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Abstract: In recent years, many deep learning-based object detection methods have performed well in
various applications, especially in large-scale object detection. However, when detecting small targets,
previous object detection algorithms cannot achieve good results due to the characteristics of the small
targets themselves. To address the aforementioned issues, we propose the small object algorithm
model MCF-YOLOv5, which has undergone three improvements based on YOLOv5. Firstly, a data
augmentation strategy combining Mixup and Mosaic is used to increase the number of small targets
in the image and reduce the interference of noise and changes in detection. Secondly, in order to
accurately locate the position of small targets and reduce the impact of unimportant information on
small targets in the image, the attention mechanism coordinate attention is introduced in YOLOv5’s
neck network. Finally, we improve the Feature Pyramid Network (FPN) structure and add a small
object detection layer to enhance the feature extraction ability of small objects and improve the
detection accuracy of small objects. The experimental results show that, with a small increase in
computational complexity, the proposed MCF-YOLOv5 achieves better performance than the baseline
on both the VisDrone2021 dataset and the Tsinghua Tencent100K dataset. Compared with YOLOv5,
MCF-YOLOv5 has improved detection APsmall by 3.3% and 3.6%, respectively.

Keywords: YOLOv5; Mixup; coordinate attention; small target detection layer

1. Introduction

As one of the important branches of computer vision tasks, in recent years, target
detection algorithms based on deep learning have been rapidly developed and target
detection has been more and more widely used in fields such as automatic driving, robot
vision, military surveillance, and medical image analysis and so on [1]. At present, there
are two mainstream deep learning-based target detection methods. One is a one-stage
target detection method represented by the You Only Look Once (YOLO) series and the
other is a two-stage target detection method represented by the region selection-based
convolutional neural network (R-CNN) series [2]. Although the accuracy and efficiency of
these target detection methods have been greatly improved, they still perform poorly in
detecting small targets [3]. Unlike the rapid development of general target detection, small
target detection has not been well addressed, and thus it has been a research hotspot in the
field of target detection.

The characteristics of small targets themselves lead to the following problems when de-
tecting small targets. (1) In complex background environments, the number of small target
samples is small and small target detection is easily affected by noise and changes, which
can lead to overfitting problems in the model. (2) Due to the small volume of small targets,
it is difficult to locate and re-identify them during the target detection process, resulting
in detection errors in the model. (3) The model extracts fewer discriminative features for
small targets and even suffers from feature information loss after multiple downsampling.

In order to solve the problems and challenges in small target detection, we propose a
new detection model (named MCF-YOLOv5) to improve the detection efficiency.
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Our main contributions are as follows. (1) Using an augmentation strategy combining
Mixup [4] and Mosaic to reduce the interference of noise and changes on small targets,
increase the number of specific targets, and thus reduce the overfitting problem of the
model [5]. (2) The use of coordinate attention modules to embed position information
into feature layer channels solves the problem of small target localization. (3) By adding
two cross-layer connections to improve the Feature Pyramid Network (FPN) structure
and introducing a small object detection layer on this basis, the network can obtain richer
feature information and improve the detection performance of small objects.

2. Related Work

Early researchers achieved target detection by designing artificial features and using
various acceleration methods but traditional target detection has poor generalization ability
and low robustness. Since the great success of the AlexNet model in the ImageNet Large
Scale Visual Recognition Challenge in 2012 [6], research on target detection techniques has
been devoted to deep learning-based approaches.

2.1. Target Detection

At this stage, there are two types of target detection: a two-stage target detection
algorithm based on candidate regions and a one-stage target detection algorithm based on
regression. The two-stage target detection algorithm originated from R-CNN [7] proposed
by Girshick et al. in 2014 for image target detection and segmentation, which achieved
optimal results on the VOC2007 and VOC2010 datasets. Since then, CNN-based target
detection methods have become a hotspot for researchers [8,9]. In 2015, Girshick et al.
improved Fast R-CNN on the basis of R-CNN. In 2017, Girshick et al. and others proposed
Faster R-CNN [8], which uses a Region Proposal Network (RPN) region-generating network
instead of the traditional sliding window and Selective Search (SS) methods to improve
the detection speed. In 2017, He et al. proposed Mask R-CNN [9], which further improves
the detection accuracy by embedding a Fully-Convolutional Network (FCN) semantic
segmentation module and using a RoIAlign strategy. Although the two-stage algorithm
is more accurate than the traditional algorithm, the high complexity of the model and the
number of parameters make it difficult to deploy and detect in real time.

The one-stage target detection algorithm is the YOLO algorithm series proposed by
Redmon [10–12]. The YOLOv1 algorithm proposed in 2015 merges the extraction and
detection of candidate boxes into a single stage, which greatly improves the detection speed
by obtaining the specific location information and category classification information of
the target detection through direct regression. The YOLO9000 network was proposed in
2016, which introduces the Anchor Box, which utilizes the K-means clustering method
to calculate better a priori box parameters and improve the detection performance of the
network. In the same year, under the influence of the YOLO algorithm, Liu et al. proposed
the SSD algorithm [13], which utilizes multi-scale feature maps for target detection and
effectively improves the detection accuracy of targets of different sizes. In 2018, Redmon
again proposed the YOLOv3 algorithm, which introduces the residual network module
and replaces Darknet-19 in the backbone network with Darknet-53. Borrowing the idea of
a feature pyramid (FPN) [14], the prediction is performed at three different sizes separately,
which improves both detection accuracy and speed. After that, the YOLOv4 algorithm
was proposed in 2020 [15], which optimizes the network to varying degrees in terms
of data processing, backbone network, network training, activation function, and loss
function and does not drastically alter the network. In the same year, Glenn-jocher et al.
proposed the YOLOv5 algorithm, which uses the focus structure and Cross Stage Partial
(CSP) structure in the backbone network and the FPN + PAN structure in the neck end;
at the same time, some small strategies are used in the training process to improve the
detection speed and accuracy. The YOLO series of models are continuously improved and
optimized with the development of deep learning, such as YOLOX and YOLOv7 [5,16].
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These models have improved the performance and speed of target detection and made
important breakthroughs in the field of computer vision.

2.2. Small Target Detection

The poor performance of small target detection is mainly due to the limitations of
the structure of the model itself and the characteristics of the small targets themselves.
The low resolution and background information of small objects make it difficult for
models to extract features and small object recognition is highly susceptible to background
interference, which poses challenges to the localization and recognition of small objects [17].
In order to obtain richer feature information on small targets, Kisantal et al. use the copy-
and-paste method to increase the number of training samples and expand the area covered
by small targets in order to significantly increase the diversity of small target locations [18].
Chen et al. scaled and spliced target images of different scales in the dataset so as to make
the small-sized targets contain richer information, thus obtaining a better enhancement
effect. In order to overcome the problem of low resolution of small targets [19], Romano
et al. proposed a super-resolution method, which enables the neural network to learn the
mapping relationship between the low-resolution image and the equivalent high-resolution
image [20]. In recent years, with the development of Generative Adversarial Networks,
Bai et al. proposed a multitask GAN based on recovering clear super-resolution objects
from blurred small objects to recover clear super-resolution objects [21]. Li et al. introduced
a perceptual GAN method for recognizing small objects [22]. Pang et al. proposed JCS-
Net for reducing the image difference between small-scale targets and large-scale targets.
Multilayer channel features are constructed based on HOG+LUV and JCS-Net to train small-
scale pedestrian detectors [23]. For the problem of unsatisfactory small target detection,
although some techniques have been developed to improve the performance of small target
detection, none of them are very effective. Therefore, this paper proposes the MCF-YOLOv5
algorithm. Experiments prove that the algorithm does improve the small target detection.

3. Methods

YOLOv5 is a widely used target detection model at this stage, which is applied in
various fields of people’s lives and it has higher real-time accuracy than the newer version of
yolov7 in some scenarios [24]. It consists of five versions: YOLOv5n, YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. The overall architecture of the network is the same for all five
versions, only different depths and widths are used in each sub-module to meet the needs
of different scenarios [25]. In order to strike a balance between speed and accuracy, the
latest version 6.1 of YOLOv5s is used in this paper. Figure 1 shows the structural diagram
of YOLOv5s. YOLOv5 consists of four parts: Input, Backbone, Neck, and Detection. In the
input section, YOLOv5 mainly enhances the dataset through Mosaic data augmentation.
The backbone consists of Focus, CBS (Conv BN Silu), C3 (CSPDarkNet53), and SPP (Spatial
Pyramid Pool) modules for feature extraction. The Neck section adopts the structure of
FPN and PANet to enhance the feature fusion ability of the network. The Detect section is
used for object detection at different scales. YOLOv5-6.1 replaces the Focus module with
a 6x6 convolutional layer, which is theoretically equivalent, but for some existing GPU
devices (and corresponding optimization algorithms), using a 6x6 convolutional layer is
more effective than the Focus module, and replaces the SPP (Spatial Pyramid Pool) module
with an SPP (Spatial Pool Pool) module. The Pooling module has been replaced by the
SPPF module, which has more than doubled the processing speed.
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Figure 1. Original YOLOv5 architecture.

3.1. Data Augmentation

In the field of object detection, especially small object detection, data augmentation
technology is particularly important. Effective data augmentation not only increases data
diversity but also helps models better generalize to new and unprecedented data. This
paper adopts a data augmentation method combining Mixup and Mosaic. On the one hand,
using the Mixup enhancement strategy to linearly model samples and the parts between
samples helps the model learn smoother decision boundaries. This method enables the
model to better understand the training samples, thereby reducing the interference of noise
and changes on small object detection and minimizing overfitting problems of the model.
On the other hand, using Mosaic data augmentation to enhance the random cropping,
rotation, and connection of any four images in the dataset increases scene complexity and
the number of small targets in the sample, thereby improving the model’s generalization
ability and robustness in detecting small targets.

Mixup directly interpolates the two training samples linearly at the pixel level, while
the labels corresponding to the synthesized images are likewise linear combinations of
the original sample labels. Specifically, given two input samples and their corresponding
labels, the new image is generated and labeled as in Equation (1), as follows:{

img_c = λimg_a + (1 − λ)img_b
label_c = λlabel_a + (1 − λ)label_b

(1)
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where λ is the interpolation coefficient satisfying the β distribution λ ∼ β(a, a)α ∈ (0, ∞),
derive λ ∈ [0, 1].

Figure 2 shows the effect image of Mosaic and Mixup data augmentation. The specific
steps are as follows. Firstly, randomly select one image as the background image in the
dataset, then randomly select four images from the dataset for Mosaic data augmentation,
and scale and concatenate the four images to form a composite image. Secondly, perform
Mixup data augmentation on the background image and composite image in a certain
proportion to generate a new image fused with five original data pixels. Finally, the new
image and new labels are fed into the algorithm model for training. Since each image in
the dataset contains small targets, λ = 0.5 is set to enable the network to detect each small
target on the new image. After using composite data augmentation in the model, turn off
the data augmentation strategy for the last 15 epochs [5].
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3.2. Attention Module

The attention mechanism is a method that helps network models detect specific
targets importantly; it has been widely studied and applied in many fields including
target detection. For example, Squeeze-and-Excitation (SE) [26] and Convolutional Block
Attention Module (CBAM) [27] both act as efficient attention mechanisms, which make
them bring improvement to the performance of joined models. However, neither of
them can bring good improvement for small target detection; the Squeeze-and-Excitation
(SE) module only considers the encoding of inter-channel information and ignores the
importance of location information, which is very important for small target detection.
The Block Attention Module (CBAM) module, although it considers channel information
and location information, uses large-scale pooling to utilize the location information to
capture only local correlations, which is not able to solve the remote dependencies in vision
tasks. Difficulty in localization has been one of the difficulties in small target detection
and position information in the image is the key to detection. Therefore, we introduce the
coordinate attention mechanism [28] into our model to improve the ability of capturing
position information and improve the detection of small targets.

Coordinate attention (CA) is a lightweight, efficient, plug-and-play attention mecha-
nism that embeds position information into the channel attention to enable the network
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model to accurately localize to the information that is more critical to the current task,
reduce the attention to other information, and improve the efficiency and accuracy of task
processing.

Coordinate attention(CA) is divided into two steps: coordinate information embed-
ding and coordinate attention generation, as shown in Figure 3.
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Figure 3. Coordinate attention.

Specifically, given an input X of size C × H × W, pooling kernels of size (H, 1) and
(1, W) are used to encode information from different channels along the horizontal and
vertical directions, respectively. For the feature of the c-th channel, the pooled output
formula of the feature with height h is given as Equation (2), as follows:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, j) (2)

Similarly, the output formula for feature pooling with width w is expressed as Equation (3),
as follows:

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (3)

These two transformations yield a pair of orientation-aware feature maps and imple-
ment coordinate information embedding. The next thing to do is to generate the attention
weight matrix. The two coded features Zh and Zw are connected and transformed using
the 1 × 1 convolutional transform function F1 to perform the transform operation on them
as in Equation (4):

f = δ
(

F1

([
zh, zw

]))
(4)

where δ is a nonlinear activation function, f ∈ RC/r×(H+w) is an intermediate feature
map that encodes spatial information in the horizontal and vertical directions, and r is the
downsampling rate.

f is decomposed into two independent tensors along the spatial dimension defined
by f h ∈ RC/r×H and f w ∈ RC/r×W , using two 1 × 1 convolution operations Fh and Fw to
recover the number of channels of the tensor to C, and then processed using the Sigmoid
activation function to obtain gh and gw. The matrix after multiplying and unfolding of
the two is the weight matrix M and multiplying the input feature X by M yields the final
output of the coordinate attention module Y.This is as shown in Equation (5), as follows:

gh = δ
(

Fh

(
f h
))

, gw = δ(Fw( f w))

Mc(i, j) = gh
c (i)× gw

c (j)
yc(i, j) = xc(i, j)⊗ Mc(i, j)

(5)

In this article, coordinate attention (CA) is used to extract attention regions, which
helps MCF-YOLOv5 resist confusing information and focus attention on small target objects,
while also avoiding a lot of computational overhead to more accurately locate the exact
position of the object of interest. The following experimental results also proved that the
addition of this module indeed improved the accuracy of the model.
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3.3. Construction of a Bidirectional Feature Fusion Network (FPN)

Feature fusion is a crucial step in small object detection as it combines information
from different network layers to enhance the model’s overall understanding of the image.
In object detection tasks, deep features typically contain rich semantic information, which
helps identify object categories in the image. Shallow features, on the other hand, are rich
in high-resolution details and positional information, which helps to accurately locate the
boundaries of objects. By fusing deep and shallow features, the model’s understanding
and abstraction ability of images can be improved, better expressing the complexity and
diversity of images. However, many existing methods improve the performance of small
object detection algorithms by transmitting deep features upwards to shallow layers.
Although this one-way upstream feature fusion can enhance semantic information, it
often overlooks the transmission of shallow detail features to deep layers, which limits
further improvement in model performance. Therefore, this paper improves the original
Feature Pyramid Network (FPN) structure and proposes a bidirectional feature fusion
Feature Pyramid Network (FPN) structure, adding two cross-layer connections (B1, B2),
as shown in Figure 4. Assuming the input image size is 640 × 640, the B1 layer fuses the
160 × 160 shallow feature map generated by the P1 layer with the 40 × 40 deep feature
map generated by the P3 layer. This makes the B1 layer not only contain high-resolution
details from shallow layers but also semantic information from deep layers; B2 integrates
the 20 × 20 deep feature map generated by the P4 layer with the 80 × 80 feature map
generated by P2. The B2 layer also ensures that the feature map retains details while also
possessing rich semantic information. Through this bidirectional feature fusion, the newly
generated feature map contains both detailed features and semantic information, greatly
improving the network’s ability to analyze complex scenes and effectively improving the
model’s performance in small object detection tasks.
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Figure 4. Improved neck structure.

Small targets will lose some feature information in the continuous downsampling
process, resulting in unsatisfactory small target detection. The shallow layer contains
more location and detail information and the shallow features have higher resolution, so
whether the shallow features can be fully utilized is crucial for detecting small targets. After
improving the Feature Pyramid Network (FPN) structure, we introduce the small target
detection layer, as shown in Figure 5. This layer is more sensitive to small targets and after
the deep layer and shallow layer features are fused and connected, the feature expression
ability of small targets is enhanced, thus improving the detection accuracy of the model for
small targets.
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4. Experiments
4.1. Datasets

In order to minimize the effect of sample imbalance, we choose to verify the per-
formance of the proposed method on the VisDrone2021 dataset [29] and the Tsinghua-
Tencent100K dataset [30], as shown in Figure 6. The figure depicts the distribution of large,
medium, and small targets in the two datasets. Small targets have pixels smaller than
32 × 32, medium targets have pixels between 32 × 32 and 96 × 96, and large targets have
pixels larger than 96 × 96.
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The VisDrone2021 dataset is a dataset of unmanned aerial vehicle (UAV) aerial photog-
raphy. This dataset defines 10 categories with rich scenarios, including 6471 training images,
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548 validation images, and 3190 test images, in which the proportion of small targets is
about 65%, which is a more suitable dataset for small target detection.VisDrone2021 is
also a very challenging dataset, with uneven class distribution, many small targets, scarce
large targets, small variance between some classes, serious category confusion, and some
different degrees of occlusion and deformation in all types of targets.

The Tsinghua-Tencent100K dataset is produced by a joint lab between Tsinghua Uni-
versity and Tencent and this dataset contains a more comprehensive set of traffic sign
categories, with 221 different categories appearing in the entire dataset. Most of the traffic
signs in this dataset are very small and the lighting and weather conditions of the shooting
locations are different, which provides stronger generalization ability in practical appli-
cations, so Tsinghua-Tencent100K is used as the dataset for training models. However,
this dataset has serious category imbalance and some categories do not even appear in the
training set. We select 45 categories from it that have more than 100 instances. There are
7260 sheets in the training set, 1908 sheets in the validation set, and 845 sheets in the test
set, totaling 19,369 targets.

4.2. Training Setup

The hardware configuration of this experiment is NVIDIA RTX3080 GPU and Intel
i7-12700 2.70 GHz CPU; meanwhile, the software environment is the Pytorch deep learning
framework under the PyTorch v1.8.0 system on the Ubuntu 18.04.5 operating system. The
input image size is 640 × 640, the weight descent coefficient is 0.0005, the initial learning
rate is 0.01, and a total of 200 epochs are iterated with the StochasticGradientDescent (SGD)
gradient descent optimizer. The one-cycle learning rate decay is used to ensure that the
model can converge more stably in the later stages of training and other default settings
are used.

4.3. Evaluation Indicators and Model Validity

Evaluation metrics are important measures of various aspects of a model’s charac-
teristics. Mean average precision (mAP), precision (P), recall (R), and average precision
(AP) are four important metrics for assessing a model’s performance with respect to the
following questions: is the probability of an actual positive sample among all samples
predicted to be positive, defined in Equation (6); is the probability of an actual positive
sample among all samples predicted to be positive, defined in Equation (7); is the average
of Precision Recall (PR) curves at different Recall values obtained for a given threshold,
defined in Equation (8); and is the mean value of the of all categories in the whole dataset,
defined in Equation (9).

Precision(P) =
TP

TP + FP
(6)

Recall(R) =
TP

TP + FN
(7)

where TP denotes the number of positive samples that the model is able to correctly classify
as positive. TP denotes the number of negative samples that the knot model incorrectly
identifies as positive. FN denotes the number of positive samples that the type incorrectly
identifies as negative samples.

Average Precision(AP ) =
∫ 1

0
P(R)dR (8)

mean Average Precision(mAP) =
1
N ∑N

i=1 APi (9)

where N is the number of classes and APi is the AP of class i.
To evaluate the effectiveness of the proposed method, we conducted experiments

on the VisDrone2021 and Tsinghua Tencent100K datasets. The experimental results of
this model on the VisDrone2021 dataset are shown in Table 1. Compared with the model
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performance in the baseline, our proposed model achieved a 5.2% improvement in mAP50
values and improved detection average precision for small, medium, and large targets by
3.3%, 5.6%, and 4%, respectively. Figure 7 shows the detection results of MCF-YOLOv5 on
some samples on the VisDrone2021 dataset., Visualization refers to the output results of a
model after processing a dataset. It can be seen that compared to the baseline, our model
can detect more small targets with higher accuracy. Figure 8 shows the confusion matrix of
the improved model and baseline model on the VisDrone2021 dataset. Compared with the
baseline model, the confusion rate of the improved model decreased and the classification
accuracy of each category significantly improved.

Table 1. Performance evaluation of MCF-YOLOv5 on the VisDrone2021 dataset.

Model mAP mAP50 mAP75 APsmall APmedium APlarge

YOLOv5s 18.4 33.1 15.6 10.5 26.5 36.1
MCF-YOLOv5 22.1 38.3 21.5 13.8 32.1 40.1
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Drone2021 dataset.

Table 2 presents the experimental results of the model on the Tsinghua Tencent100K
dataset, where the improved model increased the mAP50 value by 5.7% and the average
detection precision of small, medium, and large targets increased by 3.6%, 2.5%, and 3.3%
compared to the baseline model, respectively. Figure 9 shows the mean average precision,
curves of the improved model, and the baseline model. It can be seen that in the first
60 epochs, the mean average precision (mAP) values of the two curves increase at a similar
rate but the improved model has higher detection accuracy. After the 60th epoch, the two
models begin to converge and the curves gradually become smoother. Figure 10 shows
some detection results on the dataset and it can be seen that MCF-YOLOv5 has higher
detection accuracy and can also detect targets missed from the baseline.
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Table 2. Performance evaluation of MCF-YOLOv5 on the TT100K dataset.

Model mAP mAP50 mAP75 APsmall APmedium APlarge

YOLOv5s 62.5 79.4 60.4 48.2 69.7 76.5
MCF-YOLOv5 63.8 85.1 62.5 51.8 72.2 79.8
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4.4. Ablation Study of the Proposed Model

We analyzed the contributions of different components in the MCF-YOLOv5 model
and conducted ablation experiments on the VisDrone2021 dataset. The application of
Mixup+Mosaic, coordinate attention (CA), and small object detection layer (SODL) im-
proved the precision of small object detection by 0.4%, 1.3%, and 2.1%, respectively. Table 3
lists the effects of each component. The results of ablation research indicate that by adding
a combination enhancement strategy to the basic network of YOLOv5, the mAP50 of the
model can reach 33.4% and the APsmall can reach 10.9%. After adding the coordinate
attention module, the value of mAP50 increased from 33.4% to 34.5% and APsmall can
reach 11.7%. This improvement also reflects that the positioning ability of the coordinate
attention module has improved the performance of small object detection. Finally, after
adding the small object detection layer again, the value of mAP50 increased from 34.5%
to 38.3% and the value of APsmall increased from 11.7% to 13.8%. This indicates that by
improving the FPN structure and introducing a small object detection layer, the model can
learn more small object features, greatly improving the detection accuracy of the model for
small objects.

Table 3. Ablation study of different components in our MCF-YOLOv5 model.

YOLOv5 Mixup+Mosaic CA SODL mAP mAP50 mAP75 APsmall APmedium APlarge

✓ 18.4 33.1 15.6 10.5 26.5 36.1
✓ ✓ 18.9 33.4 15.7 10.9 26.5 36.4
✓ ✓ 19.5 33.8 16.5 11.7 27.2 37.1
✓ ✓ 20.3 34.7 18.1 12.6 28.6 37.8
✓ ✓ ✓ 19.9 34.5 17.2 12.1 29.5 38.3



Information 2024, 15, 285 13 of 15

Table 3. Cont.

YOLOv5 Mixup+Mosaic CA SODL mAP mAP50 mAP75 APsmall APmedium APlarge

✓ ✓ ✓ 20.8 36.0 19.5 12.9 30.4 38.7
✓ ✓ ✓ 21.7 37.9 20.8 13.3 31.2 39.3
✓ ✓ ✓ ✓ 22.1 38.3 21.5 13.8 32.1 40.1

4.5. Comparison with Other Detection Models

To verify the superiority of the proposed MCF-YOLOv5 model, we compared it with
other advanced models on the VisDrone2021 dataset, such as YOLOX, YOLOv7s, and
TPH-YOLOv5. Table 4 presents comparative data on the precision, recall, mean average
precision, and detection precision of large and small targets for different models under
the same settings. It is evident that our MCF-YOLOv5 model is significantly superior to
the benchmark model in all aspects, as well as some advanced models. This indicates
that our model has achieved satisfactory results. Table 5 presents the comparison data of
the improved model, baseline model, YOLOv5m parameter count, floating point opera-
tions (FLOPs), and frames per second (FPS). It can be seen that with a small increase in
computational cost, better detection performance was achieved than YOLOv5m.

Table 4. Performance comparison of advanced detection models.

Model P R mAP mAP50 mAP75 APsmall APlarge

SSD 38.7 30.3 17.6 27.9 11.4 9.5 33.4
YOLOv5s 40.5 33.2 18.4 33.1 15.6 10.7 36.1
YOLOX [5] 41.9 34.5 19.0 34.8 16.5 10.9 37.8
YOLOv7s [16] 43.5 35.4 19.5 36.4 17.3 - -
TPH-YOLOv5 [31] 44.7 36.6 21.4 37.6 19.7 12.9 -
YOLOv5m 44.5 36.3 20.9 36.9 19.3 12.3 41.5
MCF-YOLOv5(ours) 45.2 37.0 22.1 38.3 21.1 13.8 40.1

Table 5. Comparison of parameter quantity, FOLPs, and FPS for YOLOv5s, YOLOv5m, and MCF-
YOLOv5 at the same input size.

Model Input Size Params (M) FLOPs (G) FPS

YOLOv5s 640 × 640 7.2 16.21 95.2
MCF-Yolov5(ours) 640 × 640 10.31 25.52 88.5
YOLOv5-M 640 × 640 21.2 48.7 67.1

5. Conclusions

In the field of object detection, how to quickly and accurately detect small targets in
images has always been a major challenge. To address this issue, this paper proposes an
improved MCF-YOLOv5 model based on the YOLOv5 algorithm. In terms of data augmen-
tation, we use a combination data augmentation method to increase the specific sample
size while reducing the risk of overfitting in the model, suppressing noise interference in
detection, and improving the model’s generalization ability. In terms of network structure,
by improving the Feature Pyramid Network (FPN) part and adding a small object detection
layer, the model obtains more feature information, solving the problem of insufficient small
object features or loss of some feature information during continuous downsampling. In-
troducing a coordinate attention (CA) module into the neck network to focus more on areas
of interest reduces the impact of irrelevant information on detection. The MCF-YOLOv5
model has shown excellent detection performance on the Tsinghua-Tenent100K dataset and
the VisDrone2019 dataset, outperforming the baseline model with minimal computational
cost. The MCF-YOLOv5 model is suitable for detecting long-distance small target scenarios
such as traffic signs and drone aerial photography and it provides a new solution for small
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target detection. In the future, our work will be able to make the model more lightweight
while ensuring its accuracy.
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