOFs can be represented as PCFs, since the PCF language is a special notation of
classical FOFs, as well as the conjunctive normal form, the disjunctive normal form, etc.
The converting algorithm is presented in [38].

For easier reading, a PCF may be represented graphically as a tree structure. For
example, consider a PCF representation of a FOF

F = ¬
(
∀x∃yP(x, y) → ∃zP(z, z)

)
.

An image F ′ of F in the PCF language is F ′ = ∀ : ∅{∃ : ∅{∀x : ∅{∃y : P(x, y)}, ∀z : P(z, z)
{∃ : False}}}. The tree-like form of the latter is

∀ : ∅ ∃ : ∅
∀z : P(z, z) ∃ : False.

∀x : ∅ ∃y : P(x, y)

The root ∀∅ of a PCF tree is called a PCF root. Each PCF root’s child ∃X A is called a PCF
base, the conjunct A is called a base o f f acts, and a PCF rooted from the base is called a
base sub f ormula. The PCF base children ∀YB are called questions to the parent base. The
subtrees of the questions are called consequents. If a question has no consequent, then the
question is referred to as goal question, and it is identical to False.

2.2. The Inference Rule

The only axiom of the PCF calculus is ∀∅ : ∅, i.e., False. The inference rule ω in
the PCF calculus is based on the search for so-called answering substitutions, i.e., such
substitutions of variables in terms that satisfy certain conditions.

Definition 2 (Answer). A question ∀YD : Υ to a base ∃X A has an answer θ if and only if θ is a
substitution Y → H∞ ∪ X and Dθ ⊆ A, where H∞ is Herbrand universe based on constant and
function symbols that occur in corresponding base subformulas.

Definition 3 (Splitting). Let B = ∃X A : Ψ, and Q = ∀YD : Υ, where Υ = {∃Z1 C1 : Γ1, . . .,
∃Zn Cn : Γn} then split(B, Q) = {∃X∪Z1

′ A∪C1
′ : Ψ∪ Γ1

′, . . . , ∃X∪Zn
′ A∪Cn

′ : Ψ∪ Γn
′}, where

′ is a variable renaming operator. We say that B is split by Q. Obviously, split(B, ∀YD) =
split(B, ∀YD : ∅) = ∅.

Definition 4 (Inference rule ω). Consider some canonical PCF F = ∀∅ : Φ. Let there exists
a question Q that has an answer θ to appropriate base B ∈ Φ, then ωF = ∀∅ : Φ \ {B} ∪
split(B, Qθ).

If a question has an answer to its base, then the base subformula is split by this
question. In the case of a goal question, we say that the base subformula is refuted because
split(B, ∀YD) = ∅. The refuted base subformula B is removed from the set of base
subformulas Φ since Φ \ {S} ∪∅ = Φ \ {S}. When all bases subformulas in Φ have been
refuted, the formula F is also refuted since ∀∅ : ∅ ≡ False.

Any finite sequence of PCFs F , ωF , ω2F , . . . , ωnF , where ωsF = ω(ωs−1F ), ω1 =
ω, ωnF = ∀, is called an in f erence of F in the PCF calculus (with the axiom ∀). An answer
to the goal question refutes the corresponding base. When all bases of the PCF are refuted,
then the PCF F is reduced to ∀, i.e., False. This means that F as the negation of the
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statement under consideration is unsatisfiable; therefore, the statement itself is true. The
details on the PCF calculus may be found in [18,19,21,39]. In [19], the correctness and
completeness of the PCF calculus with functional symbols was proven.

3. Checking Observability of a Regular Language
3.1. Partially Observable DESs

Consider a discrete event system (DES) in the form of a generator G = (Q, Σ, δ, q0, Qm)
of a formal language [4]. Here, Q is the set of states q; Σ the set of events; δ: Σ × Q → Q the
transition function; q0 ∈ Q the initial state; Qm ⊂ Q the set of marked states. Let L(G) be a
language generated by G, and Lm(G) be a language marked by G. The Ramadge–Wonham
supervisory control framework assumes the existence of a means of control G presented
by a supervisor [4]. Let Σc be a controllable event set, Σuc = Σ \ Σc, Σc ∩ Σuc = ∅. The
supervisor switches control patterns so that the supervised discrete event systems achieve
a control objective described by some regular language K.

Let G be partially observable, i.e., a set Σo of observable events is distinguished from
all events, Σuo = Σ \ Σo, Σc ∩ Σuo = ∅. The observation function is usually defined as the
natural projection P : Σ∗ → Σ∗

o , which erases unobservable events for s ∈ Σ∗ P(sσ) = P(s)σ
if σ ∈ Σo and P(sσ) = P(s) if σ ∈ Σuo. The supervisor only observes events from Σo and,
based on this information, disables events in Σc. Denote L(J/G) a language generated by
the closed-looped behavior of the plant and the supervisor. In this paper, for simplicity
of presentation, the marked language and related problems, such as the construction of
nonblocking supervisory control, are not considered.

Supervisory control and observation problem (SCOP). Given a plant G over an alphabet Σ,
a language LA ⊆ L(G), a language LE ⊆ L(G), and sets Σo, Σc ⊆ Σ, construct a supervisor
J for G such that LA ⊆ L(J/G) ⊆ LE.

The less complex problem consists in finding such control patterns that the language
marked by the supervisor is equal to some desired language. Thus, the special case of
SCOP is constructing such a supervisor that L(J/G) = K where K is called a specification
language. We refer to this problem as basic SCOP (BSCOP). The notions of controllable and
observable languages are essential in solving this problem. Let L be a set of all strings that
are prefixes of words of L, i.e., L = {s|s ∈ Σ∗ and ∃t ∈ Σ∗ : s · t ∈ L}.

Definition 5. A language K is called controllable (with respect to L(G) and Σuc) if KΣuc ∩
L(G) ⊆ K. Here, KΣuc is a shortened expression denoting concatenations of all the strings from K
with any of the symbols from the set Σuc.

Definition 6. The K is observable (with respect to L(J) and P) if ∀s, t ∈ Σ∗ (P(s) = P(t) →
(∀σ ∈ Σ)(sσ ∈ K & tσ ∈ L(J)& t ∈ K → tσ ∈ K)).

If observability holds true, this means that no event should be enabled and disabled
simultaneously to satisfy specification K. The opposite situation is called a conflict.

Supervisor existence criterion for BSCOP sounds as follows: given K ⊆ L(G), there exists
a supervisor J such that L(J/G) = K iff K is controllable and observable with respect to
L(G) and P.

The PCF-based procedure for checking controllability was suggested in [26]. It also
allows one to construct supremal controllable sublanguage of uncontrollable specification
such that it may be chosen as a new specification and be ensured by a proper supervisor. In
the rest of the paper, we show how PCFs allow testing regular language for observability
and implementing supervisory control.

3.2. Checking Observability via PCFs

There are several algorithms exist to check if the regular language K is observable.
Among them is the algorithm from [1] that is polynomial with respect to the size of the
automata generating K. The main idea of the algorithm is constructing an automaton for
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tracking two words s1, s2 of K which have the same projection P(s1) = P(s2) but such that
s1σ ∈ K while s2σ /∈ K. Strings s1 and s2 are then called conflicting because they demand
different control actions from the supervisor. Let the regular language K be recognized by
the finite-state automaton H. The algorithm from [1] suggests to consider two copies of the
automaton H and one copy of the automaton G and to design an automaton T with the
states of the form (h1, h2, q), where h1 ∈ QH , h2 ∈ QH , q ∈ QG, and the single state dead.
The existence of the state dead denotes the unobservability of K, because in this case, there
exist a set of strings si ∈ K, i = 1, 2, 3, and some event σ such that s2 = s3 and P(s1) = P(s2),
s1σ ∈ K, s3σ ∈ L(G), while s2σ /∈ K, i.e., the observability condition is violated.

We prove that the above algorithm may be realized with the help of ATP in the PCF
calculus. For this, some preliminary procedures are required, in particular, we determine
what transitions are defined in each state of automata involved, namely G and H, using
logical inference only. The following list of predicates will be exploited in this procedure: a
predicate QX(_) that corresponds to all states of the automaton X, a predicate EX(_) that
defines all events of the automaton X, and terms δX(qi

1, σi, qi
2) that determine transitions

from the state qi
1 of automaton X to the state qi

2 labeled with an event σi. Let the term
FX(qi, σj) mean that there is a transition from the state qi of the automaton X labeled by the
event σj. Let NoFX(qi, σj) mean the opposite, i.e., that there is no such transition. For an
automaton X, consider the PCF FPrepX (1) with the base BPrepX = {QX(qi), δX(qi

1, σi, q2i),
EX(σi)}:

FPrepX = ∃BPrepX
∀σ, q, q1 δX(q, σ, q1), NoF∗

X(q, σ) ∃ FX(q, σ)

∀σ, q EX(σ), QX(q) ∃ NoFX(q, σ)
(1)

During the inference search for FPrepX , the following strategy is used: First, all possible
answers to the first question are being searched for, thus atoms NoFX(qi, σj) are added into
the base. Then, answers to the second question add proper atoms FX(qi, σj) into the base
while removing respective atoms NoFX(qi, σj). The inference of PCF FPrepX for any finite
automaton X ends due to exhaustion of answering substitutions since the sets used for
searching for substitutions are finite.

The operator ∗, used for the deletion of the redundant atoms NoFX(qi, σj) added
by the first question, demonstrates the essential feature of the calculus of PCFs, namely,
the possibility of nonmonotonic inference. In particular, after applying the inference rule
ω, the atoms that participated in the matching search with the atoms marked with ∗ in
question should be removed from the base. In general, the operator ∗ affects the property
of completeness of the PCF calculus, but for the problem considered in this paper, the
inference using ∗ is always complete.

Denote by B′
PrepX the base obtained as a result of the inference search of FPrepX.

Let BObs = B′
PrepG ∪ B′

PrepH ∪ {QG
0 (q

G
0 ), QH

0 (qH
0 ), Ec(σj), Eo(σj), Euo(σj)}, where QX

0 (_)

determines the initial state of automaton X, atoms Ec(σi), Eo(σj), and Euo(σk) define
controllable and observable events. The predicate T(_, _, _) will be used to construct
states of the automaton TObs, while the predicate δT(_) will construct transitions of TObs,
and δT(q1

H , q2
H , qG, σ1, σ2, σ3, t1

H , t2
H , tG) is equal to the phrase “there is a transition labeled

(σ1,σ2,σ3) from the state (q1
H , q2

H , qG) to the state (t1
H , t2

H , tG) of the automaton TObs”.
To test observability, we employ a PCF FObs (2) that constructs the testing automaton

TObs. The questions of FObs are listed as formulas R1 − R6 below.

FObs = ∃BObs

R6

. . .
R2

R1

(2)
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R1 : ∀qG, q1
H QG

0 (qG), QH
0 (q1

H)− ∃ QT
0 (q

1
H , q1

H , qG), T(q1
H , q1

H , qG)

R2 : ∀σ, q1
H , q2

H , qG, t1
H , t2

H , tG T(q1
H , q2

H , qG), Eo(σ),

δH(q1
H , σ, t1

H), δH(q2
H , σ, t2

H), δG(qG, σ, tG)−
∃ T(t1

H , t2
H , tG), δT(q1

H , q2
H , qG, σ, σ, σ, t1

H , t2
H , tG)

R3 : ∀σ, q1
H , q2

H , qG, t1
H T(q1

H , q2
H , qG), Euo(σ), δH(q1

H , σ, t1
H)−

∃ T(t1
H , q2

H , qG), δT(q1
H , q2

H , qG, σ, ε, ε, t1
H , q2

H , qG)

R4 : ∀σ, q1
H , q2

H , qG, t2
H , tG T(q1

H , q2
H , qG), Euo(σ), δH(q2

H , σ, t2
H), δG(qG, σ, tG)−

∃ T(q1
H , t2

H , tG), δT(q1
H , q2

H , qG, ε, σ, σ, q1
H , t2

H , tG)

R5 : ∀σ, q1
H , q2

H , qG T(q1
H , q2

H , qG), Ec(σ), FH(q1
H , σ), NoFH(q2

H , σ), FG(qG, σ)−
∃ dead(q1

H , q2
H , qG, σ), δT(q1

H , q2
H , qG, σ, ε, σ, q1

H , t2
H , qG)

R6 : ∀q1
H , q2

H , qG, σ dead(q1
H , q2

H , qG, σ)

Proposition 1. Given a partially observable DES G and a regular language K recognized by a
finite-state automaton H, let in the PCF FObs (2) BObs = B′

PrepG ∪ B′
PrepH ∪ {QG

0 (q
G
0 ), QH

0 (qH
0 ),

Ec(σj), Eo(σj), Euo(σj)}. Then, the inference of FObs always terminates, and the language K is
unobservable if and only if the resulting base B′

Obs contains an atom dead(q1
H , q2

H , qG, σ).

Proof. To prove the proposition, we consider each question of the PCF FObs to show that
violation of observability leads to the appearance of the atom dead(q1

H , q2
H , qG, σ) in the base

of FObs. The question R1 adds into the base an atom T(q1
H , q1

H , qG) that serves as a starting
point for the inference since no question except the last one may be answered without
finding in the base a proper substitution for the term T(_, _, _).

Questions R2 − R4 are aimed at constructing states and transitions of the automaton
Tobs, wherein R2 is responsible for processing observable events, while R3 and R4 are
responsible for processing unobservable events occurrences. Tobs is constructed in such
a way as to ensure s2 = s3 and P(s1) = P(s2), thus implementing the main idea of the
rules for constructing Tobs from [1]. Each state of the desired automaton TObs has the form
(h1, h2, q), where the first two components of the triple are some states of automaton H, and
q is the state of automaton G, i.e., h1 ∈ QH , h2 ∈ QH , q ∈ QG. Thus, we consider a set of
strings si ∈ K, i = 1, 2, 3 corresponding to transitions between these states. An observable
event σ allows answering to the question R2 that results in adding into the base Bobs a
transition of Tobs labeled by a triple (σ, σ, σ). If event σ is unobservable, then two transitions
are constructed: The first one is determined by the question R4, labeled by a triple (ε, σ, σ)
to ensure s2 = s3, s2σ ∈ K, s3σ ∈ L(G). The second transition is constructed by the question
R3, which is labeled by a triple (σ, ε, ε) to ensure P(s1) = P(s2), s1σ, s2σ ∈ K.

The question R5 checks if a controllable event e violates the observability condition
at the current state (X1, X2, Q) of Tobs achieved by a set of strings si ∈ K, i = 1, 2, 3.
Indeed, let there be a substitution {σ → e, q1

H → X1, q2
H → X2, qG → Q} such that atoms

T(q1
H , q2

H , qG), Ec(σ), FH(q1
H , σ), NoFH(q2

H , σ), FG(qG, σ) become True simultaneously. This
means that for si ∈ K, i = 1, 2, 3, and for the event e, we have s1e ∈ K, s3e ∈ L(G), while
s2e /∈ K. By construction of Tobs, s2 = s3, and P(s1) = P(s2), and such a combination means
a violation of observability. Given such a substitution, the answer to the question R5 adds
the atom dead(q1

H , q2
H , qG, σ) into the base. It contains the information about the state and

event where the observation conditions are violated. The question R5 cannot be answered
if observability is not violated by some controllable event e.

The question R6 is the goal question an answer to which terminates the inference
search. It may be answered only if the base contains the atom dead(q1

H , q2
H , qG, σ); thus, if it

has been answered, then the language K is unobservable.
The inference of the PCF FObs is always finite since no functional symbols are used

(only calculated ones), and all sets used for searching for substitutions are finite. The
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inference always ends with either a refutation of the base by answering the goal question
R6, i.e., adding the atom dead into the base, or an exhaustion of options for searching of
answering substitutions.

Example 1. Consider a DES presented by the generator G in Figure 1 and specification language
K generated by the automaton H in Figure 2. Let Σuo = {u, v, c, e}, Σc = Σ. It may be noted
that the strings s = uv and t = ε are those that cause the conflict in the system G. Indeed, the
occurrence of event a leads to the situation when P(s) = P(t), sa ∈ K but ta /∈ K, which violates
the observability condition.

1 2

4 3

5

u

v
b

a b

a

cd e

Figure 1. Automaton G.

1 2

4 3

5

u

vb

a

cd

Figure 2. Automaton H as a recognizer of K̄.

Table 1 illustrates the process of adding new atoms to the base that define the states and
transitions of the automaton TObs serving for observability check. As one can see, the minimum
inference for PCF FObs with the base corresponding to the automata in Figures 1 and 2 consists
of four steps. Since inference is random in nature, its length may vary. The choice of questions
and answers occurs according to the chosen strategy (see Section 6), but whether the strategy will
lead to the contradiction in a short or long way is unknown a priori. Table 1 shows the inference
constructed by the prover Bootfrost, consisting of eight steps. The entire automaton TObs and all
possible conflicts can be constructed by removing the goal question R6 from PCF FObs. Figure 3
shows a part of automaton TObs constructed by the inference presented in Table 1.



Computation 2024, 12, 95 9 of 25

(1, 1, 1) (2, 1, 1)

(1, 2, 2) (2, 2, 2)

(1, 3, 3) (2, 3, 3)

(3, 1, 1)

dead

(u, ε, ε) (v, ε, ε)

(ε, u, u)

(ε, v, v)

(ε, u, u)

(ε, v, v)

(a, ε, a)

Figure 3. A part of automaton TObs for observability checking.

Table 1. PCF FObs refutation progress for checking observability using automaton TObs.

R# σ q1
H q2

H qG t1
H t2

H tG Additions into the Base

1 1 1 T(1, 1, 1)

3 u 1 1 1 2 T(2, 1, 1),δT(1, 1, 1, u, ε, ε, 2, 1, 1)

4 u 1 1 1 2 2 T(1, 2, 2),δT(1, 1, 1, ε, u, u, 1, 2, 2)

4 u 2 1 2 2 2 T(2, 2, 2),δT(2, 1, 1, ε, u, u, 2, 2, 2)

4 v 1 2 2 3 3 T(1, 3, 3),δT(1, 2, 2, ε, v, v, 1, 3, 3)

4 v 2 2 2 3 3 T(2, 3, 3),δT(2, 2, 2, ε, v, v, 2, 3, 3)

3 v 2 1 1 3 T(3, 1, 1),δT(2, 1, 1, v, ε, ε, 3, 1, 1)

5 a 3 1 1 dead(3, 1, 1, a)

6 a 3 1 1 ∅

4. Conflict Extracting

To examine partially observable systems, observer automata are often employed.
There are standard methods of constructing such automata, so we direct readers to refer to
the literature, e.g., [1]. One of the methods consists in changing all unobservable events
with the silent τ event and converting the resulting nondeterministic automaton to a
deterministic one.

Example 2. In Example 1, the observer in Figure 4 shows that the event a in the state {1, 2, 3}
causes the conflict. Indeed, to satisfy specification H in Figure 2, the event a must be disabled at
state 1 but must be enabled at state 3.

{4, 5}{1, 2, 3}

b

a

d

Figure 4. Observer automaton for H with Σuo = {u, v, c, e}.

If the specification language proved to be unobservable using PCF FObs, conflicting
strings may be extracted from the automaton Tobs with the help of another PCF, and we
name it FCon f (Equation (3)). The PCF FCon f processes the final version B′

Obs of the base
BObs obtained during the observability checking so set BCon f = B′

Obs.
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FCon f = ∃BCon f
RCon f

2

RCon f
1 (3)

RCon f
1 : ∀σ, q1

H , q2
H , qG, q1

H f , q2
H f , qG f , s1, s2, s3 δT(q1

H f , q2
H f , qG f , s1, s2, s3, q1

H , q2
H , qG),

dead(q1
H , q2

H , qG, σ)− ∃ next(q1
H f , q2

H f , qG f , s1, s2, s3, σ)

RCon f
2 : ∀σ, q1

H , q2
H , qG, q1

H f , q2
H f , qG f , s1, s2, s3, σ1, σ2, σ3 next(q1

H , q2
H , qG, s1, s2, s3, σ),

δT(q1
H f , q2

H f , qG f , σ1, σ2, σ3, q1
H , q2

H , qG)−
∃ next(q1

H f , q2
H f , qG f , σ1 · s1, σ2 · s2, σ3 · s3, σ)

Proposition 2. Given a partially observable DES G and a regular language K recognized by a finite-
state automaton H, let in the PCF FCon f (3) BCon f = B′

Obs, where B′
Obs is the final version of the

base of the PCF FObs after the end of its inference. Then, the inference of FCon f always terminates,

and the last added atom next(qH
0 , qH

0 , qG
0 , scon f

1 , scon f
2 , scon f

2 , e) contains conflicting strings as its
forth and fifth arguments.

Proof. The question RCon f
1 in the PCF FCon f is the only question that can be answered

after the start of the inference. It uses the argument values of dead(q1
H , q2

H , qG, σ) and
δT(. . . , s1, s2, s3, q1

H , q2
H , qG) to obtain the last symbols of the required conflicting strings

scon f
1 and scon f

2 . As stated in the observability checking algorithm, s2 = s3 in all terms
δT(. . . , s1, s2, s3, q1

H , q2
H , qG).

Sequential answers to the second question RCon f
2 occur according to transitions of the

automaton Tobs contained in the base BCon f as atoms δT(q1
H f , q2

H f , qG f , σ1, σ2, σ3, q1
H , q2

H , qG).
Having started in the state T(q1

H , q2
H , qG) of Tobs, the inference ends in the state QT

0 . During
the inference, the atoms next(q1

H f , q2
H f , qG f , σ1 · s1, σ2 · s2, σ3 · s3, σ) are being added into

the base where, by construction of Tobs, s1 and s2 accumulate suffixes of conflicting words.
When the initial state QT

0 of the automaton Tobs will be achieved with some substitution
{σ → e, q1

H → X1, q2
H → X2, qG → Q, q1

H f → qH
0 , q2

H f → qH
0 , qG f → qG

0 , s1 → ŝ1, s2 → ŝ2,

s3 → ŝ3, σ1 → σ̂1, σ2 → σ̂2, σ3 → σ̂3}, then ŝ1 = scon f
1 and ŝ2 = scon f

2 , where scon f
1 and scon f

2
are the strings causing the conflict in case of occurrence of the event e.

Example 3. For the conflict in Example 1, the inference of FCon f consists of two steps. When the
inference terminates the arguments of the atom next(_) in the base store the information required,
in particular, the string s1 = uv, the string s2 = εε = ε, and the conflict event a. Table 2 shows the
inference of FCon f in Example 1.

Table 2. The inference of the PCF FCon f .

σ q1
H q2

H qG q1 f
H q2 f

H q f
G

s1 s2 s3 σ1 σ2 σ3 Additions

a 3 1 1 2 1 1 v ε ε next(2, 1, 1,v, ε, ε, a)

a 2 1 1 1 1 1 v ε ε u ε ε next(1, 1, 1,u · v, ε · ε, ε · ε, a)

5. Controlled System Design

Let Γ : Q → 2Σ be the active event function (also known as feasible event function);
Γ(q) is the set of all events e for which δ(q, e) is defined. Γ(q) is also called the active event
set (or feasible event set) of G at q [1]. In the case of systems with complete observations,
the supervisor can be viewed as the recognizer H of K, i.e., an automaton that marks K
or as the recognizer H′ of its supremal controllable sublanguage K′ of the specification
K. Control actions for the string s generated by the plant are directly obtained from the
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active event set Γ(δJ(q
J
0, s))] of the supervisor automaton after the string s has been read. A

supervisor J thus ensures J(s) = [Σuc ∩ Γ(δ(q0, s))] ∪ {σ ∈ Σc : sσ ∈ K}. It is known that
a closed-looped behavior of the plant and the supervisor may be realized by the parallel
composition of the corresponding automata, i.e., L(J/G) = L(H||G).

Now, our goal is to implement supervisory control in the case of partial observation of
events in G to solve BSCOP. For this, in the case of observable and controllable specification,
one often employs an observer automata. Let HObs be an observer for automaton H. Let s
be a current string of DES G and let t = P(s) be a current observed string available. Let xobs
be the current state of HObs after the execution of t. Since observer HObs states in general
are sets of states of H, this means that after the last event in t automaton H could be in any
one of the states in the set xobs. Then, we have that JP(t) =

⋃
x∈xobs

[ΓHObs(x)], where ΓHObs
is the active event function of HObs. As stated in [1], in order to use the same technique that
was used for the case of complete observation of events, it is enough for each state xobs to
add self-loops for the unobservable events that are feasible in corresponding x ∈ xobs in H.
The resulting automaton H′

Obs guarantees the desired result L(JP/G) = L(H′
Obs||G) for a

supervisor JP.
Let Bloops = BH ∪ BHObs ∪ {unObs(ē)}. The predicate unObs(_), having a list of ele-

ments as an argument, is used to define all unobservable events of H. To obtain an element
of a list ē, the computable predicate ∈ is used. Details on the realization of lists in PCF
prover Bootfrost are presented in Section 6.3. During the inference search of the PCF Floops

(4), new transition atoms δObs(q̄, σ, q̄) corresponding to auxiliary loops for unobservable
events σ feasible in states x of H corresponding to xobs of HObs are added to the base Bloops.

Floops = ∃ Bloops
∀q, σ, q′, σ′ q̄, q̄′, σ̄ δH(q, σ, q′), δHObs(q̄, σ′, q̄′),

q ∈ q̄, σ ∈ σ̄, unObs(σ̄) ∃ δObs(q̄, σ, q̄) (4)

In PCF formalization, the behavior of the system under the supervisory control may
be described by the PCF FBSCOP (5). The predicate LJP/G(_, _) is employed to store words
of the controlled language LJP/G as its first argument. A state to which this string brought
the system is stored as the second argument. Although the language L(JP/G) is a re-
stricted version of L(G), we use a new predicate LJP/G(_, _) to emphasize that the language
constructed is a result of teamwork of the plant and the supervisor. The base BBSCOP
consists of sets of atoms corresponding to the transitions of the plant and the supervisor,
correspondingly, and contains initial atom LJP/G(ε, 1).

FBSCOP = ∃ BBSCOP
∀σ, s, q, q′, q̄J , q̄′J LJP/G(s, q), δG(q, σ, q′),

δH′
Obs(q̄J , σ, q̄′J), q ∈ q̄J

∃ LJP/G(s · σ, q′) (5)

The single question of FBSCOP may be interpreted as follows. If the system is at the
state q and an event σ occurs, then according to the δG, the system is switched to the
specified state q′, and σ is added to the current string of events s stored as the first argument
of the predicate LJP/G(_, _). The rule works only on those strings that are allowed by
the supervisor, i.e., atoms δH′

Obs(_, _, _) limit the answers that could be found with atoms
δG(_, _, _).

Example 4. In Example 1, let Σuo = {u, c, e}, Σc = Σ, i.e., the event u is now considered
observable. The corresponding observer is presented in Figure 5. It may be seen that no event must
be disabled and enabled simultaneously. In this case, the logical inference search of the PCF FObs
performed by Bootfrost terminates due to exhaustion of all possible substitutions. When the inference
search is stopped, the predicates in the base of FObs define the states and transitions of the automaton
TObs, but none of them are the dead(_) atom.

Table 3 shows a few steps of the inference of PCF FBSCOP in Example 1, with the observer in
Figure 5 modified with the PCF Floops (4).
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{3}{1, 2} {4, 5}v a

b

d

Figure 5. Observer automaton for H with Σuo = {u, c, e}.

Table 3. The first steps of the PCF FBSCOP inference constructing L(JP/G).

Base Atoms Used s q σ q′ q̄J q̄′J Additions

LJP/G(ε, 1), δG(1, u, 2),δH′
Obs ([1, 2], u, [1, 2]) ε 1 u 2 [1, 2] [1, 2] LJP/G(ε · u, 2)

LJP/G(ε · u, 2), δG(2, v, 3),δH′
Obs ([1, 2], v, [3]) ε · u 2 v 3 [1, 2] [3] LJP/G(ε · u · v, 3)

LJP/G(ε · u · v, 3),δG(3, v, 4),δH′
Obs ([3], a, [4, 5]) ε · u · v 3 a 4 [3] [4, 5] LJP/G(ε · u · v · a, 4)

LJP/G(ε · u · v, 3),δG(4, v, 5),δH′
Obs ([4, 5], c, [4, 5]) ε · u · v · a 4 c 5 [4, 5] [4, 5] LJP/G(ε · u · v · a · c, 5)

LJP/G(ε · u · v, 3),δG(4, v, 2),δH′
Obs ([4, 5], b, [1, 2]) ε · u · v · a 4 b 2 [4, 5] [1, 2] LJP/G(ε · u · v · a · b, 2)

The representation of DESs with the help of PCFs allows one to use information
coming from the environment, as well as data on the functioning of the system itself in the
process of constructing the logical inference. This can be realized by special logical rules
represented in PCF in the form of event processing questions. Answering them triggers
subinferences, in which the events coming from the environment serve as parameters used
in calculations or other decisions. To implement this inference search behavior, formulas
use the # label to indicate that the labeled term is a call to an external function.

Here, we utilize # in PCF F #
BSCOP (6) that presents a version of FBSCOP obtaining an

event from outside. Note the atom E(σ#) in the base of F #
BSCOP where σ# is the result of

calling the function get_random_event(), which provides a random event that can occur in
the current state.

F #
BSCOP = ∃ BBSCOP∪

{E(σ#)}
∀σ, s, q, q′, q̄J , q̄′J LJP/G(s, q), δG(q, σ, q′),

δH′
Obs(q̄J , σ, q̄′J), q ∈ q̄J , E∗(σ)

∃ LJP/G(s · σ, q′),
E(σ#)

(6)

Example 5. Table 4 shows the first steps of the inference of PCF F #
BSCOP in Example 4. Note the

difference in the last lines of Tables 3 and 4. Unlike FBSCOP, PCF F #
BSCOP does not generate words

of the same length, thus simulating the real system behavior.

Table 4. The first steps of the PCF F#
BSCOP inference constructing L#(JP/G).

Base Atoms Used s q σ q′ q̄J q̄′J Additions

LJP/G(ε, 1), δG(1, u, 2),δH′
Obs ([1, 2], u, [1, 2]), E(u) ε 1 u 2 [1, 2] [1, 2] LJP/G(ε · u, 2),E(σ#)

LJP/G(ε · u, 2),δG(2, v, 3),δH′
Obs ([1, 2], v, [3]), E(v) ε · u 2 v 3 [1, 2] [3] LJP/G(ε · u · v, 3),E(σ#)

LJP/G(ε · u · v, 3),δG(3, u, 4),δH′
Obs ([3], a, [4, 5]), E(a) ε · u · v 3 a 4 [3] [4, 5] LJP/G(ε · u · v · a, 4),E(σ#)

LJP/G(ε · u · v, 3),δG(4, u, 5),δH′
Obs ([4, 5], c, [4, 5]), E(c) ε · u · v · a 4 c 5 [4, 5] [4, 5] LJP/G(ε · u · v · a · c, 5),E(σ#)

LJP/G(ε · u · v, 3),δG(5, u, 1),δH′
Obs ([4, 5], b, [1, 2]), E(d) ε · u · v · a · c 5 d 1 [4, 5] [1, 2] LJP/G(ε · u · v · a · c · d, 1),E(σ#)
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The PCF FT#
BSCOP (7) presents an extended version of PCF F #

BSCOP that allows to not
only process events coming from outside but also take into account the knowledge available
in the system. The usage of FT#

BSCOP is explained in Section 7.

FT#
BSCOP =

∃ BBSCOP∪
{T(σ̄#)} ∀σ, s, q, q′, q̄J , q̄′J LJP/G(s, q), E∗(σ)

δG(q, σ, q′), δH′
Obs(q̄J , σ, q̄′J), q ∈ q̄J

∃ LJP/G(s · σ, q′)

∀σ T#(σ̄) ∃ E(σ)

(7)

6. The Prover for Refutation PCFs

To facilitate inference searches in the PCF calculus, a prover named Bootfrost is
developed. The source code of the project, written in the Rust programming language,
documentation, and examples, including those presented in this paper, can be found on the
GitHub page [24].

A number of modern approaches have been implemented in Bootfrost: perfect sharing
of terms that significantly saves memory on some tasks; indexing of the fact base; and
automatic, semiautomatic, and manual modes of logical inference searching. Rust‘s rich
type system and the ownership model guarantee memory safety and thread safety. Also,
there is no runtime or garbage collector in Rust. These features give the opportunity to
realize safe and efficient systems. The prover design is based on a transaction system
that allows one to log and roll back any changes that occur during the logical inference.
Thus, all algorithms used are taken into account. In addition, this version of the prover
is specialized for guarded PCFs. Although this limits the class of problems to be solved,
nevertheless, in applied problems and problems describing dynamic systems, only such
formulas are usually used. Guarded PCFs are the formulas in typical quantifier conditions
in which all variables controlled by the quantifier occur in the conjunct. For example,
∀x, yA(x), B(y) is a subformula with guarded variables because variables x, y occur in
the conjunct A(x), B(y), and ∀x, yA(x), B(x) is a subformula with unguarded variables
because variable y does not occur in the conjunct A(x), B(x).

The prover was tested using problems from the TPTP library [40] to empirically verify
its soundness. About 9000 problems were selected in the First-Order Formula format, and
among them, 1001 with guarded variables. None of the problems that had no solution were
solved, which is considered as the main criteria of any prover’s soundness at the CADE
ATP System Competition (https://tptp.org/CASC/, accessed on 25 April 2024).

Strategies employed in Bootfrost are divided into three main groups: question selection
strategies, answer selection strategies, and evaluated terms and commands.

6.1. Question Selection Strategies

At each step of the inference, the prover must select a question for which it will be
looking for an answer. A special procedure for the question selection is used in Bootfrost. It
scores each question by several criteria. Such criteria can be configured by the user, but
there is a default strategy that scores a question as follows:

1. Is the question a goal? Goal questions are scored highest because answering them
terminates the inference.

2. How many steps ago in the inference was the question answered for the last time?
The most distant questions are scored the highest. Such an approach provides a high
level of diversity by restricting the usage of the same question several times in a row.

3. How many times has the question been answered before? Questions with the lowest
value are scored the highest.

4. What is the level of the question branching? The ones with the lowest value are scored
the highest.

This general strategy sorts questions by the score from the highest to the lowest. Then,
a special method tries to answer questions from the list using an answer selection strategy

https://tptp.org/CASC/
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(see the next subsection). If an answer is found, the formula is transformed according to
the inference rule ω, and the transition to the next step is performed.

6.2. Answer Selection Strategies

There are two answer selection strategies in the Bootfrost prover, called the First
appropriate answer and the Best answer.

The First appropriate answer strategy selects the first found answer that satisfies a given
criteria. Such an approach leads to effective usage of the memory and CPU resources. The
criteria can be configured, and the default criteria is a trivial function returning true, which
leads to selecting the first answer found.

The Best answer strategy selects the best answer from the set of all possible answers.
Thus, this strategy finds all possible answers and then selects the best of them according to
a special selection function, which can be configured by the user. The default function just
selects an answer with the lowest total weight of all terms involved. A term weight is the
amount of nodes in a tree representing the term; for example, the term A(e) has weight 2,
and the term A(e, f (e)) has weight 4.

Another auxiliary procedure used for answer searching is a starting point selection.
There are two variants of where to start the search: “from the last” and “from scratch”. The
“From the last” method means that the next search for an answer to the question will begin
at the point where the prover stopped during the previous searching procedure. “From
scratch” means that the procedure for finding answers starts from scratch, i.e., without
taking into account previous search results. This approach is applicable for nonmonotonic
inferences and in similar situations where the previous history of the inference can change
over time and become irrelevant. For example, the “from scratch” method is used for
constructing the sublanguage K↑C of an uncontrollable specification K [26]. In the PCF
FSub, for providing a sublanguage construction, a special operator ∗ is employed. If a
question with an atom marked with the ∗ operator has an answer, then after applying
the inference rule the atoms in the base that participated in the matching search with the
marked atom should be removed from the base. The operator ∗ can be also modeled by the
command “remove-fact”, described in the next section.

6.3. Evaluated Terms and Commands

Evaluated terms (ETerms) are terms treated by the prover not as syntactical structures
but as functions that must be evaluated. For now, Eterms implemented in the prover are
arithmetical operations, compare operations, list operations (in, notin, first, last, concatena-
tion, length), and solve. The main framework of term evaluation is as follows: a special
procedure retrieves terms by IDs from the environment; then, these terms are performed;
and then, for the resulting term, using the perfect sharing structure, the ID is calculated,
and this ID is returned as the result.

Evaluated terms that are performed immediately after the inference rule ω application
are called commands. For example, “remove-fact” is a command. ETerms and commands
are classified as strategies because their main purposes are modifying the process of logical
inference searching and extending the logical capabilities of PCF. By the commands, it is
possible to model the nonmonotonic inference.

Another feature in the task description syntax for the Bootfrost prover is the ability to
use lists as arguments of terms. The following computable operations are implemented:

• Evaluated function ā ++ b̄—concatenation of lists ā and b̄;
• Evaluated predicate a \in b̄—the membership of element a to list b̄;
• Evaluated predicate ā \subseteq b̄—whether ā is a sublist of b̄;
• Evaluated function sort ( ā)—sorting list items in ascending order;
• Computed function dedup(ā)—deletion of repeating elements of the list;

List elements can be other terms and lists, and the above operations handle them only
syntactically, without considering the possibility of unification of terms.
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6.4. Complexity Evaluation

Let us say some words on the complexity of the algorithms involved. We consider the
procedure of construction automaton Tobs for checking the observability of the specification
language during refutation of PCF FObs (Section 3).

As an elementary operation of PCF refutation, we consider the search for a unifying
substitution for an atom. This assumption holds because the formula FObs under consid-
eration has a fairly simple structure (i.e., belongs to the Horn class) and an algorithm for
finding the inference can be provided for it. For example, the algorithm may be chosen in
the form of a cycle of traversing questions from top to bottom of the PCF’s tree structure
and comparing the atoms of the questions with the atoms of the base, while attempting
to unify these atoms. For example, for answering question R4, the terms T(q1

H , q2
H , qG),

Eo(σ), δH(q1
H , σ, t1

H), δH(q2
H , σ, t2

H), δG(qG, σ, tG) must be unified. Here, variables q1
H , q2

H ,
t1

H , t2
H take values from the set QH, variables qG, tG take values from the set QG , and

variable σ take value from the set Σo. So, for complexity, we have the following expression:
|QH|4 · |QG |2 · |Σo|.

Let us consider the worst case of possible inference search options. For a given
formula, one of the options is the exhaustion of all substitutions, while the answers to the
second and third questions do not exist. Another option is that the answer to the second,
and consequently, the third target question is carried out after enumerating all triplets of
states in the last steps of the inference. Thus, we do not take into account the complexity
of answering the second and third questions because they participate in the inference
only once, as well as the first question. The computational complexity of answering
question R5 may be evaluated as |QH|3 · |QG | · |Σuo| and of answering question R6 is
|QH|3 · |QG |2 · |Σuo|. Summarizing complexity for R4, R5, R6, we have |QH|4 · |QG |2 · |Σo| +
|QH|3 · |QG | · |Σuo| + |QH|3 · |QG |2 · |Σuo|. Reducing, we obtain |QH|3 · |QG | · (|QH| · |QG | ·
|Σo|+ |Σuo|+ |Σuo| · |QG |), i.e., if we go to big O notation, the complexity of observability
checking is O(|QH|4 · |QG |2 · |Σ|).

7. Case Study

As an example, we consider the problem of robot’s path planning in an unknown
environment. We use the model from [41,42] simplified in the part of the path-following
controller and extended by additional states and events, including unobservable ones.

7.1. Problem Statement

Suppose that the robot should follow a given reference path, leaving it to avoid colli-
sions with encountered obstacles and returning to it after completing avoidance maneuvers.
Let the robot’s dynamics in the horizontal plane be described [43] by equations

ẋ = u cos(ψB)− v sin(ψB),
ẏ = u sin(ψB) + v cos(ψB),
ψ̇B = ω,

(8)

where (x, y) are the coordinates of the robot in a global reference frame {U}, ψB is the yaw
angle; u and v are the surge and sway speeds, and ω is the yaw rate (Figure 6).

Assuming that u is always nonzero, we define side-slip angle β = arctan(v/u) and
a reference frame {W}, which is obtained by rotating {B} around the yaw axis through
angle β. Subsequently, the kinematic Equation (8) can be rewritten as

ẋ = vt cos(ψW),
ẏ = vt sin(ψW),
ψ̇W = ω + β̇,

(9)

where ψW = ψB + β, vt = (u2 + v2)
1
2 is the absolute value of the total velocity vector

[u v]T . The goal is to develop a path-planning solution that meets kinematic constraints
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given by minimum turning radius Rmin and lies no closer than a safe distance Ds from
obstacles.

Figure 6. Reference frames (borrowed from [41]).

We assume that the robot is equipped with a multibeam forward-looking sonar (FLS)
installed onboard in the horizontal plane in order to detect obstacles in the forward direction.
The data obtained from the FLS can be presented as a set of pairs (αi, ρi), where αi is the
beam angle counted from the robot’s heading direction (−π/2 < α ≤ αi ≤ α < π/2), ρi is
the distance to an obstacle in the beam direction, i = 1, Nb, Nb is the number of beams. If
no obstacles are detected in the direction of beam i, or ρi is greater than the detection range
ρd, then ρi = ∞.

Let IL ≜ {i : αi ≤ 0} and IR ≜ {i : αi > 0} be the sets of left and right beams of the
FLS, respectively. For each obstacle point Qi, i = 1, Nb, we define the maximum turning
radius [41,44] as

Ri
max = ρi

cos αi
sin 2βi

− Ds, βi = arctan
(

Ds

ρi
sec αi + tan αi

)
.

It can be used to evaluate the robot’s ability to bypass the point Qi at a safe distance Ds
(Figure 7), taking into account the kinematic constraint Rmin: if Rmin ≤ Ri

max, the robot can
safely bypass the obstacle point Qi. Define also RL

max = mini∈IL Ri
max, RR

max = mini∈IR Ri
max,

and ρmin = mini∈IL∪IL ρi.

Figure 7. The maximum turning radius Ri
max (borrowed from [41]).
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The main component of the proposed approach is DES Gmsn (Figure 8), which is
designed to detect situations that require updating the current path. Since, unlike [41], we
do not employ a path-following controller to drive the robot along the generated paths, a
situation may happen in which the robot finds itself in the wrong position or faced with
some obstacle. State WPD corresponds to such a situation, and an unobservable event eER
denotes transitions to this state. State RPF is the initial state. The description of all possible
system states is the following:

• RPF—reference path following;
• DOL—detouring the detected obstacle from its left sid;
• DOR—detouring the detected obstacle from its right side;
• NRP—navigation to the reference path;
• SOL—searching for an obstacle on the left;
• SOR—searching for an obstacle on the right;
• WPD—wrong position diagnosing;
• CNP—computing a new path.

Figure 8. DES Gmsn for the path-following mission.

The set of system events with their triggering conditions is shown in Table 5. Events
ALi, ARi denote switching to the obstacle avoidance modes from the other modes, i = 1, 4.
They are composite, i.e., determined by several atomic events. It is convenient to define
composite events by logical formulas, such as those presented in Table 5. For example,
event eAL1 determines switching to the mode of obstacle avoidance from the obstacle’s left
side and it is the result of occurring of event eOLNF with one of the events eORN, eORNF,
or eON.

In Figure 8, transitions caused by uncontrollable events are shown by red arrows
(eRPR, eNOR, eNOL, eOF, eOL), while unobservable events are shown by green arrows
(eER).

Changing the DES state entails building a new path for the robot. Entering states DOL
or DOR generates a path to avoid the detected obstacle using a modification [41] of the
waypoint guidance algorithm [44]. Entering state NRP constructs a path that connects
the robot’s current position with the reference path for what the path planning algorithm
from [41] is used, which is based on Dubins curves [45].
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Table 5. Events of the DES Gmsn.

Name Triggering Condition Description

eOLN RL
max < Rmin The obstacle detected on the left is near

eOLNF Rmin ≤ RL
max < Rmin + ∆R The obstacle detected on the left is not far

eNOL RL
max = ∞ There are no obstacles on the left

eORN RR
max < Rmin The obstacle detected on the right is near

eORNF Rmin ≤ RR
max < Rmin + ∆R The obstacle detected on the right is not far

eNOR RR
max = ∞ There are no obstacles on the right

eON ρmin < ρn The detected obstacle is near
eOF ρmin > ρ f The detected obstacle is far

eEAP The robot has reached the end of the avoidance path
eRPR The robot has reached the reference path
eAL1 eOLNF and (eORN ∨ eON) The robot detours the obstacle from the left
eAL2 eEAP ∨ eOLNF The robot detours the obstacle from the left
eAL3 (eOLNF ∨ eNOL) and (eORN ∨ eON) The robot detours the obstacle from the left
eAL4 eON ∨ eOLNF The robot detours the obstacle from the left
eAR1 eORNF and (eOLN ∨ eOLNF ∨ eON) The robot detours the obstacle from the right
eAR2 eEAP ∨ eORNF The robot detours the obstacle from the right
eAR3 (eORNF ∨ eNOR) and (eOLN ∨ eON) The robot detours the obstacle from the right
eAR4 eON ∨ eOLRF The robot detours the obstacle from the right
eRPF The reference path is found
ePC The path is corrected
eER An error has occured

eNPR A new path is required
eNPC A new path has been computed
eOL The obstacle is lost

7.2. System Constraints and Analysis

Let the specification for the problem above be provided by the automaton Hmsn
depicted in Figure 9. The desired robot behavior strategy can be expressed as follows: while
DES Gmsn is designed to ensure that the robot avoids places from which it is impossible
to get out using the obstacle avoidance algorithms implemented (this is guaranteed by
the rules related to obstacle avoidance modes), the specification language Kmsn imposes
additional constraints, which are interpreted as “do not change once chosen obstacle
avoidance direction until the robot returns to the reference path” (left- or right-hand rule,
which is ensured by the prohibition of transitions eAL3 and eAR3, and transitions ePRF)
and “rebuild the path only if it is vital” (realized by the prohibition of transitions eEAP).

Figure 9. Specification Hmsn for DES Gmsn.
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Before designing a supervisor as a controller that ensures specification Kmsn, first, the
supervisor existence criterion must be checked. By refuting the special PCF developed
for controllability checking in [26], the prover Bootfrost established controllability of Kmsn.
The observability of Kmsn is checked via inspection of automaton THmsn constructed using
the PCF FObs (2) (Section 3). THmsn consists of 20 states and 45 transitions and does not
contain the dead state, which means observability of Kmsn. Full THmsn may be found in
supplementary materials at [24].

Once the specification Kmsn is proved to be controllable and observable, a supervisor
may be designed as described in Section 5. To realize its control action, we employ the PCF
FT#

BSCOP (7), which allows processing events coming from outside and taking into account
the knowledge available in the system. To handle composite events, predicate T# can be
taken in the form

T(ē) = ∃ E(ē)

∀x E(x)

∀x Comp(x)

∀s̄, t̄ E(s̄), |s̄| = 1, Proc#(s̄) ∃ E(s̄)

∀s̄, t̄ E(s̄), |s̄| > 1, Comp#(s̄, t̄), s̄ ⊆ t̄ ∃ Comp(s̄)

The first question of PCF T(ē) is a general form of a question processing a composite
event in the system. The number of such questions in the instantiated PCF equals the
number of composite events in the system. In the case of Gmsn, there are eight such
questions for all eALi and eARi, and in each of them, the predicate Comp(t̄) is computed
according to Table 5 using corresponding propositional formulas. Below is a part of the
instantiated form of T# in our example:

T(ē) = ∃ E(ē)

∀x E(x)

∀x Comp(x)

∀s̄, t̄ E(s̄), |s̄| = 1, Proc#(s̄) ∃ E(s̄)

. . .

∀s̄, t̄ E(s̄), |s̄| > 1,
eAR#

1(s̄, {eOLNF, eOLN, eORNF, eON}),
s̄ ⊆ {eOLNF, eOLN, eORNF, eON}

∃ eAR1(s̄)

7.3. Simulation Results

The path-following and obstacle avoidance mission was realized at the robotic test
bed by a LEGO Mindstorm EV3 robot with a differential drive. The robot moves due to
the movement of two separately controlled wheels; therefore, Equation (9) turns to the
following kinematic scheme: 

ẋ = r ωL+ωR
2 cos(ψW),

ẏ = r ωL+ωR
2 sin(ψW),

ψ̇W = (ωL − ωR)
r
l ,

(10)

where ωL, ωR are the corresponding angular speeds of rotation of the wheels, r is the radius
of the wheel, and l is the distance between the wheels. The employed configuration of the
EV3 robot has 2r = 56 mm and l = 100 mm. To detect obstacles, the robot was equipped
with a LIDAR with a viewing sector [−60◦;60◦]. For certainty, we accept Rmin = 50 cm,
Ds = 30 cm, △R = 10 cm, ρn = 30 cm, ρ f = 70 cm, Nb = 60, ρd = 150 cm, α = −60◦, and
α = 60◦.

The results of the preliminary computer simulation are shown in Figures 10 and 11.
The robot moved along the predefined preference path denoted by a green arrow until it
faced an obstacle. During the obstacle detouring maneuver, the obstacle on the right was
lost, so DES Gmsn entered the SOL state. Then, a failure was detected by the event eER,
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which led Gmsn into the NRP state and immediately back to DOR due to an obstacle on
the right. Figure 11 shows changes in state Gmsn corresponding to changes in the robot’s
functioning modes. A new path was generated in the DOR, NRP, and other states, which
is denoted by the dots on the line in Figure 11.

Figure 10. The result of computer modeling of the path-following and obstacle avoidance mission
with the supervised partially observed DES Gmsn.

Figure 11. The changes in the state of Gmsn. The marks on the line indicate moments when a new
path is generated.

To explain the prover implementation, consider inference steps resulting in the se-
quence of the first state changes in Figure 11. In the initial state RPF, the get_event()
function returned two atomic events eORNF and eON, which were passed as a list to the
subinference of the T# formula when its first question was checked. The subinference trig-
gered the question containing eAR1. Instead of s̄, the list {eORNF, eON} was substituted
and the formula for subinference was triggered:
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eAR#
1({eORNF, eON}, . . .) = ∃eORNF, eON

∀ eORNF, eON.

∀ eORNF, eOLNF,

∀ eORNF, eOLN

This PCF corresponds to the negation of the propositional formula

(eORNF & eON)&(¬(eORNF & eOLN)∨
¬(eORNF & eOLNF)∨
¬(eORNF & eON)),

and is refuted in one step by answering the third question. Therefore, the constant True
was returned to the formula T#, making an answer to its first question possible. Thus, the
atom eAR1({eORNF, eON}) was added to the base. Then, by answering the question that
corresponds to the question ∀x Comp(x) of the formula T#, inference control is returned to
the original formula FT#

BSCOP. Instead of σ, eAR1 was substituted in the consequent of its
first question. Then, the atom E(eAR1) was added into the base BBSCOP, which allowed
answering the second question and adding the atom LJP/Gmsn(ε · eAR1, DOR) into the base.
This addition caused a message to the main thread, which informed the program about the
change in the DES’s state.

The corresponding seminatural experiments were carried out on a robotic stand
(Figure 12), which is described in detail in [46]. Due to changes in the obstacle’s configura-
tion and a number of uncontrollable factors affecting the robot dynamics, the trajectory of
the robot is different compared with the one obtained in the computer simulation. However,
the proper processing of the unobservable fault event eER led the implemented DES Gmsn
to WPD state, which allowed the robot to avoid a collision with the obstacle.

Figure 12. Simulation at the robotic test bed. The fault event eER led to WPD state, and a collision
with the obstacle was avoided.

8. Discussion

This paper continues the work of developing a new way of formalizing and solving
control problems for the important class of dynamic systems known as DESs. The PCF
calculus provides powerful tools for dealing with sophisticated control problems, and
above, it was shown how the PCF inference helps check the observability of regular
languages.

Close to our research is an approach for testing the diagnosability of DESs based on
their logical representation [47]. In [47], conjunctive normal forms (CNFs) are exploited to



Computation 2024, 12, 95 22 of 25

study the diagnosability properties of DESs. Automata transitions are described as a set
of clauses and when the well-known resolution method is applied to test whether failure
events can be detected in a finite number of observable events. Keep in mind that CNF is
less expressive compared with PCF, which means to represent automata underlying DESs,
we leave the problem of the diagnosability of DESs and the intriguing comparison with the
CNF-based approach for future research.

Moreover, the representation of DESs with the help of PCFs allows one to use informa-
tion coming from the environment, as well as data on the functioning of the system itself, in
the process of constructing the logical inference. This feature may help greatly in problems
of supervisory controller synthesis and implementation for safety PLCs (programmable
logic controllers) [48], where extended finite-state automata (EFA) are exploited. Transitions
in an EFA may contain guards (i.e., logical conditions) over the variables and updates (i.e.,
assignments) to the variables. A simple guard, used in EFA, may replace a large automaton
expressing the same requirement. In PCF, guards can be realized by event processing
questions serving as special logical rules. Answers to them trigger subinferences, in which
the events coming from the environment are used in calculations or other kinds of data
processing.

Another promising direction of the PCF calculus’s theoretical and practical develop-
ment is embracing temporal logic and temporal-logic-based controls of DESs [49]. Since
early papers, linear time temporal logic (LTL) has been proposed for specifying and ver-
ifying the safety and liveness properties of systems (e.g., [50,51]). LTL formulas allow
formalizing such statements as “nothing bad will ever occur” and “something good such as
accomplishment of tasks will occur regularly”, so they cover a useful range of control speci-
fications about finishing tasks regularly without compromising safety [49]. In subsequent
years, computational tree logic (CTL) and epistemic temporal logic have been applied to
deal with more sophisticated properties of DESs, e.g., property of stability which requires
that the system should eventually reach a set of states where some statement holds and
stay there forever [52–54].

It should be noted that the Bootfrost prover has not yet been formally verified by
any specific testing software. Its applications currently lie in the areas of SCT problems
mentioned in this and our previous articles, as well as in several case studies. In the future,
it is planned to better demonstrate the validity of the work and the broad applicability of the
presented approach. We will continue to develop the PCF-based approach so that it becomes
a full-fledged tool capable of solving a wide range of tasks. In future works, its application
to constructing supervisors for decentralized and distributed DESs will be suggested.
Moreover, if the specification language is either not controllable or not observable, one may
be interested in finding the less restricting controllable and observable sublanguage of the
specification. While there are effective algorithms to construct the supremal controllable
sublanguage of the given language, the supremal observable sublanguage does not exist.
Only a maximal observable sublanguage may be found, which is not unique in general.
Finding these languages and implementing them in control systems using the PCF approach
is the line of our future research. Results obtained will be embedded at the different levels
of the hierarchical control system for mobile robots.
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