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Abstract: This paper introduces a novel filter algorithm termed as an MKMC-CSVSF which combined
square-root cubature Kalman (SR-CKF) and smooth variable structure filtering (SVSF) under multi-
kernel maximum correntropy criterion (MKMC) for accurately estimating the state of the fully
submerged hydrofoil craft (FSHC) under the influence of uncertainties and multivariate heavy-tailed
non-Gaussian noises. By leveraging the precision of the SR-CKF and the robustness of the SVSF
against system uncertainties, the MKMC-CSVSF integrates these two methods by introducing a
time-varying smooth boundary layer along with multiple fading factors. Furthermore, the MKMC
is introduced for the adjustment of kernel bandwidths across different channels to align with the
specific noise characteristics of each channel. A fuzzy rule is devised to identify the appropriate
kernel bandwidths to ensure filter accuracy without undue complexity. The precision and robustness
of state estimation in the face of heavy-tailed non-Gaussian noises are improved by modifying the
SR-CKF and the SVSF using a fixed-point approach based on the MKMC. The experimental results
validate the efficacy of this algorithm.

Keywords: multi-kernel maximum correntropy criterion; square-root cubature Kalman filter; smooth
variable structure filter; fully submerged hydrofoil craft

1. Introduction

The accurate estimation of system states with process and measurement noise is a
topic of significant interest for extracting precise state information from available measure-
ments to facilitate subsequent control design. Filters are essential tools in various domains,
including utilization in industry and research fields such as signal processing, trajectory
tracking, and fault diagnosis. Kalman made a notable contribution to Bayesian filtering,
which minimizes the posteriori state error covariance matrix to provide optimal state esti-
mation for state–space models with linear dynamics and Gaussian noises [1]. However, it is
crucial to emphasize that exact system information and adherence to Gaussian conditions
are prerequisites for optimal performance. Moreover, model approximation errors during
filtering can lead to divergence when dealing with nonlinear systems. Consequently, the
development and study of alternative nonlinear filtering methods are proposed, such as an
extended Kalman filter (EKF), unscented Kalman filter (UKF), and particle Kalman filter
(PF) [2–4].

The EKF utilizes the traditional Kalman filter strategy by linearizing the state function
through Taylor expansion [5]. However, this method may suffer from error accumulation
and decreased accuracy due to strong nonlinearities. The PF approximates posterior proba-
bility density using weighted random sample points based on the Monte Carlo sampling
method and Bayesian theory [6,7]. Nevertheless, multiple iterations can lead to increased
covariance of weight and particle degeneracy with local optimization. The UKF employs
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a scaled unscented transformation process and deterministic sampling technique to ap-
proximate the posteriori probability density with higher precision [8,9]. However, the
artificial selection of parameters may impact the filtering performance. Recently, the most
numerically stable and accurate cubature Kalman filter (CKF) has been introduced [10]. The
CKF approximates multi-dimensional integrals in Bayesian filtering under a Gaussian as-
sumption, offering advantages such as rigorous theoretical derivation, third-order filtering
accuracy, and reliable stability [11,12]. The CKF is extensively employed in applications like
spacecraft attitude estimation and trajectory tracking due to its higher estimation precision
and convergence rate for high-dimension systems [13,14]. Nevertheless, computational
inaccuracies and the limited word length of the computers may result in the state error
covariance of CKF losing the property of being symmetric positive definite, which can
ultimately lead to divergence. To prevent divergence while maintaining positive specificity,
the square-root cubature Kalman (SR-CKF) has been developed, transmitting both the
predicted and the posteriori square roots of error covariance to avoid negativity in the
covariance matrix in iterations [15,16].

In practical situations, system parameters may be drastically impacted by faults or
external disturbances, leading to uncertainties and potential degradation and instability in
common filters. Moreover, it is difficult to determine information on these modeling uncer-
tainties. Thus, to deal with modeling errors and system uncertainties, robust estimation
methods and adaptive state estimations have been proposed. The H∞ filter is designed by
reducing the extreme scenario estimation discrepancies, while it is sensitive to the quantity
of weighting functions and performance boundaries defined by users [17,18]. On the other
hand, an innovative and robust estimation strategy termed as a smooth variable structure
filter (SVSF) has been introduced [19–21]. It is a robust iterative estimation refinement
method based on the smooth variable structure principles that enhances the robustness
and stability by effectively managing modeling uncertainties. Combining the SVSF with
the EKF or UKF has been suggested to improve robustness of the system uncertainties [22].
Additionally, an algorithm named CSVSF, which combines CKF and SVSF, is proposed [23].
However, these prior works assume a Gaussian measurement noise, neglecting heavy-tailed
non-Gaussian noises existing in the system.

To address heavy-tailed non-Gaussian noises and impulsive noises in engineering
applications, various methods have been explored. The Huber robust function and infor-
mation theoretic learning (ITL) are commonly used techniques for filtering non-Gaussian
noises. The ITL captures high-order statistics, leading to a direct improvement in filter
performance [24,25]. Specifically, the maximum correntropy criterion (MCC) has shown
effectiveness in non-Gaussian conditions by maximizing the correntropy between the sys-
tem output and desired performance [26,27]. Kalman filtering methods based on the MCC
have exhibited exceptional performance in impulsive noise scenarios [28–31].

However, challenges related to MCC implementation have been addressed using
an efficient fixed-point iterative method [32]. Notably, parameter uncertainties inherent
in real-world applications are often overlooked. As the kernel bandwidth significantly
influences the presentation of the MCC, the selection of the kernel bandwidth mentioned
previously is typically conducted through trial and error by users, which is complex and
impacts the accuracy of the filter.

This paper proposes an MKMC-CSVSF which combined the SR-CKF and SVSF under
the multi-kernel maximum correntropy criterion (MKMC)to enhance the robustness against
lumped uncertainties and heavy-tailed non-Gaussian noises commonly encountered in
practical implementations such as a FSHC. The SR-CKF combined with the SVSF by a
time-varying smooth boundary layer with multiple fading factors improving the filter’s
accuracy and exhibiting robust performance against system uncertainties. Moreover, the
MKMC is introduced to ensure the robustness in contrast to heavy-tailed non-Gaussian
noises across different channels, making it more applicable for practical scenarios. A fuzzy
rule is designed to automatically determine the kernel bandwidths.
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2. Correntropy Criterion

The correntropy evaluates the resemblance of random variables X, Y ∈ R and it is
calculated based on the joint distribution function FXY(x1, y1), the correntropy function is
specified as follows:

V(X, Y) = E(χ(X, Y)) =
∫ ∫

χ(x1, y1)dFXY(x1, y1) (1)

where E(·) denotes the expectation operator, κ(X, Y) represents a kernel function with
non-negative symmetric properties. FXY(x1, y1) signifies the probability density function of
X, Y. The Gaussian kernel is utilized as the kernel function and its definition is presented as:

χ(x, y) = Gσ(eζ) =
1√
2πσ

exp(−
eζ

2

2σ2 ) (2)

where eζ = x1 − y1 is the difference between x and y, and the σ > 0 denotes the kernel
bandwidth of the correntropy function.

In several practical circumstances, data samples are frequently limited and the prob-
ability density function is not known. Consequently, the computation of correntropy
estimation is performed using a selection of samples:

V(X, Y) =
1
M

M

∑
i=1

Gσ(eζ(i)) (3)

where eζ(i) = x1(i)− y1(i), i = 1, 2, . . . M are the data samples of the FXY(x1, y1).
Expanding the Gaussian kernel function, one can obtain:

V(X, Y) =
∞

∑
N=0

(−1)N

2Nσ2N N!
E[(X − Y)2N ] (4)

It is clear that the correntropy function can be represented as the sum of moments
of the error variable X − Y with even orders. The kernel bandwidth σ is used to allocate
weights to higher-order moments. Notably, the second-order moment plays a significant
role in determining the correntropy when the kernel bandwidth selected is significantly
large [27].

Considering the error sequence eζ(i), when eζ(i) = 0, the Gaussian kernel function
will be the maximum value; the objective function of the MCC is formulated as:

LMCC = min(
M

∑
i=1

Gσ(0)− Gσ(eζ(i))) (5)

3. Estimation Algorithm
3.1. Square Root Cubature Kalman Filter

The SVSF is a model-based filter which efficiently manages structural or parametric
uncertainty and takes into account the effects of uncertainties and noise in measurements on
filter stability and convergence. The purpose of this study is to improve filter precision and
resilient performance against parametric uncertainties by combining the SVSF and SR-CKF.

According to the following system, which incorporates a nonlinear process function
and a linear measurement equation as:

xk = f (xk−1, uk−1) + wk−1 (6)

zk = Hkxk + vk (7)



Appl. Sci. 2024, 14, 3952 4 of 17

where xk ∈ Rn denotes the state variable, zk ∈ Rm means the measurement vector, and
uk−1 ∈ Rn represents the control vector. The f (·) signifies the nonlinear function which is
assumed to be differentiable to the states. The term wk−1 refers to the process noise with a
covariance of Qk and vk denotes the measurement noise with a covariance of Rk. The wk−1
and vk are zero-mean Gaussian processes and independent of each other.

The CKF is derived based on the third-order spherical–radial rule to compute the Gaus-
sian weighted integrals. The cubature rule provides an approximation for m-dimensional
integrals with Gaussian weights as detailed below [10]:

∫
Rn

f (x)N(x, µ, P1)dx ≈ 1
2m

2m

∑
i=1

f (µ +
√

P1ξ i) (8)

where the covariance P1 =
√

P1
√

P1
T and the ξ i is the ith element of 2m cubature points

as follows:

ξi =

{ √
mei, i = 1, 2, . . . , m

−
√

mei−n, i = n + 1, n + 2, . . . , 2m
(9)

e =




1
0
...
0

,


0

1
...
0

, . . . ,


0
...
0
1

,


−1
0
...
0

,


0

−1
...
0

, . . .


0
...
0
−1


 (10)

where ei means the i-th element of e. It represents the i-th elementary column vector. Given
the benefits of using the square-root form of the CKF, which includes assured covariance
properties and a prevention of estimation error covariance divergence, the SR-CKF is
employed in this study.

Firstly, the state and error covariance are initialized. The Cholesky decomposition is
used to calculate the error covariance matrix and measurement noise:

Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1 (11)

SQ,k−1 = Chol(Qk) (12)

The SR-CKF methodology encompasses a time update phase and a measurement
update phase. The process of implementing the SR-CKF is outlined.

Step 1: The time update stage is designed to predict the state at the next time step
based on the dynamic model of the system.

Determining the cubature points and advancing them by the state function:

Xi,k−1 = Sk−1ξi + x̂k−1 (13)

X∗
i,k = f (Xi,k−1) (14)

Then, calculating the state prediction and the square-root of the predicted state er-
ror covariance:

x̂k|k−1 =
2n

∑
i=1

ωiX∗
i,k (15)

Sk|k−1 = Tria([χ∗
k|k−1 SQ,k−1]) (16)

χ∗
k|k−1 =

1√
2m

[X∗
1,k|k−1 − x̂k|k−1 X∗

2,k|k−1 − x̂k|k−1 X∗
3,k|k−1 − x̂k|k−1 · · · X∗

2n,k|k−1 − x̂k|k−1] (17)

Step 2: The measurement update stage utilizes new measurement data to correct the
predicted state, thereby obtaining more precise estimations.
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Cubature points are established and propagated through the measurement function to
refine the predicted state and measurement estimates as follows:

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (18)

Zi,k|k−1 = HXi,k|k−1 (19)

The measurement predictive estimation is derived as:

ẑk|k−1 =
2n

∑
i=1

ωiZi,k|k−1 (20)

Then the square-root of the measurement error covariance and the covariance matrix
are shown as:

Szz,k|k−1 = Tria([γ∗
k|k−1 SR,k−1]) (21)

Pxz,k|k−1 = χ̃k|k−1γ̃T
k|k−1 (22)

γ̃k|k−1 =
1√
2n

[Z1,k|k−1 − ẑk|k−1 Z2,k|k−1 − ẑk|k−1 Z3,k|k−1 − ẑk|k−1 · · · Z2n,k|k−1 − ẑk|k−1] (23)

χ̃k|k−1 =
1√
2n

[X1,k|k−1 − x̂k|k−1 X2,k|k−1 − x̂k|k−1 X3,k|k−1 − x̂k|k−1 · · · X2n,k|k−1 − x̂k|k−1] (24)

where Tria(·) is subjected to a triangularization process in order to produce a lower tri-
angular matrix. The filter gain matrix, state estimation, and square-root error covariance
matrix of time are computed in the following manner and utilized in the subsequent stage
of an iterative procedure.

Kk = (Pxz,k|k−1/Szz,k|k−1)/ST
zz,k|k−1 (25)

x̂k|k = x̂k|k−1 + Kk(zk|k−1 − ẑk|k−1) (26)

Sk|k = Tria([χk|k−1 − Kkγk|k−1 KkSR,k]) (27)

3.2. Combined SR-CKF and SVSF

To strengthen the system’s reliability of the SR-CKF against system uncertainties in
the practical applications. An algorithm that combines the SR-CKF with an SVSF is defined
as CSVSF and the procedure is summarized as follows [23].

Initially, the SVSF is presented through the integration of the principles of a variable
structure concept and sliding mode theory.

x̂k|k−1 = f (x̂k−1|k−1, uk−1) (28)

Pk|k−1 = Bk−1Pk−1|k−1BT
k−1 + Qk−1 (29)

Bk−1 =
∂ f
∂x

∣∣∣∣
xk−1|k−1

(30)

The predicted measurement and measurement errors of the SVSF are gained as:

ẑk|k−1 = Hk−1 x̂k|k−1 (31)

⌢
e z,k|k−1 = zk − ẑk|k−1 (32)
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Subsequently, the SVSF gain can be determined by taking into account both the initial
measurement error

⌢
e z,k−1|k−1 and the updated measurement error ez,k|k−1.

Kk = H+
kdiag

[
(
∣∣∣⌢e z,k|k−1

∣∣∣+ λ
∣∣∣⌢e z,k−1|k−1

∣∣∣) ◦ sat(φ−1⌢e z,k|k−1)
]
diag−1(

⌢
e z,k|k−1) (33)

where H+
k denotes the pseudoinverse of the measurement matrix, λ represents the con-

vergence rate, ◦ means the Schur multiplication, and φ denotes the boundary layer of
the SVSF.

To mitigate the emergence of excessive noise, the saturation function, which includes
an optimal boundary layer, is employed instead of the sign function. The saturation
function is defined as:

sat(φ−1⌢e z,k|k−1) =


1 , φi

−1⌢e zi,k|k−1 ≥ 1
φi

−1⌢e zi,k|k−1 , −1 ≤ φi
−1⌢e zi,k|k−1 ≤ 1

−1 , φi
−1⌢e zi,k|k−1 ≤ −1

(34)

As the boundary layers are coupled to each other, to achieve a more precise state
estimation, a coupled smooth boundary layer matrix is introduced, which encompasses
interconnected boundary layers:

φ =


φ11 φ12 . . . φ1m
φ21 φ22 . . . φ2m

...
...

. . .
...

φm1 φm2 . . . φmm

 (35)

The derivation of the predictive covariance to the boundary layer enables the attain-
ment of an ideal boundary layer [22]:

∂(trace[Pk−1|k−1])

∂φ
= 0 (36)

According to [20], the smoothing boundary needs to exceed the uncertain dynamics of
the system to maintain the stability and eliminate the chattering. Nevertheless, employing
a much broader width for the SVSF could result in slower convergence and performance
degradation. Therefore, we can determine the optimal boundary layer of the CSVSF by
employing the following calculation method:

φk = (ψ
−1Hk−1Pk|k−1HT

k−1F−1
k)

−1
(37)

ψ = (
∣∣∣ek|k−1

∣∣∣+ δ
∣∣∣ek−1|k−1

∣∣∣) (38)

where ψ is the diagonal matrix of ψ. Revisions are applied to both the state estimate and its
error covariance matrix, resulting in:

x̂k|k = x̂k|k−1 + Kkez,k|k−1 (39)

Pk|k = (I − Kk Hk−1)Pk|k−1(I − Kk Hk−1)
T + KkRkKT

k (40)

Ultimately, the measurement estimate and the measurement error are calculated:

ẑk|k = Hk x̂k|k (41)

ez,k|k = zk − ẑk|k (42)
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Considering the relationship between the SR-CKF and the SVSF through the imple-
mentation of a smooth boundary layer in the SVSF, it is observed that a wider constant
smoothing boundary layer width compared to the time-varying one may lead to inaccura-
cies in the SVSF. Therefore, the SR-CKF is employed to optimize the accuracy of the filter.
To address discrepancies between the constant and time-varying smoothing boundaries
and ensure filter stability, the SVSF is utilized when the time-varying boundary extends
beyond the constant one. The state trajectory of the CSVSF considering the influence of
disturbances is shown in Figure 1.
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4. The CSVSF Based on Multi-Kernel Maximum Correntropy Criterion

It is widely recognized that the presented filtering algorithm may suffer from a de-
crease in performance when confronting non-Gaussian disturbances. The CSVSF algorithm
is improved to better withstand external disturbances and heavy-tailed non-Gaussian noise
by integrating the MKMC criterion, which considers higher-order moments of errors. Thus,
the algorithm proposed achieves high filtering accuracy and robustness against parametric
uncertainties and heavy-tailed non-Gaussian noise simultaneously [28].

According to the discrete-time system (6) and (7), which may operate in heavy-tailed
non–Gaussian noise and external disturbances, we can obtain:[

x̂(k|k − 1 )
z(k)

]
=

[
I

H(k)

]
x(k) + ς(k) (43)

where I denotes the unit matrix of n × n, δ(k) is defined as:

ς(k) =
[
−x(k)− x̂(k|k − 1 )

v(k)

]
(44)

Φ(k) = E[ς(k)ςT(k)] =
[

P(k|k − 1) 0
0 R(k)

]
=

[
Sk|k−1ST

k|k−1 0
0 SR,kST

R,k

]
= A(k)AT(k)

(45)

A(k) is gained by the Cholesky decomposition of the E[ς(k)ςT(k)]. Then, multiplying
both sides of (45) by A−1(k), one can obtain:

B(k) = C(k)x(k) + ξ(k) (46)

B(k) = A−1(k)
[

x̂(k|k − 1 )
z(k)

]
, C(k) = A−1(k)

[
I

H(k)

]
, ξ(k) = A−1(k)ς(k) (47)

The MKMC-based cost function is gained considering the multiple kernel bandwidths:

J(n+m)(x(k)) =
1

(n + m)

n+m

∑
i=1

Gσi [bi(k)− ci(k)x(k)] (48)
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Gσi (ei,k) denotes the Gaussian function with the kernel bandwidth σi, bi(k) means the
ith item of B(k), ci(k) represents the ith item of C(k), and ξi(k) = bi(k)− ci(k)x(k) means
the error at time step k. The optimal estimation of the state is obtained:

x̂(k) = argmax
x(k)

J(n+m)(x(k)) =
1

(n + m)

n+m

∑
i=1

Gσi (ξi(k)) (49)

Differentiating the (48), we can establish that:

∂J(n+m)(x(k))
∂x(k)

= 0 (50)

Substituting the (2) into (50), then the function with multiple kernel bandwidths is gained:

n+m

∑
i=1

Gσi (ei(k)) · ξi(k)
∂ξi(k)
∂x(k)

= 0 (51)

Defining Gσi (ξi(k)) · ξi(k) = η(ξi(k)), then η(ξi(k))/ξi(k) = di(k), the Function (51) can be
expressed as:

(
∂ξ(k)
∂x(k)

)
T

D(k)[B(k)− C(k)x(k)] = 0 (52)

where D(k) is defined as D(k) =
[

Dx(k) 0
0 Dz(k)

]
for convenience. Dx(k) = diag(Gσ1(ξ1(k)),

. . . Gσn(ξn(k))), Dz(k) = diag(Gσn+1(ξn+1(k)), . . . Gσn+m(ξn+m(k))). The σ1, σ2, . . . σn+m
mean multi-kernel bandwidths. σ1, σ2, . . . σn denote the bandwidths of the system pro-
cess. σn+1, σn+2, . . . σn+m are the bandwidths of the measurement.

Therefore, the modified covariance is gained as Φ̃(k) = A(k)D(k)AT(k); for the sake
of analysis, the Φ̃(k) is modified to diagonal form:

Φ̃(k) =
[

Φ̃x(k) 0
0 Φ̃z(k)

]
(53)

Given the challenge in ascertaining the system state, the x(k) is assumed equal to x̂(k|k − 1) , thus:

Φ̃x(k) = Sk|k−1 · Dx(k) · ST
k|k−1 = P̃(k|k − 1) (54)

Meanwhile, the noise covariance is modified as:

Φ̃z(k) = R̃(k) = S̃R(k)Dz(k)S̃T
R(k) (55)

Remark 1. It is clear that the option for the kernel bandwidth significantly influences the effective-
ness of the MKMC. Choosing a smaller kernel bandwidth can enhance the algorithm’s robustness
against outliers. However, excessively small values can lead to filter divergence or deterioration.
Conversely, selecting a significantly larger kernel bandwidth renders the MKMC ineffective, re-
verting the algorithm to its original filter state. Previous studies [29] have relied on trial-and-error
methods for choosing the kernel bandwidth, which can be complex and time-consuming. To address
this issue, we suggest automatically adjusting the kernel bandwidth using fuzzy rules to achieve an
adaptive kernel bandwidth.

Consequently, the algorithmic process of MKMC-CSVSF which combines the SR-CKF
and the SVSF based on the MKMC can be outlined as follows:

(1) Determine the cubature point and propagate it with respect to the state function by
(13) and (14).

(2) Calculating the priori state estimate and the square-root covariance matrix through
(15) and (16).
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(3) Calculating the measurement predictive estimation through the estimate function as
(19), (20).

(4) Considering the MKMC, calculate the modified noise covariance R̃(k) by (43)–(55).
(5) Then, considering the MKMC, and the modified measurement covariance in (21), the

state error covariance of the SR-CKF in (27) and the state error covariance of the SVSF
in (40) are used to replace the original measurement covariance for the robust to the
heavy-tailed outliers.

Szz,k|k−1 = Tria([γk|k−1 S̃R,k−1]) (56)

Sk|k = Tria([χk|k−1 − Kkγk|k−1 KkS̃R,k]) (57)

PSVSF,k|k = (I − KSVSF,k Hk−1)PSVSF,k|k−1(I − KSVSF,k Hk−1)
T + KSVSF,kR̃SVSF,kKT

SVSF,k (58)

(6) Then, the predicted state estimation and state error covariance are obtained as
(26), (27).

(7) Calculating the predicted measurement in (31), measurement errors in (32) and the
gain of the SVSF in (33).

(8) Comparing the constant and time-varying layer, in the event that the fixed boundary
layer’s width surpasses the width of its time-varying counterpart, the SR-CKF based
on the MKMC is used to refine the precision of the filter. The filter gain matrix and
the modified state estimation are calculated as (25), (26). When the width of the
time-varying smoothing boundary layer exceeds that of the constant one, the SVSF
based on the MKMC is utilized to confirm a reliable estimate. The filter gain matrix
and the modified state estimation are calculated as (39), (40).

(9) Then, update the measurement estimate and estimation error as (41), (42).

Remark 2. Consequently, it can be deduced that the MKMC-CSVSF, as proposed in this study,
exhibits improved precision and robust performance in dealing with uncertain dynamics and heavy-
tailed non-Gaussian noises. By setting the kernel bandwidths to a specific value as σi → ∞ , the
MKMC-CSVSF is converted to the conventional CSVSF, which effectively handles Gaussian noises
and uncertain dynamics. Conversely, when different kernel bandwidths are employed as σi = σ, the
proposed filter reverts back to the CSVSF based on the MCC. Remarkably, this novel MKMC-CSVSF
approach not only mitigates Gaussian noise but also attenuates non-Gaussian noise simultaneously.
It outperforms the CKF and CSVSF under conditions where dynamic uncertainties coexist with
heavy-tailed noises. Therefore, the algorithm proposed holds significant practical applicability and
can be widely used in a practical condition.

5. Results

The proposed method is tested on two scenarios to demonstrate its effectiveness, which
includes a standard one-dimensional case and the state estimation of a fully submerged
hydrofoil craft (FSHC). Statistical metrics like a mean squared error (MSE) and average
mean squared error (AMSE) are computed to evaluate the algorithms’ performance:

RMSE1(i) =

√√√√ 1
K

K

∑
k=1

(x(k)− x̂(k|k ))2, i = 1, 2 . . .Υ (59)

ARMSE =
1
Υ

Υ

∑
i=1

RMSE1(i) (60)

where K is the time steps and Υ is the number of Monte Carlo runs.
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5.1. Example 1

Firstly, we examine the one-dimensional example which serves as a univariate nonsta-
tionary growth model commonly employed in nonlinear filtering. The system is depicted
as follows:

x1(k) = a1x1(k − 1) + a2
x1(k − 1)

1 + x1(k − 1)2 + a3 cos(1.2(k − 1)) + w1(k − 1) (61)

z1(k) =
x1

2(k)
20

+ v1(k) (62)

The parameters are selected as a1 = 0.5, a2 = 2.5, a3 = 8, K = 100 and Υ = 100.
The convergence rate in the MKMC-CSVSF filter gain is selected as λ = 0.1. The kernel
bandwidth of the MKMC criterion is selected as σ = 5.

Firstly, the system and measurement noises are characterized by a Gaussian probability
functionas w1(k − 1) ∼ N(0, 0.06), v1(k) ∼ N(0, 0.01). Then the ARMSE of various
algorithms including the CKF, CSVSF and MKMC-CSVSF are calculated and presented in
Table 1.

Table 1. ARMSEs of x1 with Gaussian noise.

Filter Algorithm ARMSE of x

CKF 0.1788
CSVSF 0.2110

MKMC-CSVSF (Fuzzy rule) 0.1953
MKMC-CSVSF (σ = 0.5) 0.2410
MKMC-CSVSF (σ = 2) 0.2347
MKMC-CSVSF (σ= 5) 0.2605

MKMC-CSVSF (σ= 10) 0.2209

Then, considering the dynamic uncertainties, the parameter a3 = 8 is changed to
a3 = 4 at K = 50 during each Monte Carlo simulation. Meanwhile, the measurement error
is substituted with a heavy-tailed non-Gaussian distribution, under the assumption that
the measurement errors adhere to a mixed-Gaussian distribution w1(k − 1) ∼ N(0, 0.06),
v1(k) ∼ 0.8N(0, 0.01) + 0.2N(0, 10). The statistical results are presented in Table 2 in
this scenario.

Table 2. ARMSEs of x1 with non-Gaussian noise.

Filter Algorithm ARMSE of x

CKF 0.5889
CSVSF 0.5409

MKMC-CSVSF (Fuzzy rule) 0.2876
MKMC-CSVSF (σ = 0.5) 0.3054
MKMC-CSVSF (σ = 2) 0.3257
MKMC-CSVSF (σ= 5) 0.3559

MKMC-CSVSF (σ= 10) 0.3932

Hence, according to the aforementioned results, it is apparent that if the system and
measurement noises are characterized by Gaussian statistics, the presentation of the CKF,
CSVSF and the proposed MKMC-CSVSF demonstrates similar levels of accuracy in state
estimation. However, in scenarios where non-Gaussian heavy-tailed noise coexists with
system uncertainties, the proposed MKMC-CSVSF algorithm outperforms the other two
methods. The ARMSE of the MKMC-CSVSF exhibits notably lower values and provides
more accurate state estimation. Moreover, it is worth noting that the fuzzy rule employed
for selecting the kernel bandwidth proves to be effective and optimal. This optimal se-
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lection of the kernel bandwidth mitigates filtering divergence issues while improving
filtering accuracy.

5.2. Example 2

Subsequently, we focus on the estimation of the longitudinal behavior of the fully
submerged hydrofoil craft (FSHC). The FSHC’s nonlinear model, encompassing both
translational and rotational movements, is constructed on the basis of rigid body dynamics
and momentum theorem [33,34]:

(Z .
w − m)

.
w + Zww + Zzz + Z .

q
.
q + (Zq + Uem)q + Zθθ = −Zδe δe − Zδ f δ f − ZS (63)

M .
w

.
w + Mww + Mzz + (M .

q − Iy)
.
q + Mqq + Mθθ = −Mδe δe − Mδ f δ f − MS (64)[ .

z
.
θ

]
=

[
cos θ 0

0 1

][
w
q

]
+

[
−Ue sin θ

0

]
(65)

where
[

.
z

.
θ
]

refers to the velocity of the vertical movement and the velocity of the pitch

angle in an earth-fixed frame,
[
w q

]
holds an equivalent interpretation in the body-fixed

coordinate, and Ue is the steady speed of the FSHC. The means of the variable of (63), (64)
can refer to the [31,32]. The nonlinear second-order state space function of the FSHC is
designed as:

.
x1 = x2 (66)

.
x2 = f (x1, x2) + Bu + DW (67)

Equations (66) and (67) are discretized through the application of the fourth-order Runge–
Kutta method, resulting in a nonlinear discrete model for the longitudinal behavior of the
FSHC, together with a linear measurement function.

xk = f (xk−1, uk−1) + d(t) + wk−1 (68)

zk = Hkxk + vk (69)

where xk = [z
.
z θ

.
θ]

T ∈ R4 are the state of the system, zk = [z θ]
T ∈ R2 represents

the measurement state, uk ∈ R2 means the control item, and Hk denotes the measurement
matrix. wk ∼ N(0, Qk), vk ∼ N(0, Rk) are the system noises and measurement noises. The
system’s simulation duration is defined as t = 100 s with a sampling interval of T = 0.1 s. A
total of Υ = 50 Monte Carlo iterations are conducted. The initial states and covariance ma-
trix are specified as X0 = [0.01 0.01 0.01 0.01]T , P0 = diag([100 10 100 10]). The

measurement matrix is Hk =

[
1
0

0
0

0
1

0
0

]
. The measurement noise covariance

is R = diag([0.06 0.25]) and the system noise covariance set as Q = diag([1 1 1 1]).
The parameters of the FSHC can refer to [33,34].

In this case, δ is selected as δ = 0.4 − 0.5. The fuzzy rule is as follows:

If
∥∥∥zk − ẑk|k−1

∥∥∥ > 0.1, then decrease the ρ, ρ= 0.01 (70)

If
∥∥∥zk − ẑk|k−1

∥∥∥ < 0.1, then decrease the ρ. ρ = 400 (71)

We assume the fact that the FSHC maintains a constant speed of 45 kn with a significant
wave height of 1.5 m and the encounter angles of ocean waves are set at 30◦. We further
assume that the measurement noise adheres to a non-Gaussian noise distribution as:

r1(k) ∼ 0.9N(0, 0.06) + 0.1N(0, 6) (72)

r2(k) ∼ 0.9N(0, 0.25) + 0.1N(0, 25) (73)
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In order to validate the competence of the MKMC-CSVSF, the CKF, CSVSF and the
MCSVSF are compared in the experiment for the longitudinal behavior estimation of the
FSHC.

The estimation performance of the CKF, CSVSF and proposed MKMC-CSVSF for the
heave motion of the FSHC is shown in Figure 2 while the corresponding estimation errors
are depicted in Figure 3. The results of the estimate and discrepancies for heave velocity
are exhibited in Figures 4 and 5, respectively. The estimation results and errors for the pitch
angle of the FSHC are displayed in Figures 6 and 7. The estimation results and deviations
of the pitch angle velocity are visualized in Figures 8 and 9. The average mean squared
error (AMSE) for various filter methods applied to the FSHC are calculated individually.
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Table 3. The ARMSE of different methods.

Motion of FSHC
Filter Method

CKF CSVSF MKMC-CSVSF

Heave motion 0.1094 0.1091 0.1088
Heave velocity 2.1785 2.1422 2.0869

Pitch angle 0.6985 0.6952 0.6945
Pitch velocity 1.0272 1.0263 1.0242

Considering the evidence from the experiments presented in Figures 2–9, it can be
deduced that in scenarios where heavy-tailed non-Gaussian measurement disturbances and
system uncertainties are present concurrently, the MKMC-CSVSF algorithm outperforms
the CSVSF and CKF methods in longitudinal motion estimation. The estimation errors
associated with the MKMC-CSVSF are notably reduced in comparison to those of the CSVSF
and CKF methods. The RMSE and ARMSE of the MKMC-CSVSF demonstrate a higher
level of effectiveness relative to the other methodologies, as illustrated in Figures 10–13
and Table 3. Furthermore, the fuzzy rule-based selection of multi-kernel bandwidths
proves to be appropriate for handling multiple kernel bandwidths, while the maximum
correntropy criterion effectively addresses non-Gaussian noise scenarios. Consequently, the
proposed MKMC-CSVSF performs better than the CSVSF and CKF method in the presence
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of multivariate non-Gaussian noises and system uncertainties, thereby enhancing filtering
accuracy and robustness against system uncertainties.

6. Conclusions

The MKMC-CSVSF method is presented for the state estimation with system uncer-
tainties and heavy-tailed non-Gaussian measurement noises are proposed in this paper.
The integration of the CKF and SVSF is achieved by the relationship of a constant and
time-varying smooth boundary layer. Additionally, the utilization of the MKMC is intro-
duced to improve the robustness to multivariate heavy-tailed non-Gaussian measurement
noises. Furthermore, modifications to the covariance matrices in the CKF and SVSF are
implemented via a fixed-point algorithm. A fuzzy rule is devised for optimal selection
of kernel bandwidths. Experimental results demonstrate that the MKMC-CSVSF outper-
forms other methods when dealing with systems containing uncertainties and multivariate
non-Gaussian noises, thereby producing notable enhancements in accuracy and robustness.
Moreover, it is advisable to apply this approach in fields such as aerospace, mechanical
systems, and aircraft, where heavy-tailed non-Gaussian noises are frequently encountered,
to achieve accurate estimation.
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