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Abstract: Unmanned sailboats, harnessing wind for propulsion, offer great potential for extended
marine research due to their virtually unlimited endurance. The sails typically operate at high attack
angles, which contrasts with aircraft that maintain small angles to prevent stalling. Despite the
reduction in lift during stalling, the resultant increase in drag contributes significantly to the sail’s
thrust. However, the sail often experiences vortex shedding due to high attack angles, leading to
low-frequency oscillations and erratic navigation. This study employs large-eddy simulations (LESs)
on a 3D NACA0012 sail at a Reynolds number of 3.6 × 105, which is validated by experimental data.
It observes the lift and drag coefficients across attack angles from 5 to 90 degrees and compares these
with a Dynarig sail. The findings reveal that higher attack angles amplify fluctuations in lift and
drag coefficients. Vortex shedding, resulting from flow separation, creates pressure changes and
oscillations in aerodynamic forces. Fast Fourier transformation (FFT) analysis identifies dominant
frequencies between 0.5 and 10 Hz, indicating low-frequency oscillations. The study’s insights into
the impact of attack angle and sail type on the oscillation frequency are favorable for the design
of unmanned sailboats, aiding in the prediction of wind-induced frequencies and optimal attack
angle determination.

Keywords: unmanned sailboat; large-eddy simulation; low-frequency oscillation; fast Fourier transform

1. Introduction

Unmanned sailboats have the ability to continuously undertake marine hydrometeo-
rological investigations on open seas. Harvesting wind energy as the main thrust power
makes them stand out from other long-range and long-duration survey equipment [1]. In
the next decade, unmanned sailboats are likely to become a potential solution for existing
problems such as underwater communication [2].

Most unmanned sailboats from industry apply rigid wing sails as a propelling com-
ponent [3]. Rigid sails allow unmanned sailboats to navigate with increased performance
due to less power consumption and mechanically simpler control, which have increased
robustness compared to traditional soft sails [4]. The sail size of major unmanned sailboats
is mostly 1–10 m, which makes for a Reynolds number regime of 5.0 × 104 to 5.0 × 105. This
is considered a low Reynolds number regime, where the viscosity will make a difference.

Ignoring the influence of low Reynolds numbers is one of the primary reasons that
wing sails, despite being more efficient than traditional soft sails, have not achieved a
breakthrough [5]. At low Reynolds numbers, the laminar boundary layer is more prone
to separation compared to high Reynolds numbers. In other words, the boundary layer
cannot sustain itself and physically detaches from the wing sail surface. After separation,
the flow becomes unstable and transitions into turbulence. Under certain conditions, this
airflow can reattach to the wing sail, forming a recirculation region known as a laminar
separation bubble [6,7]. As the angle of attack of the sail increases, the shedding of vortices
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and/or the flapping of shear layers can easily induce low-frequency flow oscillations or
even irregular fluctuations. This phenomenon leads to oscillations in the thrust exerted by
the sail, posing a threat to propulsion stability. The periodic or quasi-periodic aerodynamic
forces acting on the sail result in torque variations, causing unpredictable behavior during
the navigation of unmanned sailboats. If the oscillation frequency is comparable to the
roll, heave, or pitch motions of the sailboat, it may lead to fluctuations in the external
forces acting on the sailboat, potentially causing resonance or even the risk of capsizing.
Therefore, it is necessary to conduct in-depth research on wind-induced low-frequency
oscillations (LFOs).

The state of LFOs is akin to the condition of a wing nearing or reaching stall. In a
study by Almutairi [8], oscillations are considered self-sustaining, induced by the periodic
formation and bursting of bubbles on the wing’s suction surface. The backflow within
the bubbles indicates an absolutely unstable mechanism, with the trailing edge playing
a significant role in driving the reattachment of the separated flow. Eljack et al. [9,10]
conducted large-eddy simulations on an NACA0012 airfoil at a Reynolds number of
5.0 × 104. The fundamental mechanism of low-frequency oscillation is described as a
“button whirligig.” As the oscillatory flow loses momentum, the vortex triangle reverses
the rotational direction of the flow, imparting an energy pulse that causes it to rotate
counterclockwise, initiating a new imbalance. Ultimately, the instantaneous flow field
switches between the attachment and separation phases in a periodic manner, with some
disturbed cycles. Elawad et al. [11] performed large-eddy simulations on an NACA0012
airfoil at a Reynolds number of 9.0 × 104. They demonstrated that laminar separation
bubbles form on the suction surface, which are unstable and oscillate between short and
open bubbles. The instability of the laminar separation bubbles leads to low-frequency
flow oscillations.

Computational fluid dynamics (CFD) is a commonly employed method for studying
the flow field around sails capable of obtaining detailed flow parameters at a relatively low
cost, yet it has non-negligible limitations in precision. Previous aerodynamic studies of sails
have largely focused on the time-averaged flow field. However, research by Arredondo
et al. [12] revealed that the flow state on the suction side of the sail is intermittently at-
tached, necessitating the use of transient solutions and corresponding turbulence models,
rather than simulations based on time-averaging. William et al. [13] and Cravero [14]
employed large-eddy simulation (LES) and detached-eddy simulation (DES) techniques,
respectively, to assess vortex shedding on airfoils, achieving better flow field results than
those based on time-averaged simulations. Zhu et al. [15] used an improved delayed
detached-eddy simulation (IDDES) and observed more complex vortex shedding phenom-
ena, revealing high-frequency and wake characteristics of the flow field, which displayed
the high-frequency features of the external loads more effectively than unsteady Reynolds-
averaged Navier–Stokes (URANS) simulations. Therefore, to better capture transient
features of the flow field such as vortex shedding, higher-precision fluid simulation models
like DES or LES should be adopted. Moreover, methods such as direct noise computation
(DNC) and direct numerical simulation (DNS) can provide more detailed information on
the flow field. Dawi et al. [16] utilized DNC to compute the flow past the vehicle mode at
low Mach numbers. Akkermans et al. [17] presented an application of a computational
aeroacoustics code as a hybrid zonal DNS tool, which showed good application for a 2D
circular cylinder and a 3D decaying flow. DNC and DNS methods provide a more direct
approach to flow computation, but are more computationally intensive, while LES offers a
balance between accuracy and computational cost by focusing on the large-scale structures
in turbulent flows. Therefore, the LES method is selected as the main tool to generate the
data in this study.

The characteristics of low-frequency oscillations can be studied through spectral
analysis [18], which identifies the frequency of each significant element within a data
segment. Jabbari et al. [19] investigated the aerodynamic properties and ground effects
of the NASA LS (1)-0417 airfoil at a Reynolds number of 1.69 × 105, applying Fourier



J. Mar. Sci. Eng. 2024, 12, 835 3 of 20

transform for frequency analysis. This revealed variations in the mean vorticity distribution
and power spectral density relative to the Strouhal number (St). In most cases, a dominant
frequency can be extracted from the LFO. Eljack et al. [20] discussed the flow oscillations of
the NACA0012 airfoil at Reynolds numbers of 5.0 × 104 and 9.0 × 104. Spectral analysis
of the lift coefficient at angles of attack of α = 9.25–10.5◦ indicated that both the Reynolds
number and angle of attack are significant factors affecting the oscillation frequency. At
higher Reynolds numbers, the spectrum does not show low-frequency peaks when the
angle of attack is below or equal to the stall angle. They calculated St for different angles
of attack, and found a local minimum near the stall angle. Moise et al. [21] discovered
through simulation calculations and spectral analysis that at a free-stream Reynolds number
of 5.0 × 104, the NACA0012 airfoil exhibits low-frequency self-sustained oscillations at
St ≈ 0.06 under zero incidence.

Sailing vessels typically operate at high attack angles, which contrasts with aircraft
that maintain small angles to prevent stalling. From the perspective of thrust, both lift and
drag on the sails can be considered contributors. Particularly in downwind conditions,
to increase the speed of the vessel, larger angles of attack (typically exceeding 20◦) are
preferred. In these cases, the sails are in a fully stalled state, with fully developed turbulence
in the wake. However, there is a lack of systematic research on LFOs at low Reynolds
numbers and high angles of attack.

In this research, large-eddy simulations are performed on a 3D NACA0012 sail at a
Reynolds number of 3.6 × 105, facilitating the analysis and virtual representation of flow
characteristics. The range of angles of attack was established from 5◦ to 90◦. Spectral
analysis was employed to investigate the frequency or Strouhal number distribution adja-
cent to the angle of attack. Further computational simulations and analyses of a Dynarig
arc-shaped sail were conducted and compared with the spectral analysis results of the
NACA0012 sail, yielding the distribution of low-frequency oscillations of the sail at various
angles of attack.

It is noteworthy that LFOs have many potential influencing factors, such as the waves
and the existence of the hull. A comprehensive study of all LFO factors would undoubtedly
aid in revealing the true mechanisms of the interaction. However, the strong coupling
between these factors hinders the provision of a final solution. This research will focus on
the effects of attack angle on two sail types. Other influencing factors would be subject to
future research.

This study is an expansion of our previous conference presentation [18]. The current
work includes extensive new research findings from an additional sail geometry, the
Dynarig sail. Further conclusions have been drawn regarding the influence of sail type on
the shape and frequency of vortices in the wake. These represent a substantial advancement
beyond the preliminary results and discussions outlined in the initial work.

In Part 2, the mathematical modeling, geometric model, numerical setting, and basic
information of the fast Fourier transform are introduced. Part 3 is dedicated to the ver-
ification and validation of the computational code. Part 4 delineates the outcomes and
deliberations pertaining to the sail thrust performance and spectral analysis. Finally, Part 5
articulates the conclusions of the study.

2. Methods

In this part, the mathematical modeling, geometric model of the simulations, and
numerical setup will be introduced in sequence.

2.1. Mathematical Modeling
2.1.1. Governing Equations

In the present study, the flow is governed by the viscous incompressible Navier–Stokes
equations. The momentum equation is shown as follows:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν∇2u + f (1)
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where u is the flow velocity, ∇ is the divergence, t is time, ν is the kinematic viscosity, p is
the pressure, and f represents body force.

LES is applied to deal with turbulence by which the large scales of the turbulence are
directly resolved everywhere in the flow domain, and the small-scale motions are modeled.
The LES equations are shown as follows:

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xi
−

∂τij

∂xj
(2)

where ui and uj are the filtered velocities and p is the filtered pressure. In turbulent flows,
the forces due to pressure and viscous stresses are typically much larger than body forces
f like gravity. Therefore, the latter can be neglected without significantly affecting the
accuracy of the simulation. τij is the residual stress tensor, which can be calculated through
the following equation [22]:

τij = uiuj − uiuj (3)

2.1.2. Lambda2 Criterion

The lambda2 criterion is a vortex core line detection algorithm that can adequately
identify vortices from a three-dimensional fluid velocity field. Lambda2 is defined by the
second-largest eigenvalue of S2 + Ω2. S and Ω are defined as follows:

S =
J + JT

2
and Ω =

J − JT

2
(4)

where S is the strain-rate tensor and Ω is the spin tensor, which are the symmetric and
antisymmetric parts of the velocity gradient J, respectively. Negative values of lambda2 can
be interpreted as vortex regions, while values equal to or greater than 0 have no physical
interpretation. In the present study, this scalar is applied to show the vortices’ development
in the flow field.

2.2. Geometric Model

The computational domain is determined in Figure 1, and consists of a half cylinder
and a box. The chord of the sail is c, Dx is 6c, Dz is c (Dz is 1/3c for Dynarig cases), and the
radius R is 5c.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 4 of 20 
 

 

( ) 21 p f
t

ν
ρ

∂ + ⋅∇ = − ∇ + ∇ +
∂
u u u u  (1)

where u is the flow velocity, ∇ is the divergence, t is time, ν is the kinematic viscosity, p is 
the pressure, and f represents body force. 

LES is applied to deal with turbulence by which the large scales of the turbulence are 
directly resolved everywhere in the flow domain, and the small-scale motions are mod-
eled. The LES equations are shown as follows: 

21 iji i i
j

j i j i j

u u upu
t x x x x x

τ
ν

ρ
∂∂ ∂ ∂∂+ = − + −

∂ ∂ ∂ ∂ ∂ ∂
 (2)

where 
iu  and ju  are the filtered velocities and p  is the filtered pressure. In turbulent 

flows, the forces due to pressure and viscous stresses are typically much larger than body 
forces f like gravity. Therefore, the latter can be neglected without significantly affecting 
the accuracy of the simulation. ijτ  is the residual stress tensor, which can be calculated 
through the following equation [22]: 

ij i j i ju u u uτ = −  (3)

2.1.2. Lambda2 Criterion 
The lambda2 criterion is a vortex core line detection algorithm that can adequately 

identify vortices from a three-dimensional fluid velocity field. Lambda2 is defined by the 
second-largest eigenvalue of S2 + Ω2. S and Ω are defined as follows: 

T T

and
2 2

+ −= =J J J JS Ω  (4)

where S is the strain-rate tensor and Ω is the spin tensor, which are the symmetric and 
antisymmetric parts of the velocity gradient J, respectively. Negative values of lambda2 
can be interpreted as vortex regions, while values equal to or greater than 0 have no phys-
ical interpretation. In the present study, this scalar is applied to show the vortices’ devel-
opment in the flow field. 

2.2. Geometric Model 
The computational domain is determined in Figure 1, and consists of a half cylinder 

and a box. The chord of the sail is c, Dx is 6c, Dz is c (Dz is 1/3c for Dynarig cases), and the 
radius R is 5c. 

 
Figure 1. The size of the computational domain. 

A Cartesian coordinate system is defined, as shown in Figure 2. On the x-o-y plane, 
the center of the sail Ce locates at (−c/2, 0). The sail rotates clockwise by 45 degrees based 

Figure 1. The size of the computational domain.

A Cartesian coordinate system is defined, as shown in Figure 2. On the x-o-y plane, the
center of the sail Ce locates at (−c/2, 0). The sail rotates clockwise by 45 degrees based on
the vertical axis through Ce. Figure 2 presents the NACA0012 [23] sail as a representative,
and the Dynarig sail has a similar definition. The symbol α is the attack angle.
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The coefficient of lift (CL) and the coefficient of drag (CD) are defined as follows:{
CL = L

0.5·ρV2S
CD = D

0.5·ρV2S
(5)

where L is the lift, D is the drag, ρ here represents the air density, V is the apparent flow
speed, and S is the surface area of the sail.

In the present study, the position of the sail remains fixed and the attack angle is
controlled by altering the direction of the incoming flow. Forces in x and y directions, Fx and
Fy, can be exported directly through simulations, and L and D can thus be achieved through:{

L = Fx · sin
(

π
4 − α

)
+ Fy · cos

(
π
4 − α

)
D = Fx · cos

(
π
4 − α

)
− Fy · sin

(
π
4 − α

) (6)

During the calculations, a Reynolds number of 3.6 × 105 is selected to simulate
the reality of a typical unmanned sailboat. It is also in accordance with the available
experimental data for the NACA0012 sail. The Reynolds number Re is defined as follows:

Re =
Vc
v

(7)

where V is the apparent flow speed, c is the chord of the sail, and ν is the kinematic viscosity.

2.3. Numerical Setting
2.3.1. Solver and Mesh

Simulations in the present study are performed in a commercial solver Star-CCM+
(v16.02). Unsteady incompressible Navier–Stokes equations together with the LES model
are used to resolve the flow domain. The bounded central scheme is applied to the
convection equations in a segregated flow solver. The WALE (wall-adapting local-eddy
viscosity) model is selected as the subgrid-scale model.

The trimmed cell mesher and the prism layer mesher are applied to generate the mesh.
The prism layer contains 26 layers of cells, and the adjacent layers have a stretch ratio of
1.15. The nondimensional thickness of the first prism layer y+ is less than one. All y+ wall
treatment is implemented in the wall-bounded flow during calculations.

Mesh cells close to the sails are refined by controlling the cell size in a refinement circle
around the sail. The chord length and initial velocity for both sails are listed in Table 1.
Since the LES model is designed to simulate more vortex details in flow, the mesh in the
wake is refined accordingly. A close-up of the computational grid near the NACA0012 sail
is shown in Figure 3.
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Table 1. Basic parameters for NACA0012 and Dynarig sails.

Item Symbol
Value

Unit
NACA0012 Dynarig

Chord c 0.2 0.7 m
Camber cam - 0.07 m

Initial velocity U0 28.20 8.06 m/s
Reynolds number Re 3.6 × 105 3.6 × 105 -
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The condition Courant number < 1 is ensured throughout the computation domain.
All simulations were performed on a 6-node cluster with 48 CPUs on each node. One full
node was used for a single simulating case. Four full days (the physical time is about five
seconds) were needed to converge. In determining the convergence of the computation, two
conditions must be satisfied: firstly, all residuals must decrease by more than three orders of
magnitude; secondly, the monitored values of lift and drag must either stabilize or exhibit
periodic variation as the computation progresses. When both of these conditions are met
concurrently, it can be concluded that the computation has reached a state of convergence.

2.3.2. Boundary Conditions

The boundary conditions set in this study are illustrated in Figure 4. The arc boundary
surface on the left side is set as velocity inlet. The range of the incoming flow is +45◦

to −45◦. The two side boundaries are set as velocity inlet or pressure outlet, which is
determined based on the wind direction. The sail is fixed in the domain and its surface is
set to a no-slip wall. The right boundary is set as a pressure outlet, where the boundary
physical values are extrapolated from the interior of the solution domain. The reference
pressure is set to zero.
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The boundary condition of the surfaces parallel to the paper are set as symmetry. The
limitation is that the calculations will lose the physical details near the wingtip, but this
setting is in accordance with the wind tunnel test. The vortices generated by the wingtip
will be looked into in a future study.

2.4. Fast Fourier Transform (FFT)

CL and CD can be exported from the simulations explicitly in the time domain. It
can be observed that for large attack angles, low-frequency or irregular oscillations occur,
which can be considered a superposition of many regular waves. This study will apply
Fourier transform to analyze oscillations in the frequency domain.

In the present study, the sampling interval is 10,000 Hz (1 × 10−4 s), and thus discrete
Fourier transform (DFT) can be applied to achieve the frequency distribution. The DFT is
defined by the formula:

Xk =
N−1

∑
n=0

xne−i 2π
N nk, (8)

where k = 0, 1, 2, . . ., N − 1. Fast Fourier transform (FFT) is a fast-computing algorithm
of DFT. It is obtained by improving the algorithm of DFT according to its odd–even
characteristics, which can reduce the computations from the magnitude N2 to NlogN. This
characteristic will dramatically save time spent on data analysis in this study.

3. Verification and Validation

In this part, the way to conduct computing verification is discussed, together with
the exploration of several numerical settings on the results. The results of LESs are further
validated with experiments to evaluate the accuracy of the code.

3.1. Verification

Four grids are generated for each sail to evaluate the mesh dependency, with a factor
k = 1.2. The factor k means the number of mesh points in x, y, and z directions are 1.2 times
more than the adjacent coarse mesh. The value of the initial y+ is set as a constant (y+ = 0.9)
for all grids, since it is expected that the code can solve the flow parameters in the boundary
layer directly. The influence of the y+ on the calculations can be found in Zeng et al. [24],
which is not within the scope of this study. The cell numbers and results for the NACA0012
sail and the Dynarig sail are shown in Table 2.

Table 2. Grid information and results for two sail types.

NACA0012 Dynarig

Cells (Million) CL CD Cells (Million) CL CD

2.71 0.7009 0.7647 2.10 0.3186 0.2841
4.68 0.7439 0.8035 3.63 0.3600 0.3345
8.09 0.7737 0.8337 6.27 0.3829 0.3616

13.98 0.7793 0.8390 10.84 0.3876 0.3669

The evaluation method for discretization errors and uncertainties can refer to some pre-
vious studies [25,26], and the corresponding equations are omitted here. The uncertainties
are computed for the densest grid, and the results are shown in Table 3.
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Table 3. Grid discretization errors and uncertainties.

NACA0012 Dynarig

Key Variable CL CD CL CD

ϕ0 0.7936 0.8566 0.3956 0.3758
α −0.0143 −0.0176 −0.0067 −0.0074
p 3.4187 3.0198 4.4672 4.6127

Error 0.0429 0.0600 0.0251 0.0281
Uncertainty 5.50% 7.19% 6.48% 7.76%

Based on Table 3, the uncertainties for both sail types are in the range of 5–7%, which
should be kept in mind for applications. Therefore, the final numbers of cells for the
NACA0012 sail and Dynarig sail are about 14 million and 11 million, respectively.

Furthermore, to assess the impact of the number of cell layers in the boundary on the
results, this study conducted simulations using three different layer counts based on the
NACA0012 airfoil profile, with the results presented in Table 4.

Table 4. Influence of the number of boundary layers on CL and CD.

Layers Cells (Million) CL CD

14 11.1 0.7760 0.8312
20 12.5 0.7768 0.8361
26 14.5 0.7793 0.8390

The error between each adjacent case is less than 1%, indicating that the number of
cell layers in the boundary has little influence on the results and can be neglected. In this
study, 26 layers in the boundary are applied for all cases.

3.2. Validation

Wind tunnel tests performed by Sheldahl et al. [27] are applied to validate the CFD
calculations. In their experiments, an NACA0012 airfoil was used, and the Reynolds
number was 3.6 × 105, which is in line with this study. Comparisons of the time-averaged
lift and drag coefficients between the experimental results and LES computations are shown
in Figure 5. The angle of attack varied from 5 to 90 degrees.
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For the attack angle α < 10◦, CL and CD agree well with the experimental results
(error < 10%). However, in the range of 10–20◦, values of CL derived by LES are more than
50% higher and values of CD are 50% less than those in experiments. This phenomenon
may be due to the fact that the applied numerical model is not adept at capturing the
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transition from attached flow to separated flow. For 20◦ < α ≤ 45◦, both CL and CD have
good agreement with the tests (less than 5%). For higher attack angles (>45 degrees), errors
of CL and CD are 10–25%. The aforementioned error characteristics should be taken into
consideration in the practical application of numerical results.

Localized disagreement in certain areas might be due to discordance in the initial
conditions between simulations and experiments, such as the turbulence intensity (which
will be further discussed later), the precision of the measurement equipment in the tests,
or other numerical settings. Although these localized errors exist, the LES can capture the
trend and features of the values of both CL and CD.

As one of the initial conditions, turbulence intensity may affect the final results of
force coefficients. In this section, three values of turbulence of intensity, i.e., 0.1%, 1.0%, and
2.5%, are applied to evaluate their influence on CL and CD, which is shown in Figure 6. In
this case, the attack angle is 30 degrees and the Reynolds number is 3.6 × 105. To make an
explicit comparison with experiments, the corresponding values of CL and CD in the tunnel
test are also shown in this figure.
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The results presented in Figure 6 indicate that CL and CD are not significantly affected
by turbulence intensity (less than 3% difference). Furthermore, it appears that lower
turbulence intensity leads to smaller values of CL and CD. Therefore, the initial level of
turbulence in the incoming flow has a negligible effect on the computation of forces acting
on the sail.

In summary, from the perspectives of both verification and validation, the results
obtained through numerical computation are deemed reliable. The numerical configuration
employed will be consistently applied in the subsequent sections.

4. Results and Analysis

In this section, the lift and drag coefficients derived by LES computations are presented
for different attack angles. Comparisons of flow field are made between the NACA0012
sail and Dynarig sail, and spectrum analysis is applied to evaluate the dominant frequency
of the oscillations.

4.1. Force Performance of NACA0012 Sail

Computational results of lift and drag in the time domain are recorded in the simula-
tions. Four angles of attack, i.e., α = 15◦, 30◦, 45◦, and 90◦, are selected as representatives,
and the corresponding results of CL and CD are shown in Figure 7. In this figure, values of
CL are displayed for α = 15◦, 30◦ and 45◦. Values of CD are shown for α = 90◦, since the
corresponding values of CL are small and do not contain useful information. The abscissa
axis is nondimensionalized by tU0/c, where t is the physical time and U0 is the velocity of
the incoming flow.
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Based on Figure 7, it can be seen that:

• When α = 15◦, wiggles in CL are generally located in a small range of 1.225–1.300. Since
the flow is not fully separated, the amplitude of the flow oscillations is suppressed and
shows physically stable characteristics in the wake. This phenomenon also applies to
angles of attack less than 15◦.

• With the increase in attack angle, an increment is found in the fluctuation of the force
coefficients. The proportion of oscillating amplitude for CL or CD can go up to 20%,
35%, and 50% for α = 30◦, 45◦ and 90◦.

Physically, a fully separated flow generally forms a recirculating vortex region close
to the low-pressure surface of the sail, which can trigger both large-scale and small-scale
vortices. The vortices are developed with a certain randomness and lack enough energy to
keep a fixed shape, which would cause vortex shedding and pressure variations on the sail
surface, leading to lift and drag oscillations. In Figure 8, four instantaneous statuses are
drawn with the lambda2 (λ2) criterion to illustrate the vortices on the low-pressure side
of the sail. They correspond to the four points annotated in Figure 7b, which represent
both the local maximum and minimum of the lift coefficient. This figure is colored by the
relative velocity U/U0, where U is the instantaneous flow velocity.

It can be derived from Figure 8 that the shape of vortices is time-dependent and
not uniform in the spanwise direction. The flow structure has strong 3D features, which
should not be able to be captured by 2D calculations. For α = 30◦, the flow experiences
separation upon encountering the leading edge, resulting in the formation of unstable
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vortices within a triangular region on the lee side of the sail. These vortices originating from
the leading edge interact and merge with those emanating from the trailing edge, causing
an enlargement in vortex size downstream of the wing sail. As evidenced by Figure 8, the
vortices surrounding the wing sail are functions of time. The presence of irregular attached
and detached vortices on the sail surface induces erratic fluctuations in the aerodynamic
loading experienced by the sail, thereby compromising the stability of the thrust generated.
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4.2. Performance of Dynarig Sail and Comparisons with NACA0012

The computed results of CL for α = 15◦, 30◦, and 45◦, and the results of CD for α = 90◦

of the Dynarig sail are displayed with nondimensional time tU0/c in Figure 9.
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Figure 9. Nondimensional time history for lift or drag coefficient for different angles of attack
(annotations from 1 to 4 in (b) will be used in Figure 10).

Similarly to the NACA0012 sail, the amplitude of wiggles of the force coefficient
increases with the rise of attack angle. The changes in the value of CL show in irregular
phenomenon with time. However, differently from the NACA0012 sail, the values of CD at
α = 90◦ are close to a state of regular change for the Dynarig sail. This might be caused by
differences in sail geometry, which will be further discussed later.

Four instantaneous statuses are illustrated with the lambda2 criterion to demonstrate
the vortices of the sail, which are shown in Figure 10. Similarly, this figure is also colored
by the relative velocity U/U0.

It can be derived from Figure 10 that the vortex shedding generated by the leading
edge exhibits a distinct periodic pattern, developing into a series of intermittent vortices
that propagate towards the wake flow. This series of vortices forms one boundary of the
trailing vortex region. Furthermore, compared to the NACA0012 sail, the vortices generated
by the trailing edge of the Dynarig sail exhibit a more pronounced upward rolling trend.
Additionally, due to the relatively larger distance between the leading edge and trailing
edge compared to the NACA0012 sail, the influence of the leading-edge vortices on the
trailing-edge vortices is diminished. Consequently, the trailing edge of the Dynarig sail can
form larger-scale and more complete vortex structures, as illustrated in Figure 10d.
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Figure 10. Instantaneous lambda2 criterion isosurface (λ2 = −2.5 × 103) for Dynarig sail colored
by the relative velocity magnitude at different nondimensional time (points 1–4 correspond to the
symbols in Figure 9b, α = 30◦, Re = 3.6 × 105).

To further analyze the impact of changes in sail geometry on vortices, streamline
patterns at mid-slice sections of the NACA0012 and Dynarig are distinctly displayed for α
= 15◦, 30◦, 45◦, and 90◦, as shown in Figure 11. The streamlines are colored based on the
relative velocity (U/U0).
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• When α = 15◦, the flow is in a transitional state between attached and detached.
The separation point for the NACA0012 sail is located towards the rear of the mid-
section, whereas the flow close to the leading edge of the Dynarig sail has already fully
separated. This suggests that compared to wing sails like the NACA0012, thin-arc
sails like the Dynarig are more prone to flow separation as the attack angle increases.
Additionally, at this angle of attack, the NACA0012 sail can accelerate the incoming
flow up to 2.81-fold, which is more pronounced than the 1.52-fold acceleration caused
by the Dynarig sail.

• At α = 30◦, the vortex structures of the NACA0012 and Dynarig sails are similar, and
their acceleration effects on the flow field are also comparable. This is different from
the significant disparity observed at α = 15◦, which demonstrates the impact of the
sail’s geometric shape on the flow field.

• At α = 45◦, the NACA0012 sail generates a more extensive low-speed wake region
compared to the Dynarig sail, indicating a state of complete stall. In contrast, the
low-speed region in the wake of the Dynarig sail is primarily concentrated near the
surface of the sail and in the vicinity of some detached vortices. This phenomenon
results in the forces on the Dynarig sail exhibiting more regular variations compared
to those on the NACA0012 sail, as reflected in Figures 7c and 9c.

• At α = 90◦, where the wind speed is perpendicular to the chord length of the sail, the
NACA0012 sail exhibits a large-scale flow-separation region at its trailing end, with
no discernible regularity. In contrast, the wake region of the Dynarig sail displays a
stronger integrity of vortical structures, as evident from Figure 9d, which also reveals
a marked periodicity in the sail’s force fluctuations. This behavior may be attributed
to the differences in geometry, specifically the fact that the Dynarig sail possesses a
fore–aft symmetric shape, which is geometrically different from the NACA0012 sail.

Nevertheless, the values of CL and CD in Figures 7 and 9 are more likely to change
irregularly with time. Limited information can be derived if those results are shown only
in the time domain. Therefore, spectrum analysis is conducted to further analyze the
composition of the oscillation and the dominant frequency, which are dealt with in the
following section.

4.3. Spectrum Analysis for NACA0012 Sail and Dynarig Sail

Oscillations in CL and CD can be seen as superpositions of a certain number of regular
signals. In this section, the FFT method is applied to convert the results of CL and CD
from the time domain to the frequency domain. Spectrum analysis for the NACA0012
sail and the Dynarig sail at four angles of attack (15◦, 30◦, 45◦, and 90◦) are shown in
Figures 12 and 13, respectively. “Amplitude” in the figures indicates the absolute value
(modulus) of the complex number derived from FFT.
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Based on Figures 12 and 13, it can be derived that:

• For both the NACA0012 and Dynarig, with the increment in attack angle, the ampli-
tudes of CL and CD in the frequency domain also increase. For instance, the maximum
amplitude of CL of both NACA0012 and Dynarig sails at α = 90◦ is about 10 times than
that at α = 15◦.

• The dominant frequency (with the largest value of amplitude) is located in the range
of 0.5–10 Hz, which clearly indicates a low-frequency oscillation.



J. Mar. Sci. Eng. 2024, 12, 835 17 of 20

• For the NACA0012 sail, a second local maximum-frequency region can be found at
30–60 Hz at both α = 30◦ and α = 45◦. This phenomenon is not found for the Dynarig
sail, which might be caused by the geometry difference.

• Compared to the NACA0012 sail, the Dynarig sail’s spectrum has significantly fewer
local maxima. This implies that the Dynarig sail comprises fewer frequency compo-
nents when subjected to low-frequency oscillations. Such a distinction can serve as a
reference for frequency-based sail selection.

A nondimensional quantity, the Strouhal number (St), is used to illustrate how the
dominant frequency changes with angles of attack. St is defined as follows:

St =
f c
V

(9)

where f is the frequency. Based on the FFT analysis, the St in the case of the dominant
frequency for each attack angle is shown in Figure 14. Since the dominant frequency for CL
and CD is not obvious for α < 15◦, values of St are only depicted in the range of 15–90◦.
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Figure 14 indicates that St values for both types of sails are predominantly below 0.1,
signifying a relatively low level, and exhibit a decreasing trend with increasing angles of
attack. Except for α = 60◦, the dominant frequency corresponding to the St value of the
Dynarig sail is higher than that of the NACA0012 sail. At α = 90◦, the St of the Dynarig
sail is significantly higher than those at other attack angles and is also notably higher than
the St of the NACA0012 sail at α = 90◦. Based on the frequency distribution in the wake
analysis from Figures 11h and 13d, the oscillation frequency components on the Dynarig
sail at this state are fewer and concentrated within the range of f < 10 Hz. This may be one
of the reasons for a larger St of the Dynarig sail at α = 90◦.

It can also be derived based on Figure 14 that the St varies with the attack angle, which
means the frequency of the low-frequency oscillations can be controlled by altering the
angle of attack. Designers of the unmanned sailboat should keep this information in mind
when determining the attack angle in a specific condition.

To evaluate the degree of influence of low-frequency component on the sail force, the
percentage of the fluctuation in the total force is computed. Through FFT analysis, the
CL and CD corresponding to the dominant frequency can be derived accurately. They are
shown as percentages of the time-averaged CL or CD (Figure 15).



J. Mar. Sci. Eng. 2024, 12, 835 18 of 20
J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 18 of 20 
 

 

 
Figure 15. The magnitude of CL and CD at the dominant frequency shown as the percentage of the 
averaged CL and CD. 

Based on Figure 15, CL and CD in the case of the dominant frequency tend to increase 
with the attack angle when α ≤ 70°. The latter rises to a maximum of 31.27% of CD at α = 
60° for the Dynarig sail and 17.44% of CD at α = 60° for the NACA0012 sail. This means 
that the amplitude of force fluctuations can deviate 30% and 17% from the time-averaged 
forces for the Dynarig and NACA0012, respectively, which are too significant to be ig-
nored. Therefore, the effect of these force fluctuations on sail forces should be considered 
at the primary stage of sail design. 

5. Conclusions 
In this study, large-eddy simulations are applied at Reynolds number 3.6 × 105 for a 

3D NACA0012 sail and compared with the results from a Dynarig sail. The lift and drag 
coefficients derived from LES computations are presented and discussed for angles of at-
tack in the range of 5° to 90°. Spectrum analysis is applied to find the dominant frequency 
of the oscillations. Several conclusions can be obtained, as follows. 
• For the NACA0012 sail, when α = 15°, the flow is not fully separated. The amplitude 

of the flow oscillations is suppressed and shows physically stable flow in the wake. 
With increased attack angle, an increment is also found in the amplitude of the force 
coefficients, where the oscillating percentage of CL or CD can rise to about 20%, 35%, 
and 50% for α = 30°, 45° and 90°. 

• For the Dynarig sail, the amplitude of wiggles of the force coefficient increases with 
the rise in attack angle, which is similar to the NACA0012 sail. However, the values 
of CD at α = 90° are close to a state of regular change for the Dynarig sail. 

• For both the NACA0012 and Dynarig, with the increment in attack angle, the ampli-
tude of CL and CD in the frequency domain also increase. Different from the Dynarig 
sail, a second local maximum-frequency region can be found at 30–60 Hz. 

• Compared to the NACA0012 sail, the Dynarig sail’s spectrum has significantly fewer 
local maxima. Such a distinction can serve as a reference for frequency-based sail 
selection. 

• Strouhal numbers for both sails are predominantly below 0.1, signifying a relatively 
low level, and exhibit a decreasing trend with increasing angles of attack. 

• The amplitude of force fluctuations deviates up to 30% and 17% from the time-aver-
aged forces for Dynarig and NACA0012, respectively, which are too significant to be 
ignored. 

Figure 15. The magnitude of CL and CD at the dominant frequency shown as the percentage of the
averaged CL and CD.

Based on Figure 15, CL and CD in the case of the dominant frequency tend to increase
with the attack angle when α ≤ 70◦. The latter rises to a maximum of 31.27% of CD at
α = 60◦ for the Dynarig sail and 17.44% of CD at α = 60◦ for the NACA0012 sail. This means
that the amplitude of force fluctuations can deviate 30% and 17% from the time-averaged
forces for the Dynarig and NACA0012, respectively, which are too significant to be ignored.
Therefore, the effect of these force fluctuations on sail forces should be considered at the
primary stage of sail design.

5. Conclusions

In this study, large-eddy simulations are applied at Reynolds number 3.6 × 105 for
a 3D NACA0012 sail and compared with the results from a Dynarig sail. The lift and
drag coefficients derived from LES computations are presented and discussed for angles of
attack in the range of 5◦ to 90◦. Spectrum analysis is applied to find the dominant frequency
of the oscillations. Several conclusions can be obtained, as follows.

• For the NACA0012 sail, when α = 15◦, the flow is not fully separated. The amplitude
of the flow oscillations is suppressed and shows physically stable flow in the wake.
With increased attack angle, an increment is also found in the amplitude of the force
coefficients, where the oscillating percentage of CL or CD can rise to about 20%, 35%,
and 50% for α = 30◦, 45◦ and 90◦.

• For the Dynarig sail, the amplitude of wiggles of the force coefficient increases with
the rise in attack angle, which is similar to the NACA0012 sail. However, the values of
CD at α = 90◦ are close to a state of regular change for the Dynarig sail.

• For both the NACA0012 and Dynarig, with the increment in attack angle, the ampli-
tude of CL and CD in the frequency domain also increase. Different from the Dynarig
sail, a second local maximum-frequency region can be found at 30–60 Hz.

• Compared to the NACA0012 sail, the Dynarig sail’s spectrum has significantly fewer local
maxima. Such a distinction can serve as a reference for frequency-based sail selection.

• Strouhal numbers for both sails are predominantly below 0.1, signifying a relatively
low level, and exhibit a decreasing trend with increasing angles of attack.

• The amplitude of force fluctuations deviates up to 30% and 17% from the time-
averaged forces for Dynarig and NACA0012, respectively, which are too significant to
be ignored.

Therefore, the effects of the force fluctuations are significant and should be considered
at the primary stage of sail design. In future research, the effects of the sail tip and
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the deck of the sailboat will be investigated, which are considered to provide a closer
approximation of the physical model and give recommendations for unmanned sailboat
design and manipulation.
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