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Abstract: The high concentration of chloride ions in desulphurization wastewater is the primary
limiting factor for its reusability. Monovalent anion selective electrodialysis (S-ED) enables the
selective removal of chloride ions, thereby facilitating the reuse of desulfurization wastewater. In
this study, different concentrations of NaCl and Na2SO4 were used to simulate different softened
desulfurization wastewater. The effects of current density and NaCl and Na2SO4 concentration on
ion flux, permselectivity (PCl−

SO2−
4

) and specific energy consumption were studied. The results show that

Selemion ASA membrane exhibits excellent permselectivity for Cl− and SO4
2−, with a significantly

lower flux observed for SO4
2− compared to Cl−. Current density exerts a significant influence on ion

flux; as the current density increases, the flux of SO4
2− also increases but at a lower rate than that of

Cl−, resulting in an increase in permselectivity. When the current density reaches 25 mA/cm2, the
permselectivity reaches a maximum of 50.4. The increase in NaCl concentration leads to a decrease in
the SO4

2− flux; however, the permselectivity is reduced due to the elevated Cl−/SO4
2− ratio. The

SO4
2− flux increases with the increase in Na2SO4 concentration, while the permselectivity increases

with the decrease in Cl−/SO4
2− ratio.

Keywords: electrodialysis; selective separation; desulfurization wastewater; ion-exchange mem-
branes; permselectivity; energy consumption

1. Introduction

The limestone-gypsum wet flue gas desulfurization technology is widely employed in
thermal power plants [1–5], due to its high maturity, exceptional adaptability to diverse
flue gas components, and stable operation [6,7]. During the desulfurization process, be-
sides SO2, a certain amount of Cl−, F−, and heavy metal ions are also absorbed by the
desulfurization slurry in the absorption tower. As the desulfurization solution circulates,
these ions continuously accumulate and concentrate within the lime slurry. However, an
increase in the Cl− concentration can lead to various issues including reduced quality of
desulfurization gypsum. When the Cl− concentration reaches a certain level, it significantly
diminishes desulfurization efficiency. In addition, it can also cause corrosion of pipelines
and equipment. To ensure the desulfurization efficiency, controlling Cl− concentration in
the slurry is generally necessary. Different factories have varying maximum limits for Cl−

concentration; however, most adhere to levels below 20,000 mg/L [5,6].
The technologies for desulfurization wastewater treatment primarily encompass chem-

ical precipitation [8–10], evaporative crystallization [11], spray evaporation [12,13], mem-
brane separation [14–16], and biological treatment technology [17]. Chemical precipitation
is the most commonly employed technology, which can remove suspended solids and
heavy metal ions from wastewater efficiently. However, the treated wastewater still retains
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a high salt content, posing challenges for reuse. If discharged into the environment, it
can have adverse effects [18]. Evaporative crystallization entails substantial investment
and operating costs. The process of spray evaporation is relatively straightforward but
encounters difficulties in maintaining operational stability and achieving powder treatment.
Membrane separations, such as HERO and NF, are commonly employed for wastewater
concentration to minimize the energy consumption of subsequent evaporation. However,
these methods necessitate rigorous pretreatment procedures, including lime–soda softening
or sodium hydroxide–soda softening, to completely eliminate calcium ions and prevent
calcium sulfate scaling during membrane concentration [15,19].

Developing novel advanced technologies for desulfurization wastewater treatment
holds significance in cost reduction while accomplishing cascade utilization of water
resources in thermal power plants. As an efficient membrane separation technology, electro-
dialysis (ED) has been successfully applied across various fields [20–26]. When employing
ED for desulfurization wastewater treatment, to prevent calcium sulfate scale formation
and membrane fouling during concentration processes, it is necessary to soften the wastew-
ater in advance [27–29]. However, due to the lack of selectivity during the concentration
process, the obtained concentrated solution contains both high concentrations of NaCl
and Na2SO4, requiring significant investments with intricate operations for subsequent
fractional crystallization equipment.

The emergence of monovalent-ion-selective ion exchange membranes (IEMs) provides
additional options for selective separation of different ions [30–34]. The monovalent
selective IEMs exhibit considerable selectivity towards ions with different valence and
size, thereby facilitating the separation and purification of diverse salts in brine. Reig
et al. concentrated SWRO brine using S-ED with Neosepta cation and anion exchange
membranes, resulting in a concentration increase from approximately 70 to 245 g/L NaCl
while achieving intrinsic purification of major multivalent ions [35]. Sharma et al. enhanced
the monovalent selectivity by fabricating a polyamide selective layer on commercial IEMs
through interfacial polymerization (IP), which was then utilized for concentrating NaCl
in seawater reverse osmosis brine. The results demonstrated that the IP-modified IEMs
exhibited a divalent rejection rate exceeding 90%, whereas the commercial IEMs displayed
a divalent rejection rate below 65% [36].

Yang et al. investigated separation performance of seawater reverse osmosis brine us-
ing S-ED and observed a decrease in specific energy consumption as temperature increased.
However, there was a significant decline in the selectivity for monovalent and divalent
ions [37]. Luo et al. proposed a two stage S-ED process to selectively separate F− from
ammonia-based flue gas desulfurization slurry, achieving an 81.4% total recovery rate for
F−. The NH4F content increased from 0.35% to 40.70% [38].

In the case of limestone–gypsum wet flue gas desulfurization wastewater, the main
restriction on the reuse of desulfurization wastewater is the Cl− in the wastewater. Selective
removal of chloride salts through S-ED enables recycling of the wastewater back into the
desulfurization system. The concentrated water obtained through S-ED primarily consists
of chlorine salt; however, if softened prior to undergoing S-ED treatment, sodium chloride
becomes its primary component which simplifies further treatment.

The composition of desulfurization wastewater is complex and varies significantly
among different thermal power plants in terms of salt content, Cl−, SO4

2−, and other
components’ concentration levels. The concentration of Cl− is generally not less than
5000 mg/L and not more than 20,000 mg/L, but with some manufacturers, it can be as high
as 40,000 mg/L [18]. The concentration of SO4

2− fluctuates more, and the higher concentra-
tion is close to 30,000 mg/L [5,8,10,28,39,40]. Most of the existing studies are focused on
specific wastewater, such as seawater, seawater reverse osmosis concentrated water, and
brackish water, and the concentration of SO4

2− is mostly lower than 6000 mg/L. The study
on SO4

2− concentrations exceeding 6000 mg/L is limited. In addition, there is no systematic
study on the separation characteristics of wastewater with different concentrations and
proportions of Cl− and SO4

2−. To mitigate the impact of cations, varying concentrations of
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NaCl and Na2SO4 were employed to simulate softened desulfurization wastewater. For
the treatment of desulfurization wastewater via S-ED, this study systematically examined
how Cl− and SO4

2− concentration as well as current density affect separation performance
regarding Cl− and SO4

2−. The impact of Cl− and SO4
2− concentration on limiting current

density (LCD) was also studied.

2. Materials and Methods
2.1. Materials and Chemicals

The artificial brine was prepared using de-ionized water and chemicals including
sodium chloride(NaCl) and anhydrous sodium sulfate(Na2SO4). The chemicals were all
purchased from Aladding Regent (Shanghai) Co., Ltd., Shanghai, China, and all were
analytical grade.

The anion exchange membrane (AEM) and cation exchange membrane (CEM) used
in this experiment were Selemion ion exchange membranes manufactured by AGC Engi-
neering Co., Ltd., Chiba, Japan, and were purchased from Shandong Tian Wei Membrane
Technology Co., Ltd., Shandong, China. The specific membrane performance parameters
are shown in Table 1.

Table 1. Main performance parameters of Selemion ion exchange membranes.

Characteristic CMV ASA

Thickness (µm) 120 120
Counter ion Na+ Cl−

Burst strength (MPa) 0.16 0.14
Exchange capacity (meq g−1 dry) 2.01 2.0–2.1

Resistance
(Ω cm2)

0.5 M NaCl 3 3.7
0.5 M Na2SO4 13

2.2. Experimemtal Setup and Procedure

The self-assembled S-ED stack was employed in the experiments. Figure 1 presents
the schematic diagram of the S-ED process and ions migration in the membrane stack. A
DC power supply (WYK5020, Beijing Active Power Technology Co., Ltd., Beijing, China)
was utilized to provide the separation force. Specifically, ruthenium-coated titanium served
as the cathode, while stainless steel 316 L was used as the anode. The bench ED stack
consisted of 5 cell pairs IEMs with each membrane having an effective surface area of
50 cm2 and dimensions of 10 cm × 5 cm. Diagonal net spacers (Beijing Sanyuan Bada Co.,
Ltd., Beijing, China) with a thickness of 0.85 mm were implemented to separate each pair
of membranes, promoting fluid turbulence and reducing concentration polarization effects.
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2 wt% sodium sulfite (Na2SO4) were used as the anode and cathode solution, respec-
tively. The dilute compartment was filled with 500 mL NaCl + Na2SO4 solution, while the
concentrate compartment was filled with 500 mL 0.3 wt% NaCl solution in order to decrease
the electric resistance in the early stage of experiments. Both the desalting stream and
concentrating stream were maintained at a flow rate of 40 L/h, corresponding to 5.2 cm/s.
The electrolyte streams were also maintained at a flow rate of 40 L/h, corresponding to
5.7 cm/s. All experiment were conducted at room temperature and in a constant current
mode. The current density was varied from 5 to 25 mA/cm2.

2.3. Analytical Methods

The concentrations of Cl− and SO4
2− were determined using ion chromatography

(ICS-1100; Thermo Dionex; column model: AS19 4 mm × 250 mm). The mobile phase was
20 mmol/L potassium hydroxide (KOH) solution, with a flow rate of 1.0 mL/min. The
injection volume was 25 µL, and the column temperature was 30 ◦C.

2.4. Data Analysis

2.4.1. Monovalent Selectivity Coefficient PCl−

SO2−
4

The permselectivity between Cl− and SO4
2− was defined as Equation (1) [41]

PCl−

SO2−
4

=

(
cCl− ,ctVCl− ,ct − cCl− ,c0VCl− ,c0

)
/
(

cSO
2−
4,ctVSO

2−
4,ct − cSO

2−
4,c0VSO

2−
4,c0

)
cCl− ,d0/cSO

2−
4,d0

(1)

where ci is the concentration of the ions in the dilute compartment; Vi is the volume of
dilute or concentrate compartment; the subscripts d and c represent the dilute compartment
and the concentrate compartment, respectively; t and 0 represent time t and 0, respectively.

2.4.2. Removal Rate of Cl−

The removal rate of Cl− (α) was calculated as Equation (2)

α =

(
cCl− ,ctVCl− ,ct − cCl− ,c0VCl− ,c0

)
cCl− ,d0VCl− ,d0

(2)

2.4.3. Ion Flux

The average ion flux (Ji, mol/m2 h) was calculated as Equation (3) [42]

Ji =
∆cctVct

AN∆t
(3)

where A is the effective area of anion exchange membrane; N is the number of mem-
brane pairs, here N equals 5; ∆t is the time interval is the time interval between two
sampling points.

2.4.4. Energy Consumption Per Unit of NaCl

The energy consumption in terms of product NaCl was calculated according to Equa-
tion (4) [41]

ENaCl =
∫ UIdt

CtVt M
(4)
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2.4.5. Transport Number

Transport numbers ti were calculated according to Equation (5) [43]

ti =
|z|Ji

∑n
i |z|J

(5)

where z represents the valence of the ion.

3. Results and Discussion
3.1. LCD for Different Concentration of NaCl and Na2SO4

Concentration polarization refers to the phenomenon of ion depletion that occurs at
the interface between the membrane and solution during electrodialysis when the current
density exceeds the maximum current density for stable mass transfer. The difference in
diffusion rate of ions in both membrane and solution phases is an inherent factor leading to
concentration polarization. LCD is of great significance for the operation of electrodialysis,
as it theoretically requires electrodialysis to operate at an appropriate current density.
Electrical resistance (∆V/i) versus reciprocal of the current (1/i) was used to determine the
LCD [37]. The testing method used was proposed by Cowan and Brown. The current was
increased from 0 V manually until a turning point appears on the ∆V/i−1/i curve.

The concentration of chloride ions and sulfate ions in different desulfurization wastew-
ater varies greatly. Therefore, the effect of different concentrations of NaCl and Na2SO4 on
the LCD was studied. Firstly, by controlling the concentration of Na2SO4 at 10 g/L, the
effect of NaCl concentration on the LCD was studied. The results are shown in Figure 2a.
It can be seen that the concentration of Cl− has a significant impact on the LCD. When
the NaCl concentration is 5 g/L (equivalent to 3.03 g/L Cl−), the LCD is 32 mA/cm2. As
the NaCl concentration increases, the LCD rises rapidly. When the NaCl concentration
reaches 40 g/L (equivalent to 24.3 g/L Cl−), the LCD increases to 90.6 mA/cm2. Since
the SO4

2− concentration remains basically unchanged during monovalent anionic S-ED
process, Figure 2a can also represent LCD of saline water at different desalination stages.
Although initial LCD is high, as desalination progresses and Cl− concentration decreases,
there is a rapid decline in LCD; therefore, attention should be paid to controlling current
density in later stages of desalination process. The positive relationship between LCD and
NaCl concentrations in the dilute compartment is consistent with Lee et al. [44]. Figure 2b
shows the effect of SO4

2− concentration on the LCD when the concentration of NaCl is
controlled to 25 g/L. Increasing Na2SO4 concentration leads to a slight rise in LCD, but
this increase is relatively small due to greater resistance against SO4

2−. For monovalent
anion S-ED, the diffusion resistance of Cl− is low, while that of SO4

2− is high. However,
as the current density increases, the stack voltage drop and the driving force for SO4

2−

also increase, thereby enhancing the diffusion rate of SO4
2−. Near the LCD, where the

stack voltage drop approaches approximately 20 V, a substantial portion of the current is
attributed to sulfate ion diffusion. In this case, higher concentrations of SO4

2− result in
faster sulfate diffusion rates and consequently lead to an increase in LCD. Furthermore,
Figure 2b illustrates that as the concentration of SO4

2− increases, there is a downward
shift in the curve. This can be attributed to an elevation in Na2SO4 concentration which
enhances brine’s conductivity, resulting in a lower resistance and higher current.
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3.2. Effect of Current Density

In the process of electrodialysis, current density plays a crucial role and is typically
controlled within 90% of the maximum current density. Higher current density results in
fast desalination speed and requires a smaller membrane area, but it also leads to higher
energy consumption. Conversely, lower current density leads to slower desalination speed,
larger required membrane area, but lower energy consumption. In addition, for monova-
lent anionic S-ED, it is necessary to study the effect of current density on the separation
performance of Cl− and SO4

2−. Therefore, a systematic study on the impact of current
density is needed. The experiment was conducted using a simulated solution containing
25 g/L NaCl and 20 g/L Na2SO4, and the current density is controlled within 80% of the
maximum current. Figure 3 shows how stack voltage drop varies with Cl− removal rate
under different current densities. It can be observed that the higher current densities result
in higher voltage. This can be attributed to the fact that voltage is directly proportional to
current when the resistance remains constant. At the beginning of electrodialysis, as Cl−

removal rate increases, there is a gradual decrease in stack voltage drop; however, as the
removal rate continues to increase further changes in stack voltage drop become relatively
small; once Cl− removal rate reaches approximately 75–90%, membrane stack voltage
accelerates with increasing Cl− removal rate. The reason for this is that a high Cl− removal
rate leads to a significant decrease in the LCD. When the current density exceeds the LCD,
the stack voltage drop increases rapidly. The rapid increase in stack voltage drop leads to
an accelerated SO4

2− flux which subsequently decreases permselectivity. Henceforth in
subsequent experiments, Cl− removal rate was controlled to 70%, and the corresponding
NaCl concentration in the dilute compartment was about 7.5 g/L. Compared with Figure 2,
it can be seen that all the corresponding LCD are greater than 35 mA/cm2, and the maxi-
mum current density in the following experiment was only 25 mA/cm2, which was within
the appropriate current density range.
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Figure 4a shows the impact of current density on average ion flux. It can be ob-
served that the flux of Cl− increases nearly linearly as the current density rises from 5 to
25 mA/cm2. According to Nernst-Planck equation, the ion flux can be defined as follows:

JI = −Di

(
∇ci +

ziF
RT

ci∇φ

)
(6)

where Di is the diffusion coefficient of ions i; ci is the concentration; ci is the valence of ion i,
F is the Fraday constant; and φ is the electrical potential. According to Equation (6), the
ion flux is primarily influenced by concentration gradient, potential difference, and ion
properties [45]. As the current density increases, so does electric potential difference (stack
voltage drop), resulting in an increase in ion flux.
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The average flux of SO4
2− is significantly lower than that of Cl− within the experi-

mental range. Specifically, the molar flux of SO4
2− accounted for only 0.6–1.8% compared

to Cl−. This disparity can be primarily attributed to Donnan exclusion, dielectric effect,
and steric effect. Within IEMs, there are three main factors that control ion flux, including
Donnan exclusion, dielectric effect, and steric effect. Due to Donnan exclusion from the
surface modification layer on the IEMs, the permeation resistance for SO4

2− is large. Addi-
tionally, the hydrated SO4

2− exhibits a larger size compared to the hydrated Cl−, resulting
in enhanced steric effect and dielectric effect that impose greater resistance during passage
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through the IEMs. The combination of these three factors greatly increases the permeation
resistance of SO4

2−.
Furthermore, as current density increases, the SO4

2− flux exhibits an increasing trend.
This is primarily because the electric field also increases with current density leading to
an enhanced driving force for sulfate ions under its influence. When this driving force
partially compensates for the electrostatic repulsion of the modified layer, the growth of
SO4

2− flux is accelerated.
Figure 4b shows the influence of current density on permselectivity. It can be observed

that an increase in current density positively impacts the permselectivity. Specifically, as the
current density rises to 25 mA/cm2, the permselectivity reaches its maximum value of 50.4.
It should be pointed out that it is not true that the higher the current density, the higher
the permselectivity, it holds true only within a specific range. Golubenko et al. [46] studied
the influence of current density on permselectivity of monovalention of surface-sulfonated
anion exchange membranes. Permselectivity (PCl−

SO2−
4

) coefficients increase along with current

density, reaching maximum values at the LCD. A simplified mass transfer and numerical
simulations in the framework of Nernst–Planck–Poisson equations was developed. The
model agrees well with the experimental data and also shows that permselectivity reaches
the maximum values at LCD.

Gorobchenko et al. [47] introduced activity coefficients and developed a more detailed
model for monovalent permselectivity of bilayer ion exchange membrane. According to
this model, the increase in the permeability of a bilayer membrane with increasing current
density at low voltages is due to the fact that the divalent ion cannot pass the barrier of
the monovalent-selective layer. As the current density increases in this voltage range, the
monovalent ion flux increases faster than the divalent ion flux. However, when the flux
of the monovalent ion approaches its LCD, the rate of the increase of its flux slows down.
When this flux reaches its limiting (nearly maximum) value, the flux of the divalent ion
starts to grow, and the permselectivity coefficient starts to decrease.

The effect of current density on the transport number of Cl− and SO4
2− is illustrated

in Table 2. It can be observed that as the current density increases, the transport number
of Cl− rises while the transport number of SO4

2− decreases. This phenomenon can be
attributed to the accelerated growth of Cl− flux with increasing current density, resulting
in an increase in transport number. Within the experimental range, the transport numbers
of Cl− are all greater than 0.9651, indicating excellent selectivity for monovalent ions by
the ASA ion exchange membrane.

Table 2. Influence of current density on transport number.

Current Density
(mA/cm2) 5 10 15 20 25

t (Cl−) 0.9651 0.9800 0.9842 0.9854 0.9871
t (SO4

2−) 0.0349 0.0200 0.0158 0.0146 0.0129

The effect of current density on ESEC when the Cl− removal rate is 70% is illustrated
in Figure 5. With an increase in current density, ESEC exhibits a near-linear growth pattern.
This can be attributed to the approximate proportionality between ESEC and stack voltage,
as indicated by Equation (4). Consequently, as current density rises, the voltage also
experiences a linear increment, leading to a corresponding increase in ESEC. Notably, Yang
et al. [37] and Zhang et al. [48] have reported similar findings regarding the significant
impact of current density on ESEC. Overall, elevating the current density results in higher
values for the stack voltage drop, permselectivity, and ESEC.
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When the current density is low, despite the low energy consumption, the desalination
time becomes excessively long, and permselectivity decreases. As the current density
increases to 15 mA/cm2, an appropriate level of permselectivity is achieved while main-
taining moderate energy consumption. Therefore, for subsequent experiments, a current
density of 15 mA/cm2 was chosen.

3.3. Effect of NaCl Concentration

By maintaining the Na2SO4 concentration at 10 g/L and current density at 15 mA/cm2,
the influence of NaCl concentration on SED was studied. Figure 6 shows the variation in
ion flux and permselectivity over time. The Cl− flux remains relatively unaffected by NaCl
concentration, as shown in Figure 6a, while it exerts a significant impact on SO4

2− flux.
With increasing concentration of NaCl, there is a gradual decrease in SO4

2− flux. The total
flux of Cl− and SO4

2− is determined by the current density and current efficiency. When
the current density remains constant, and there is minimal variation in current efficiency,
the overall flux experiences negligible changes. Since the flux of SO4

2− is significantly
smaller than that of Cl−, the total flux is primarily determined by the latter. Therefore,
when there is little change in the total flux, the flux of Cl− remains relatively stable. On
the other hand, as NaCl concentrations increase, solution resistance decreases along with
a reduction in stack voltage drop which leads to a decrease in driving force on SO4

2−.
Henceforth, SO4

2− flux diminishes accordingly.
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Throughout the experimental duration, both Cl− and SO4
2− fluxed remained basically

unchanged, except when using a NaCl concentration of 15 g/L where an evident increase
in SO4

2− flux was observed starting from the 30th minute onward. This is for the relatively
low content of NaCl. After operating for 30 min, the remaining concentration of NaCl in
the dilute compartment dropped below 7 g/L, leading to a noticeable increase in stack
voltage drop and, consequently, an augmented SO4

2− flux. When operated for 40 min,
with even less NaCl remaining and higher membrane stack voltage drop, the SO4

2− flux
experiences further enhancement.

The effect of NaCl concentration on permselectivity is illustrated in Figure 6b. It is
evident that an increase in NaCl concentration leads to a decrease in permselectivity. De-
spite the decrease in SO4

2− flux with increasing NaCl concentration, Equation (1) indicates
that an increased denominator resulting from the increase in NaCl concentration causes a
reduction in permselectivity.

The effect of NaCl concentration on the transport number of Cl− and SO4
2− can be

seen in Table 3 at the time of 20 min. The concentration of NaCl has obvious impact on
the transport number, as evidenced by the experimental results. With increasing NaCl
concentration, the transport number of SO4

2− shows a significant decrease, while the
transport number of Cl− keeps increasing. This is due to the significant decrease in SO4

2−

flux with the increase in NaCl concentration.

Table 3. Influence of NaCl concentration on transport number.

NaCl Concentration
(g/L) 15 25 40 66

t(Cl−) 0.9861 0.9916 0.9941 0.9956
t(SO4

2−) 0.0139 0.0084 0.0059 0.0044

3.4. Effect of Na2SO4 Concentration

The temporal variation in ion flux and permselectivity for different Na2SO4 concen-
trations is depicted in Figure 7. The concentration of NaCl was maintained at 25 g/L,
while the current density was set to 15 mA/cm2. As shown in Figure 7a, the impact of
Na2SO4 concentration on Cl− flux is negligible, whereas it exerts a significant influence
on SO4

2− flux. The effect on Cl− flux is similar to that discussed in Section 3.3 and is not
detailed here. For the SO4

2− flux, Equation (6) demonstrates that an increase in Na2SO4
concentrations leads to an amplified total driving force and subsequently enhances the
SO4

2−-flux. Throughout the experimental duration, both Cl− and SO4
2− fluxes remained

relatively stable, which is similar to Figure 6a.
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Figure 7. Effect of Na2SO4 concentration on (a) average ion flux and (b) permselectivity at current
density of 15 mA/cm2.
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Figure 7b shows the effect of Na2SO4 concentration on the permselectivity, revealing
that permselectivity slightly increases with the increase of Na2SO4 concentration. Although
the flux of SO4

2− increases with the increase in Na2SO4 concentration, according to Equa-
tion (1), the denominator also decreases. When the denominator decreases at a faster rate
than the numerator, it will cause the increase in permselectivity.

The effect of current density on the transport number of Cl− and SO4
2− can be seen in

Table 4 at time of 20 min. The transport number is greatly influenced by the concentration
of Na2SO4. As the Na2SO4 concentration increases, there is a significant increase in the
transport number of SO4

2−, while the transport number of Cl− decreases continuously.
This is due to the obvious increase in SO4

2− flux with the increase in Na2SO4 concentration.

Table 4. Influence of Na2SO4 concentration on transport number.

Na2SO4 Concentration
(g/L) 10 20 30 40

t(Cl−) 0.9909 0.9835 0.9754 0.9721
t(SO4

2−) 0.0091 0.0165 0.0246 0.0279

4. Conclusions

In this study, monovalent anion S-ED was utilized for the separation of NaCl from the
simulated desulphurization wastewater. Selemion ASA and CMV were selected as anion
and cation ion exchange membrane, respectively. The effects of current density, NaCl con-
centration, and Na2SO4 concentration on the separation performance were systematically
investigated. Results demonstrated that the ASA anion exchange membrane exhibited
exceptional permselectivity and effectively removed chlorine salts. Within the experimental
range, the transport number of SO4

2− is limited to a narrow range, ranging from 0.0044 to
0.0349, which facilitated subsequent treatment and utilization of NaCl. Increasing current
density positively influenced separation performance. When increasing current density
from 5 to 25 mA, permselectivity rose from 18.2 to 50.4; however, energy consumption
also increased accordingly. Under fixed current density, the Cl− flux remained relatively
stable with increasing NaCl concentration, while both the SO4

2− flux and permselectivity
decreased simultaneously. During the early stages of S-ED desalination, there was no signif-
icant change in Cl− or SO4

2− flux or permselectivity over time. When NaCl concentration
decreased to approximately 7 g/L, the SO4

2− flux increased rapidly, and permselectivity
decreased accordingly. As Na2SO4 concentration increased, the SO4

2− flux also increased
slightly along with a slight increase in selectivity coefficient. This study provides valuable
insights for applying S-ED technology to desulfurize wastewater.
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