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Abstract: The proliferation of new technologies and advancements in existing ones are altering our
perspective of the world. So, continuous improvements are needed. A connected world filled with
a vast amount of data was created as a result of the integration of these advanced technologies in
the financial sector. The advantages of this connection came at the cost of more sophisticated and
advanced attacks, such as fraudulent transactions. To address these illegal transactions, researchers
and engineers have created and implemented various systems and models to detect fraudulent trans-
actions; many of them produce better results than others. On the other hand, criminals change their
strategies and technologies to imitate legitimate transactions. In this article, the objective is to propose
an intelligent system for detecting fraudulent transactions using various deep learning architectures,
including artificial neural networks (ANNs), recurrent neural networks (RNNs), and long short-term
memory (LSTM). Furthermore, the Bayesian optimization algorithm is used for hyperparameter
optimization. For the evaluation, a credit card fraudulent transaction dataset was used. Based on
the many experiments conducted, the RNN architecture demonstrated better efficiency and yielded
better results in a shorter computational time than the ANN LSTM architectures.

Keywords: fraud detection; Bayesian optimization; hyperparameter optimization; deep learning;
credit card

1. Introduction

The explosion of big data has enabled solutions for many complex problems. Dif-
ferent approaches using mathematical simulation and relevant ideas, such as artificial
intelligence [1], the enhancement of computer capacity, and the use of super calculators,
have made handling big data an easier task [2]. The enhancement of these technologies
is necessary due to the continuous amount of data generated by humans every second.
Traditional programming is not efficient for fixing data mining problems [3]. So, the idea of
making computers function like the human brain, which learns from its tasks and makes
complex decisions, has impacted our approach to the most challenging problems.

Likewise, these technologies have impacted global business [4]. Different financial
institutions and banks have endeavored to improve the services they provide to their
customers by developing more sophisticated payment systems and ensuring the secure
transfer of large amounts of money [5]. Blockchain, artificial intelligence, big data, and
other technologies have been successfully implemented into production in these network
systems [6]. However, fraudulent payments involving credit cards have evolved to a more
advanced level [7].

The COVID-19 pandemic is one of the most challenging problems for humanity.
Countries have made significant progress in combating this disease. During this time,
companies have successfully digitalized their businesses and streamlined their systems
for users [8]. Credit cards have become the first method of payment on e-commerce
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websites [9]. In contrast, criminals try to breach these payment systems to make illegal
transactions; thus, security is essential in these systems. Many solutions for addressing
this problem have been proposed, several of which use the abilities of machine learning
algorithms for classifying fraudulent transactions based on historical datasets [10].

Every payment system for credit card transactions comprises four components: the mer-
chant, cardholder, acquiring bank, and issuing bank. These four components communicate
with each other using HTTP requests to make the transaction possible [11]. The transaction
is handled and checked differently by the issuing bank. Their main objective is to confirm
that the transaction is legitimate. This system can be described as follows. First, the card-
holder presents their credit card to the merchant for the purchase of goods or services. Then,
the card is swiped and entered into the point-of-sale software, and the processor sends out
a request for authorization through the payment processing networks [12]. The issuing
bank authorizes or rejects the transaction based on the funds available. After that, if the
transaction is authorized, it is passed through the electronic networks to the processor,
and the approval code is delivered to the point-of-sale device at the merchant’s location [13].
The issuing bank then sends the money to the processing company to reimburse them
for the purchase that was made. This whole process is completed in a matter of seconds.
Figure 1 illustrates these steps in detail.

Figure 1. Card payment authorization process.

This paper introduces an innovative adaptive credit card fraud detection system,
leveraging three robust deep learning architectures alongside the Bayesian optimization
algorithm. Its goal is to allow the selection of the most effective architecture for fraudulent
transaction classification. A key contribution of this work lies in adapting the Bayesian
optimization approach to efficiently navigate the complex landscape of deep learning
model architectures. Unlike traditional methods such as grid search or random search,
Bayesian optimization addresses the computational challenges and exponential complexity
inherent in deep learning models, offering a more effective search mechanism. The system’s
performance is evaluated using three distinct scenarios, where the Bayesian algorithm
is fine-tuned across 50, 70, and 100 iterations, respectively, and the European credit card
dataset is utilized for benchmarking. Furthermore, a comprehensive set of evaluation
metrics is proposed to assess the performance of deep learning architectures with hyperpa-
rameter optimization using the Bayesian technique. This work significantly advances credit
card fraud detection by presenting a holistic approach that integrates advanced techniques
to achieve superior accuracy and efficiency in identifying fraudulent transactions.

This work makes the following contributions:

• A hyperparameter tuning technique based on Bayesian optimization is proposed for
selecting the best-performing deep learning architecture.

• Bayesian optimization is implemented for designing the best-performing deep learn-
ing architectures, including RNN, LSTM, and ANN.

• Several experiments based on the European credit card dataset are performed, and the
obtained results show that the RNN is the most efficient with Bayesian hyperparameter
optimization compared to the LSTM and ANN techniques.

The rest of this paper is organized as follows. Section 2 provides a review of the
literature. Section 3 describes the methods used in this study. Section 4 presents the
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proposed methodology and materials. The results and discussion are presented in Section 5.
Finally, in Section 6 we present our conclusions and a brief description of our future work.

2. Related Works

The detection of illegal transactions has received much attention in the past decade.
This has resulted from the number of transactions made by cardholders and the advanced
approaches used by criminals to hack credit card information using techniques such as site
duplication. In this section, we review some important works on the detection of fraudulent
transactions using various techniques, such as machine learning and deep learning, as
well as different approaches for enhancing these models, such as feature engineering,
hyperparameter optimization, feature selection, and so on.

In [14], the authors implemented a new solution for fraud transaction detection that
was deployed in Apache Spark for real-time fraud identification. This solution used the
following technologies: Kafka for programming tasks, Cassandra for dataset management,
and Spark for real-time preprocessing and training. This solution was subjected to many
experiments, to show its scalability and efficiency. Therefore, the paper introduces a novel
fraud detection solution leveraging Apache Spark, Kafka, and Cassandra for real-time
processing, demonstrating scalability and efficiency. Nonetheless, integrating multiple
technologies may introduce complexity, while the system’s adaptability to evolving fraud
tactics requires further examination. Another solution, presented in [15], exploits several
data mining techniques. Its main idea is to use a contrast vector for each transaction based
on its cardholder’s historical behavior sequence. Then they profile the distinguishing
ratio between the current transaction and the cardholder’s preferred behavior. After that,
they used ContrastMiner, an algorithm implemented for discovering hidden patterns and
differentiating fraudulent from non-fraudulent behavior. This was followed by combining
predictions from different models and selecting the most effective pattern. Experiments
conducted on real online banking data demonstrate that this solution yields significantly
higher accuracy and lower alert volumes compared to the latest benchmark fraud detec-
tion system. The latter incorporates domain knowledge and traditional fraud detection
methods. However, the utilization of ContrastMiner can be regarded as a potent approach
for mitigating interpretability issues. Numerous experiments with extensive real online
banking data have demonstrated its superiority in accuracy and reduction in alert volumes
compared to conventional fraud detection methods, suggesting promising advancements
in fraud detection efficiency.

Likewise, various deep learning architectures are successfully implemented for fraud
transaction detection. They show efficient results in handling fraud transactions in many
credit card datasets used for computation. For example, ref. [16] invented a new ap-
proach for identifying fraudulent transactions. For this solution to detect fraud, hierar-
chical cluster-based deep neural networks (HC-DNNs) utilize anomaly characteristics
pre-trained through an autoencoder as initial weights for deep neural networks. Through
cross-validation, this method detected fraud more efficiently than conventional methods.
In addition, the suggested solution can help discover the relationship between fraud types.
Otherwise, mobile transactions are becoming more popular due to the increase in the
number of smartphones that are attacked by fraudsters. Thus, securing those systems
for payment is crucial. That is why our research introduces a novel approach for fraud
detection using hierarchical cluster-based deep neural networks (HC-DNNs), leveraging
anomaly characteristics pre-trained via autoencoder as initial weights. Despite its superior
performance demonstrated through cross-validation, limitations arise with the growing
prevalence of mobile transactions prone to fraud attacks, necessitating enhanced security
measures to safeguard payment systems. The supervised machine learning algorithm XGB-
boost classifier [17] is used to propose a solution [18]. The obtained results demonstrate the
strength of this solution.

Similarly, another solution occurs in [19]. It detects credit card fraud transactions via
employing 13 machine learning classifiers and a real credit card dataset. Their idea was
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to generate aggregated features using the genetic algorithm technique. Those generated
features were compared with the original feature, as the best representative feature for
identifying fraudulent transactions. As a result, based on many experiments, the aggre-
gated features are more representative and efficient in identifying fraudulent transactions.
The approach in this article presents a promising solution by combining multiple models.
It generates aggregated features using the genetic algorithm technique. Despite yielding
promising outcomes in various experiments, potential limitations may arise from dataset
quality and scalability concerns, necessitating further investigation to assess real-world
applicability accurately. In [20], the authors proposed an efficient credit card fraud transac-
tion solution based on representational learning. This solution implemented an innovative
network architecture via an efficient inductive pooling operator and a careful downstream
classifier. Several experiments conducted on a real credit card dataset demonstrated the out-
performance of the proposed solution against the state-of-the-art methods. Generally, this
introduces a credit card fraud detection solution using representational learning, showcas-
ing superior performance via innovative network architecture. While promising, scalability
challenges and the solution’s adaptability to evolving fraud tactics require further scrutiny
for real-world efficacy.

In [21], the authors implemented an intelligent credit card fraud transaction detection
system. They implemented an aggregation strategy to classify fraudulent transactions. Its
mechanism was to aggregate transactions to capture the cardholder’s period behavior and
use them for model estimation. This solution is benchmarked on a real credit card dataset,
and it shows higher performance in stopping abnormal transactions. Furthermore, the au-
thors proposed a credit card fraud transaction detection method based on hyperparameter
optimization [22]. They used a differential evolution algorithm for selecting the performing
hyperparameters of the XGboost algorithm. They benchmarked their solution with state-of-
the-art classifiers. As a result, the proposed solution is efficient in distinguishing between
fraud and non-fraud transactions. However, the solution’s scalability and adaptability to
emerging fraud tactics necessitate further examination for practical deployment.

Unlike the cited solutions, our research introduces an adaptive system capable of
effectively combating fraudulent transactions. By leveraging optimization techniques
and exploiting the power of various deep learning architectures such as RNN, ANN,
and LSTM, our approach aims to uncover hidden patterns within the dataset, facilitating
the classification of fraudulent from non-fraudulent transactions. Notably, we employ
Bayesian optimization as our main method for selecting the best architecture, addressing
the complexity of deep learning models and resource-intensive computations. This method
stands out for its effectiveness in adjusting hyperparameters and effectively exploring the
search space.

3. Background
3.1. Deep Learning Technique

Deep learning has become important in academic research [23]. It is a subfield of
artificial intelligence and a part of machine learning techniques [24]. It derives its idea
from the human brain’s mechanism, in which a large number of neurons are connected to
discover hidden patterns in the output of a dataset [25]. Each deep learning architecture
has three parts. First, the input layer is responsible for transmitting its inputs to the hidden
layer. Second, the hidden layer is responsible for transmitting information from the input
layer to the output layer through certain processes. Third, the output layer is responsible for
producing outputs based on the input layer’s information. There are as many neurons in
the input layer as there are features that need to be taught to the network. The hidden layer
of a neural network is determined by the solution to the problem. As a result, the number
of hidden layers varies depending on the problem. The output layer classifies or labels
the information from the input layer using calculations. The workflow of deep learning
architectures is described in Figure 2.



Information 2024, 15, 227 5 of 25

Figure 2. Workflow of deep learning architectures.

In each neuron in the hidden layer k, all inputs are summed with weight, then an
activation function is applied as in Equation (1).

ak = activation(
n

∑
i=1

wixi + biask) (1)

where the parameters of the hidden layer k are ak, which is the activation function out-
put, wi is the weight, and baisk is the vector bias. The Equation (2) explains the output
stage operation.

ŷ = sigmoid(
n

∑
i=1

whak−1 + biask) (2)

We use xi to refer to the input features; otherwise, we use y to refer to the label, which
has two values: 1 if the current transaction is abnormal, and 0 if it is normal. In addition,
f (x) represents the deep learning classifier. This model takes an input of x and outputs ŷ.
So ŷ = f (x)(∗). This model has various parameters denoted by θ. As a result, the formula
(∗) is transformed into ŷ = fθ(x). The goal of the deep learning architecture was to select
the best-performing parameters θ by optimizing a loss function using Equation (3) below:

min
θ

n

∑
i=0

L( fθ(xi), yi) (3)

To optimize Equation (3), gradient descent was implemented. This algorithm’s mecha-
nism is as follows. Suppose θk is the current state of the model that we want to improve.
The next θk+1 state is calculated using Formula (4) below:

θk+1 = θk − δ
1
n

n

∑
i=0

∂L( fθk (xi), yi)

∂θk
(4)

where δ is the learning rate parameters, whose goal is to scale the gradient and thus
control the step size, and L( fθ(xi), yi) is the loss function. In this study, we are using
adaptive momentum estimation as an optimization technique for the gradient descent
algorithm. This technique combines gradient descent with momentum and Root Mean
Square Propagation (RMSP) [26]. The goal of the momentum algorithm was to accelerate
the gradient descent by taking into consideration the exponentially weighted average of
the gradient. This makes the optimization converge faster. This technique is formulated
mathematically by Equation (5) below:

θk+1 = θk − δmk (5)
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where
mk = γ1mk−1 + (1 − γ1)

∂L
∂θk

(6)

Otherwise, the RMSP algorithm takes the exponential moving average instead of
making the cumulative sum of the squared gradient by Equations (7) and (8) below.

θk+1 = θk −
ak√

νk + ε

∂L
∂θk

(7)

with

νk = γ2νk−1 + (1 − γ2)

[
∂L
∂θk

]2
(8)

This is the mathematical formulation of the Adam optimizer based on Formulas (7)
and (8) above:

mk = γ1mk−1 + (1 − γ1)
∂L
∂θk

(9)

νk = γ2νk−1 + (1 − γ2)

[
∂L
∂θk

]2
(10)

where γ1, γ2 are the decays of first and second momentum, respectively. Using Equations (11)
and (12), we calculate bias-corrected momentum estimates for the first and second:

m̂k =
mk

1 − γk
1

(11)

ν̂k =
νk

1 − γk
2

(12)

where m̂k and ν̂k are the calculated bias estimates. Finally, we update the weights by
Equation (13).

θk+1 = θk − δ
m̂k√
ν̂k + ε

(13)

while ε is a smoothing term that avoids division by zero (usually in the range of 10−8 ). A
summary of these steps can be found in Algorithm 1.

Algorithm 1 Adam optimization algorithm

1: Input: Learning rate δ, Objective function f, initial parameters θ, m0 = 0, ν0 = 0,
γ1, γ2 ∈ [0, 1], k = 0

2: while θ not converged do
3: k = k + 1
4: mk = γ1mk−1 + (1 − γ1)

∂L
∂θk

5: νk = γ2νk−1 + (1 − γ2)
[

∂L
∂θk

]2

6: m̂k =
mk

1−γk

7: ν̂k =
νk

1−γk
1

8: θk+1 = θk − δ m̂k√
ν̂k+ε

9: end while
10: Output: θk

3.2. Recurrent Neural Network (RNN)

The recurrent neural network architecture (RNN) is a deep learning model designed for
handling sequential datasets [27]. In this dataset, each sample is represented as a sequence
of values. Using this architecture, we can denote the feature matrix as X = (x1, x2, · · · , xn)
and the label variable as y. The RNN takes one element xi of X at a time t and processes it
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with a block of neural networks, which take into account the prediction yi−1 of the previous
block. Each block has two inputs and produces two outputs [28]. Equations (14) and (15)
evaluate the activation function and the outputs.

hi = activationh(θhhhi−1 + θhxxi−1 + bh) (14)

yi = activationh(θyhhi + by) (15)

where θhh, θhx, θyh represent the matrix of weights for computing linear transformation.
bh, θy are two bias vectors. Figure 3 illustrates the RNN architecture.

Figure 3. Recurrent neural network architectures.

3.3. Long Short-Term Memory (LSTM)

A long short-term memory network is another deep learning architecture that is like
the RNN architecture [29]. The main difference is that in LSTM, a set of units is used to
control the information. Figure 4 shows the LSTM architecture. The information flowing
through successive positions in this diagram clearly shows the cell state Ci−1 and the
hidden state hi−1. As the previous states are propagated to the next position, the cell state
serves as the information from the previous states, and the hidden state determines how
the information should be propagated. The hidden state hi also serves as the output of this
position [30].

Figure 4. Long short-term memory architecture.

In the first steps of the LSTM system, the forget gate decides what information from
the previous cell state to discard based on the two inputs hi−1 and xi. The return vector
Vi contains values between 0 and 1 for every element in the cell state Ci−1. This vector
specifies how each Ci−1 element’s information is discarded. Mathematically, this process is
formulated as in Equation (16).

Vi = sigmoid(θV xi + θ′V + bV) (16)

where θV and θ′V are two matrices of weights, and bV is the bias term.
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In the next step, we determine what information from the new input xi should be
stored in the new cell state using Equation (17).

Ii = sigmoid(θI xi + θ′I + bI) (17)

The xi vector is passed through a block of neurons to generate Ĉi, which contains the
candidate value for generating a new cell state using Equations (18) and (19) below:

Ĉi = tanh(θCxi + θ′Chi−1 + bC) (18)

Ci = Vi ⊙ Ci−1 + Ii ⊙ Ĉi (19)

where ⊙ is the Hadamard product. As a final step, the hidden state hi is generated using
Equation (20).

hi = Ot ⊙ tanh(Ci) (20)

where, using Equation (21), Oi is the output gate, which is generated similarly to the
forget gate.

Oi = sigmoid(θOxi + θ′O + bO) (21)

3.4. Bayesian Optimization

Despite using deep learning approaches instead of traditional machine learning algo-
rithms, the architecture for accurate deep learning is still a major problem. This requires
much effort to understand each hyperparameter in the search space and how it can affect the
black-box function. Bayesian optimization is a solution for deep learning hyperparameter
tuning [31]. The Bayesian approach is an efficient way of finding the extrema of functions
that are computationally expensive. This method can be used when solving a black-box
function. Using a deep learning architecture black-box function f, the optimization objective
is to find the maximum value at the sampling point of Equation (22).

x∗ = arg min
x∈H

f (x) (22)

where H is the search space for hyperparameters. This space contains continuous, cat-
egorical, and discrete variables. The Bayesian optimization algorithm relies on Bayes’
theorem [32]. It can be described as follows. Considering evidence data E, the posterior
probability P(M | E) related to the classifier M is proportional to the likelihood P(E | M)
of over-serving H given model M multiplied by the prior probability of P(M) calculated
from Equation (23).

P(M | E) = P(E | M)P(M) (23)

Bayesian optimization consists of combining the prior distribution of the function f (x)
with sample information to come up with the posterior distribution based on the Gaussian
process. Then, the posterior distribution is used to determine where the function f (x) is
maximized. The criterion is represented by a utility function ϱ, which is also called the
acquisition function. Additionally, ϱ is used for determining the next sample point to maxi-
mize the expected utility, taking into account sampling from areas of high uncertainty and
high values. This helps reduce the number of samples collected. Furthermore, performance
is enhanced even when the function has multiple local maxima.

As demonstrated, Algorithm 2 represents the main tasks of the Bayesian optimization
workflow. It is composed of two blocks: Steps 3 and 4 of updating the posterior distribution
and optimizing the acquisition function. The posterior distribution is continuously updated
as more observations are collected. Based on the updated posterior, the point where
the acquisition function is maximized is identified and added to the training dataset.
The entire procedure is repeated until the maximum number of iterations is completed
or the difference between the current value and the best value thus far is less than a
predetermined threshold. It should be mentioned that, compared to other optimization
techniques, including gradient descent algorithms, Bayesian optimization does not require



Information 2024, 15, 227 9 of 25

the explicit definition of function f . As a result, it has a larger range of applications. Here
are the steps of Bayesian optimization:

Algorithm 2 Bayesian Optimization

1: Input : Objective function f , hyperparameter space H, initial data D0
2: for i = 1, . . . , max_iter do
3: Fit GP to the data Di
4: Maximize the Acquisition function αi over H to find the new iterate xi+1 =

argminx∈Hαi(x)
5: Evaluate scorei+1 = f (xi+1)
6: Update the data Di+1 = Di ∪ (xi, scorei)
7: end for
8: Output:(xmax, scoremax)

1. Initialization: Choose a set of initial hyperparameters to sample the objective function.
2. Model construction: Fit the Gaussian Process to the observed data to catch the under-

lying structure of the function.
3. Acquisition function: Use the expected improvement to balance exploration and

exploitation and determine the next best point to sample.
4. Sampling: Evaluate the objective function at the next best point determined by the

acquisition function.
5. Updating: Update the Gaussian Process model with the newly obtained sample.
6. Repeat steps 3–5 until the maximum number of iterations is reached
7. Make the best hyperparameter values found by the optimization process as the optimum.

3.4.1. Gaussian Process

A Gaussian Process (GP) is a new supervised approach for solving probabilistic
classification or regression problems [33]. Based on Bayesian learning and stochastic
Gaussian Processes, this approach is characterized by two important pieces of information,
the mean function (24)

m(x) = E( f (x)) (24)

and the covariance function (25)

c(x, y) = E( f (x)− m(x) f (y)− m(y)) (25)

Additionally, the standard notation of the GP with its mean function m(x) and its
covariance c(x, y) is given by Formula (26) below:

f ∼ GP(m(x), c(x, y)) (26)

It is common to take the mean function as zero, but you can choose any function you
want. We can always center our observed outputs to have a zero mean, and the covariance
function must be positive definite distributions with finite dimensions. Furthermore,
the exponential square function is a popular choice:

c(xi, xj) = exp(−1
2

∥∥xi − xj
∥∥2
) (27)

where xi and xj are two samples in the dataset. Respectively, if
∥∥xi − xj

∥∥ < ε, then
c(xi, xj)∼1; otherwise, c(xi, xj)∼0. The following are the steps involved in determining the
posterior distribution of f (x):
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• We denote by D = {(xi, f (xi), · · · , (xn, f (xn)} the training sets. The function values f
are drawn according to a multivariate normal distribution, where

C′ =


c(x1, x1) c(x1, x2) · · · c(x1, xn)
c(x2, x1) c(x2, x2) · · · c(x2, xn)

...
... · · ·

...
c(xn, x1) c(xn, x2) · · · c(xn, xn)

 (28)

• In mathematics, C′ is a function used to measure the degree to which two points are
approximate samples. Furthermore, the diagonal element, without considering the
effect of noise, consists of 1.

• Based on the function f , we calculate the function value fi+1 = f (xi+1) at xi+1.
According to the assumption of GP, fi+1 is a i + 1 dimensional normal distribution
function, where [

f1:i
fi+1

]
=

(
0,
[

C C
CT C(xi+1, xi+1)

])
(29)

where
f1:i = [ f1, f2, · · · , fi] (30)

and
f1+i ∼ N(µi+1, σ2

i+1) (31)

with
µi+1(xi+1) = CTC−1 fi+1 (32)

σ2
i+1(xi+1) = −CTC−1C + C(xi+1, xi+1) (33)

3.4.2. Acquisition Function

Bayesian optimization employs the acquisition function ϱ to derive the maximum
of the function f after collecting the posterior distribution of the objective function [34].
Typically, we assume that the large value of the objective function f matches the high value
of the acquisition function. Consequently, increasing the acquisition function is the same as
increasing function f .

x∗ = arg max
x∈H

ϱ(x | D) (34)

There are various types of acquisition functions. Examples include the probability
of improvement (PI), upper confidence bound (UCB), and expected improvement (EI). In
hyperparameter optimization, the used acquisition function is the expected improvement
(EI). Anticipating the level of improvement a point can accomplish when investigating the
area around its current optimum value is calculated by the EI function. The present ideal
value point can be the local optimal solution, and the algorithm will locate the optimal
value point in other locations in the domain if the improvement in the function value is
smaller than the expected value after the procedure is run.

The level of development, the difference between the function’s value at the sample
point, and the current optimal value are known as I. The improvement function is 0 if the
function value at the sample point is smaller than the current optimum value.

I(x) = max{0, fi+1(x)− f (x∗)} (35)

The EI function optimization technique dictates that we attempt to maximize EI in
relation to the present optimum value f (x∗).

x = arg max E[I(x)]
= arg max E[max{0, fi+1(x)− f (x∗)}]

(36)
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where I is a random variable normally distributed with mean µ(x)− f (x∗) and standard
deviation σ(x)2. The probability density function of I is

f (I) =
1√

2πσ(x)
exp

(
−(µ(x)− f (x∗)− I)2

2σ2(x)

)
dI (37)

EI is defined as

EI =
∫ ∞

∞
I f (I)dI

=
∫ ∞

0

1√
2πσ(x)

exp
(
−(µ(x)− f (x∗)− I)2

2σ2(x)

)
dI

= σ(x)[Ωϕ(Ω) + ψ(Ω)]

(38)

where

Ω =
µ(x)− f (x∗)

σ(x)
(39)

Moreover, ϕ and ψ refer to the cumulative distribution and the probability density of
the standard normal distribution, respectively. Those functions are defined as follows:

ϕ(x) =
1√
2π

∫ x

−∞
exp(−v2

2
)dv (40)

and

ψ(x) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
(41)

4. Methodology and Materials
4.1. Dataset

This subsection describes in detail the credit card dataset used for computation
(Table 1). The used dataset represents credit card transactions made by European cardhold-
ers that were made in September 2013 within two days [35]. This dataset was collected by
two researchers as part of a partnership project between Libre Brussels University (LBU),
and Worldline Company, which specializes in money transfer services. Their objective
was to use big data approaches to catch fraudulent transactions. This dataset contains
30 features including the time, which denotes the time of the transaction, the number
of transactions, and 28 other attributes named V1 to V28. The result of the transforma-
tion of the original attributes is set by using the Principal Component Analysis (PCA)
technique [36].

Table 1. Features description.

Variable Definition Type

Class Target feature in this dataset. Takes two values: 0: Legitimate; 1:
Fraud Categorical

Amount The amount of the transaction sample Numeric

Time The difference in time between the first and the current transactions,
in seconds Numeric

V1 to V28 Features transformed using PCA technique to protect cardholders’
privacy and confidentiality Numeric

4.2. Data Preprocessing

The data preprocessing step is crucial in every machine learning pipeline. Its objective
is to make the machine learning algorithm able to discover hidden patterns in the dataset.
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In this study, various techniques are proposed for processing the computation dataset.
These techniques are presented in the rest of this subsection. These data consist of credit
card fraud transactions made by European cardholders. All features in these data are
numerical. In addition, there is no missing value. All features are scaled except for time
and amount. We propose MinMaxscaler (Equation (42)) for scaling those features.

xi,j =
xi,j − Min(Xj)

Max(Xj)− Min(Xj)
(42)

where Xj is the feature j, and xi,j is the value of the feature Xj of sample i.
Figure 5 shows the distribution of the target variables for the used datasets. From this

figure, we notice that our dataset is imbalanced, proved by the fact that the class of fraud
transaction represents 0.17% of all transactions. Thus, a resampling technique is crucial for
more accurate results.

Figure 5. Target variable distribution per fraud and non-fraud transactions.

4.3. Imbalanced Learning

For machine learning algorithms, learning from imbalanced datasets is a challenging
task [37]. It predicts all samples as the majority class, which leads to poor generalization
and performance because they are not able to discover the hidden patterns for the minority
class. The literature provides a variety of approaches to solving the problem, including
resampling the majority class or generating a new fake sample of the minority class. In this
article, we use a method called random undersampling (RUS) for balancing the dataset [38].
In this method, the steps are described in Algorithm 3, as follows:

Algorithm 3 RUS technique

1: Input: D = D0 ∪ D1

2: D′ = D1

3: for j = 1, 2, · · · , card(D1) do
4: Choose a sample at random. x ∈ D0

5: D′ = D
′ ∪ {x}

6: Remove x from D0

7: end for
8: Output: D′

where D1 denotes the fraud transaction subset and D0 refers to the legitimate transaction
subset in our dataset, and D′ is the new undersampled dataset.

4.4. Hyperparameter Optimization Processes

Deep learning is a new approach to machine learning research that aims to bring it
closer to artificial intelligence by mimicking the human brain’s mechanisms. Likewise,
the performance of each deep learning architecture is very dependent on many decisions.
These include choosing the right neural network design, training procedures, and tech-
niques for hyperparameter optimization [39]. In this article, we target enhancing the
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detection of illegal fraud transactions using hyperparameters for selecting the best architec-
tures of the used deep learning classifiers. This results from the fact that hyperparameter
optimization has a significant impact on the performance of a classifier [40]. Various meth-
ods exist for this reason. These include grid search, random search, and metaheuristic
algorithms [41]. These techniques have been employed successfully in many studies. This
study aims at finding the best-performing method using Bayesian optimization. First, we
denote by H the set of all hyperparameter values of a classifier. The set H can be interpreted
as a real-valued n-dimensional vector, where n is the number of hyperparameters. Each
hyperparameter can take a continuous, discrete, or categorical value. For our example,
the hyperparameters subject to tuning in this work are dropout rate, the number of neu-
rons (units) in each layer, epoch, batch size, learning rate, and activation function. Those
hyperparameters are defined in the search space H. Given that h ∈ H, a classifier can be
trained on the training dataset, and its precision score is estimated based on the 3-fold
cross-validation algorithm. D denotes the training dataset and f (h, D) is our estimated
precision score. This function is the objective function to optimize for hyperparameter
selection. The problem of searching for the best hyperparameters is formulated as in
Equation (43).

h∗ = arg max
h

( f (h, D) : h ∈ H) (43)

Figure 6 describes the hyperparameter optimization process. First, the training set is
extracted from the dataset. This part of the dataset contains 70% of the samples. In the next
step, the training set was split into three folders containing the same number of transactions,
and every folder was divided into parts for training and validation, respectively. The model
is trained on the training part and evaluated using the validation parts based on the pre-
cision score. The returning measurements for the 3-fold cross-validation techniques are
the average score. This average score is sent to the optimization algorithms. The Bayesian
algorithm process uses this score to select the new hyperparameters. These hyperparame-
ters are used for designing the new classifier architectures. This process continues until the
number of iterations is completed. Finally, the outcome of this hyperparameter optimiza-
tion process is the best hyperparameters obtained in the computation. The workflow of the
hyperparameter optimization can be described mathematically as follows (Algorithm 4):

Figure 6. Hyperparameter optimization process workflow.
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Algorithm 4 Pseudo-code of hyperparameter optimization with 3-fold cross-validation

1: Input: Objective function f, hyperparameter space H, testing set Dtest, training set
Dtrain = {(x1, y1), · · · , (xn, yn)}, number of iterations T.

2: Select randomly a set of hyperparameters h
3: for j = 1, . . . , T do
4: Partition Dtrain into D1, D2, D3
5: for i = 1, . . . , 3 do
6: ŷi = f (D \ Di, h)
7: end for
8: error(h) = 1

3 ∑3
i=1 PrecisionDi (ŷi, yi)

9: update h
10: end for
11: Output: h∗ = argminh(error(h))

yh∗ = f (h∗, Dtest)

Table 2 shows the deep learning hyperparameters used for optimization and their
range. A brief description of each hyperparameter is given below.

Table 2. Search space for hyperparameter optimization.

Hyperparameter Optimization Rate Type

Activation function [ReLU, Sigmoid, Tanh] Categorical
Learning rate [0, 1.0] Continue

Dropout rate of layer 1 [0.0, 0.6] Continue
Dropout rate of layer 2 [0.0, 0.6] Continue

Batch size [1, 100] discrete
Epochs [1, 100] discrete

Number of neurons in layer 1 [10, 30] discrete
Number of neurons in layer 2 [10, 30] discrete

Number of LSTM Units in layer 1 [10, 30] discrete
Number of LSTM Units in layer 2 [10, 30] discrete
Number of RNN Units in layer 1 [10, 30] discrete
Number of RNN Units in layer 2 [10, 30] discrete

• Dropout is a regularization technique used to prevent overfitting in deep learning
architectures and lead to accurate performance. Its mechanism is to remove some
neurons from the layer. To fix this number, the user sets a dropout rate. This approach
makes the training process noisy as a side effect.

• The learning rate hyperparameter’s objective was to determine how much the model
can adapt its parameters based on the estimated error. While a low learning rate
leads to lengthy training processes, a large value leads to learning a suboptimal set of
weights, resulting in an unstable learning process.

• The batch size is a gradient descent hyperparameter. It determines the number
of training blocks to work through before updating the model parameters, where
gradient descent is an iterative learning. The latter uses a training dataset to update
the parameters of the model.

• The epoch is a hyperparameter of gradient descent that determines the number of
complete passes through the training dataset.

• The activation function is implemented in an artificial neural network to learn and
find intricate hidden patterns in the output dataset. So, the activation function can
be seen as a controller for what information should be passed to the next neuron. It
takes input data from the previous neurons and converts them into some form that
can be the input of the next neuron. In this study, the activation hyperparameter
takes three functions, namely ReLu (Equation (44)), Sigmoid (Equation (45)), and Tanh
(Equation (46)). Those functions are described below.
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Relu(xi) = max(0, xi) (44)

Sigmoid(xi) =
1

1 + exi
(45)

Tanh(xi) =
exi − e−xi

exi + e−xi
(46)

5. Experimental Design
5.1. Model Architecture Design

This work proposes an intelligent solution based on a deep learning approach for
detecting non-authorized transactions included in the European credit card dataset used
for evaluation. This solution consists of four blocks. In the first block, a dataset is chosen.
The next block is data preprocessing. After that, in the third block, the random under-
sampling method was implemented to address class imbalance issues. The fourth block
implements hyperparameter optimization using 3-fold cross-validation. It calculates the
performance of the hyperparameters seated in each iteration. The optimization was per-
formed using Bayesian optimization. The main objective was to select the best-performing
hyperparameters. Figure 7 describes the architecture and workflow of our solution.

Figure 7. Proposed solution.

Algorithm 5 describes a methodology for deep learning-based fraud detection, tailored
to the challenges of class imbalance and hyperparameter optimization. The following is a
description of the algorithm:
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Algorithm 5 Deep Learning-Based Fraud Detection

1: Input: Dataset D (European credit card dataset), Hyperparameter search space H,
Number of iterations N, Performance metrics.

2: Input: Deep learning architecture (ANN, RNN, LSTM)
3: Initialize an empty list to store performance metrics: per f ormance_list = []
4: for i = 1 to N do
5: Split dataset D into training and testing sets: Dtrain, Dtest = train_test_split(D)
6: Preprocess the training data: Dtrain_preprocessed = pre_process(Dtrain)
7: Implement random undersampling to address class imbalance: Dtrain_balanced =

random_undersampling(Dtrain_preprocessed)
8: for each hyperparameter combination h in H do
9: Perform k-fold cross-validation (e.g., k = 3) on Dtrain_balanced using h:

per f ormance_metric = cross_validate(Dtrain_balanced, h)
10: Calculate the average performance metric P across folds for h
11: Store h and its corresponding P in per f ormance_list
12: end for
13: Select the hyperparameter combination hoptimal with the highest average P from

per f ormance_list
14: Train a model on the entire balanced training dataset Dtrain_balanced using hoptimal :

trained_model = train_model(Dtrain_balanced, hoptimal)
15: Evaluate the trained model on the testing set Dtest: test_per f ormance =

evaluate_model(trained_model, Dtest)
16: end for
17: Output: test_per f ormance

5.2. Statistical Measure

The selection of the evaluation metrics is a very important task for the best-performing
model. In this subsection, we present the measurements used for evaluating our model.
After the optimized deep learning architectures are tested on the testing set, the outputs
are the following statistical values: TN (True Negative), TP (True positive), FN (False
Negative), and FP (False Positive). These values are used to calculate the accuracy score
(ACC), precision (PER), area under the curve (AUC), G-mean (GM), and sensitivity (SEN).
Those evaluation metrics are formulated as follows:

1. The accuracy score refers to the ratio of correctly classified transaction packets (normal
or abnormal) to total credit card transaction samples. It can be formulated mathemati-
cally as:

Accuracy(ACC) =
TN + TP

FP + TP + FN + TN
(47)

2. Precision score: The ratio of correctly classified non-authorized transactions to the
total number of identified fraud transactions. It can be calculated as:

Precision(PER) =
TP

FP + TP
(48)

3. AUC: Receiver Operating Characteristics (ROC) Curve refers to the relationship
between the false positive rate (FPR) on the x-axis and the true positive rate (TPR) on
the y-axis. The Area Under the ROC Curve (AUC) is formulated as:

AUC =
∫ 1

0

TP
TP + FN

d
FP

FP + TN
(49)

4. G-Mean: This metric is used to measure the balance between fraud and the accuracy
of the identification of legitimate transactions. Poor performance is indicated by a
low G-Mean. This measure is important to avoid the model overfitting the normal
transactions and underfitting the abnormal transactions.
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G − Mean(GM) =

√
TN × TP

(FP + TP)(TP + FP)
(50)

5. Sensitivity (recall) or the “true positive rate” refers to the number of fraudulent
transactions that are correctly predicted. Its formula is as follows:

Sensitivity(SEN) =
TP

FN + TP
(51)

6. Results and Discussion

The imbalanced European credit card dataset was transformed into a balanced dataset.
This happened after removing several normal transactions from the majority class to test
the three deep learning architectures with hyperparameter optimization using the Bayesian
optimization approach. The random undersampling method with a sampling strategy
is equal to 0.5. Moreover, the Bayesian optimization technique was used to design deep
learning classifiers to improve the detection of fraudulent transactions. Several experiments
were conducted with different numbers of iterations: 50, 70, and 100. Tables 3–5 present
the performance metrics and execution times of three deep learning models ANN, LSTM,
and RNN. For 50 iterations, the ANN model achieved an accuracy (ACC) of 0.8939, with per-
fect precision (PER) and a geometric mean (GM) of 0.8024. However, its sensitivity (SEN)
was relatively low at 0.6439 compared to LSTM and RNN. The RNN model demonstrated
the highest ACC and AUC (0.9593 and 0.9767, respectively) among all models. As the
number of iterations increased to 70 and 100, all models showed improvements in ACC,
PER, GM, and AUC. Particularly, the LSTM model consistently exhibited high performance
across all metrics, with ACC exceeding 0.95 in both 70 and 100 iterations. In terms of
execution time, the LSTM model consistently took longest, followed by RNN and ANN.
However, the execution time increased with the number of iterations for all models, in-
dicating a trade-off between computational resources and model performance. Overall,
the results suggest that LSTM outperformed ANN and RNN in terms of both performance
metrics and computational efficiency for credit card fraud detection. However, further
analysis considering other factors such as interpretability and scalability is necessary to
determine the most suitable model for real-world deployment in fraud detection systems.

Table 3. Results obtained using the Bayesian algorithm for 50 iterations.

Model ACC PER GM SEN AUC

ANN 0.8939 1 0.8024 0.6439 0.8356
LSTM 0.7562 1 0.4264 0.1818 0.9291
RNN 0.9593 0.9596 0.9418 0.9015 0.9767

Table 3 shows the obtained results for the three classifiers using the Bayesian algorithm
for hyperparameter optimization. The number of iterations is 50. From these results,
the best accuracy score, 95.93%, is achieved by the RNN architecture, while the second-best
score, 89.93%, is obtained by the ANN model. Moreover, the lowest score, 75.62%, is
obtained using the LSTM model. Therefore, the RNN architecture outperforms the other
deep learning models in classifying fraud from non-fraud transactions in the credit card
dataset. Similarly, the best precision score is obtained with ANN and LSTM, at 1. As a
consequence, the two models classify all fraudulent transactions correctly. In contrast,
the RNN achieved a score of 95.96% for correctly classified fraud transactions. Taking
the G-mean score into account, crucial when two classes have similar importance, this
measure demonstrates the model’s ability to distinguish between fraudulent and non-
fraudulent transactions. The best G-mean score, 94.18%, is obtained with the RNN model,
while the lowest score, 42.64%, is obtained with the LSTM model. In terms of sensitivity
score, with the RNN, we obtained 90.15%, while (18.18%) was reached with the LSTM
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model as the lowest score. Finally, 97.67% is the best AUC score obtained from the RNN
architecture. As a result, RNN can be good at detecting fraud transactions based on
Bayesian optimization for 50 iterations.

Table 4. Results obtained using the Bayesian algorithm for 70 iterations.

Model ACC PER GM SEN AUC

ANN 0.9525 1 0.9170 0.8409 0.9207
LSTM 0.9548 0.9745 0.9288 0.8712 0.9372
RNN 0.9593 1 0.9293 0.8636 0.9752

The result of 70 iterations is shown in Table 4. It represents the resulting outcome
of Bayesian optimization for hyperparameter tuning. These results describe the scores
produced by ANN, LSTM, and RNN architectures. The accuracy score for the three
classifiers is 95%, indicating that 95% of the transactions are correctly classified. Similarly,
we obtained a score of 1 for the precision of LSTM and ANN. The lowest score is achieved
by RNN, which correctly classifies 97% of fraud transactions. Furthermore, 92% as the best
G-Mean score is achieved by LSTM and RNN. Similarly, we obtained the best sensitivity
(87.12%) using the LSTM model and the best AUC using the RNN architecture (97.52%).

Table 5. Results obtained using the Bayesian algorithm for 100 iterations.

Model ACC PER GM SEN AUC

ANN 0.9548 0.9827 0.9263 0.8636 0.9323
LSTM 0.9571 1 0.9252 0.8560 0.9641
RNN 0.9593 1 0.9293 0.8636 0.9752

Table 5 presents the results obtained for the three models with hyperparameter opti-
mization based on Bayesian optimization for 100 iterations. From these results, we obtained
the same accuracy score for the three classifiers, in which 95% of transactions are correctly
identified. Furthermore, the best precision score is achieved for both the LSTM and ANN
classifiers. On the contrary, ANN obtained the lowest score, at 98% of fraud transactions
correctly classified. In terms of G-Mean, we obtained the same score for the three classifiers
(92%). Likewise, the same sensitivity is achieved by the three classifiers (86%). Furthermore,
the best AUC score was from RNN (97%).

Table 6 shows the computational time for the hyperparameter process. From this table,
we notice that the best computational time is that of the ANN architecture, followed by
the RNN architecture as the second-best time for hyperparameter searching. So, ANN
is faster than RNN, which is faster than LSTM. However, the findings presented in the
results table shed light on the impact of hyperparameter optimization iterations on the
performance of the three distinct models, ANN, LSTM, and RNN, within the context of
our research. Notably, the results showcase varying patterns of performance improvement
across different models and iteration counts. For instance, the ANN model demonstrates
steady performance gains with each increase in the number of iterations, suggesting a
positive correlation between iteration count and model performance. Conversely, the LSTM
model exhibits substantial performance improvements as the number of iterations increases,
albeit with a slight decline in performance observed at 100 iterations. This possibly indicates
the onset of diminishing returns or overfitting. Meanwhile, the RNN model displays
notable performance enhancements up to 70 iterations, beyond which further iterations
do not yield significant gains, suggesting a potential saturation point in performance
improvement. These nuanced insights underscore the importance of carefully optimizing
hyperparameters to maximize model performance, while also highlighting the need for
monitoring performance trends to avoid potential pitfalls such as overfitting. Overall, these
results contribute valuable insights to the field of machine learning and underscore the
importance of iterative optimization processes in model development and deployment.
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Table 6. Execution time results for hyperparameter optimization for different iterations.

Model 50 Iterations 70 Iterations 100 Iterations

ANN 604.66 737.03 1045.28
LSTM 1395.57 2761.79 2603.52
RNN 1039.28 1934.66 1934.66

Figures 8–10 support the results discussed in Tables 3–5. The hyperparameter process
using RNN is the best choice for detecting fraud in transactions. This approach is more
efficient than LSTM and ANN.

Figure 8. Results of 50 iterations of optimizing the hyperparameters for three deep learning architectures.

Figure 9. Results of 70 iterations of optimizing the hyperparameters for three deep learning architectures.

Figure 10. Results of 100 iterations of optimizing the hyperparameters for three deep learning architectures.

As Figure 11 shows, the hyperparameter optimization process of our system configura-
tion requires a substantial amount of time due to the iterative nature of the loop. Typically,
the time required for hyperparameter optimization can vary depending on factors such
as the complexity of the dataset and the number of hyperparameters being tuned. In our
experiments, this optimization process may take several hours to complete, as it involves
iteratively evaluating the performance of different hyperparameter configurations. As for
the frequency of optimization, it is crucial to note that this process is not a one-time task.
Instead, it may need to be executed whenever there is a significant change in the input
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dataset or when the performance metrics, such as accuracy, begin to degrade. By periodi-
cally re-optimizing the hyperparameters, we ensure that our model remains well-tuned
and adaptive to changes in the data distribution or underlying patterns.

Figure 11. Results of the comparison of hyperparameter optimization execution times.

The AUC curve is an efficient and significant estimation of overall performance. It
is a general measure of the accuracy of fraudulent transactions. Moreover, a higher AUC
curve indicates better prediction performance. Figures 12–14 present the AUC curves of the
Bayesian algorithm based on hyperparameter optimization for 50, 70, and 100 iterations, re-
spectively, and the three deep learning architectures. The figures confirm the results presented
in Tables 3–5. The AUC curve of the RNN architecture (orange line) is located closest to the
figure’s top-left corner, suggesting that this architecture’s hyperparameter optimization is su-
perior to ANN and LSTM techniques for credit card fraud identification. Another comparison
is conducted based on the precision and recall curves. This graph plots the recall score on the
x-axis and the precision on the y-axis. The precision–recall curve provides a full picture of the
classification performance and is stable even in imbalanced datasets.

Figure 12. The ROC curve constructed after 50 iterations of optimizing hyperparameters using
Bayesian algorithm.
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Figure 13. The ROC curve constructed after 70 iterations of optimizing hyperparameters using
Bayesian algorithm.

Figure 14. The ROC curve constructed after 100 iterations of optimizing hyperparameters using
Bayesian algorithm.

Figures 15–17 clearly show visualizations of the precision–recall plot of the three
deep learning architectures based on Bayesian optimization for 50, 70, and 100 iterations,
respectively. The precision–recall curve of the RNN approach (orange line) is located closest
to the upper right corners of the figures, proving that the RNN architectures for credit card
fraud detection achieved better performance for this dataset.

Figure 15. The precision–recall curve constructed after 50 iterations of optimizing hyperparameters
using Bayesian algorithm.
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Figure 16. The precision–recall curve constructed after 70 iterations of optimizing hyperparameters
using Bayesian algorithm.

Figure 17. The precision–recall curve constructed after 100 iterations of optimizing hyperparameters
using Bayesian algorithm.

7. Conclusions

This paper focuses on credit card fraud identification employing three distinct deep
learning architectures: ANN, LSTM, and RNN. Utilizing the European credit card dataset,
Bayesian optimization is employed for hyperparameter tuning. This study targets critical
parameters such as epoch, batch size, activation function, learning rate, number of neurons
per layer, number of LSTM units in each layer, and number of RNN units in each layer.
Through Bayesian optimization, these hyperparameters are systematically tuned across
50, 70, and 100 iterations, leveraging a randomly undersampled dataset for computation.
The experimental results exhibit RNN’s consistent dominance across multiple key perfor-
mance metrics. Particularly noteworthy is RNN’s ability to achieve the highest accuracy
(ACC) and area under the curve (AUC) scores, consistently maintaining values of 0.9593
across all iterations. Moreover, RNN demonstrates superior precision (PER) and sensitivity
(SEN) compared to ANN and LSTM, with perfect precision scores (1.0) achieved in cer-
tain iterations and sensitivity scores ranging from 0.9015 to 0.8636. The geometric mean
(GM) scores further reinforce RNN’s superiority, consistently surpassing ANN and LSTM.
However, it is worth mentioning that LSTM exhibits competitive performance, especially
in terms of accuracy and AUC. In addition to performance, computational efficiency is
considered, with ANN emerging as the fastest architecture in terms of execution time,
followed by RNN and LSTM. These findings collectively suggest RNN’s potential as an
effective tool for credit card fraud detection tasks. Nonetheless, LSTM and ANN remain
viable alternatives depending on specific computational resources and accuracy thresh-
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olds. For future work, distributed hyperparameter optimization will be explored using
the Apache Spark platform. This approach will involve comparing Spark with regular
implementation, utilizing varying numbers of workers for distributed hyperparameter
tuning across RNN, ANN, and LSTM architectures. Furthermore, the study will expand to
include evaluation on multiple datasets and address imbalanced data challenges through
synthetic oversampling methods, with the goal of implementing these approaches on the
Databricks platform.
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