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Abstract: SLAM (Simultaneous Localization and Mapping), primarily relying on camera or LiDAR
(Light Detection and Ranging) sensors, plays a crucial role in robotics for localization and envi-
ronmental reconstruction. This paper assesses the performance of two leading methods, namely
ORB-SLAM3 and SC-LeGO-LOAM, focusing on localization and mapping in both indoor and out-
door environments. The evaluation employs artificial and cost-effective datasets incorporating data
from a 3D LiDAR and an RGB-D (color and depth) camera. A practical approach is introduced
for calculating ground-truth trajectories and during benchmarking, reconstruction maps based on
ground truth are established. To assess the performance, ATE and RPE are utilized to evaluate
the accuracy of localization; standard deviation is employed to compare the stability during the
localization process for different methods. While both algorithms exhibit satisfactory positioning
accuracy, their performance is suboptimal in scenarios with inadequate textures. Furthermore, 3D
reconstruction maps established by the two approaches are also provided for direct observation of
their differences and the limitations encountered during map construction. Moreover, the research
includes a comprehensive comparison of computational performance metrics, encompassing Central
Processing Unit (CPU) utilization, memory usage, and an in-depth analysis. This evaluation revealed
that Visual SLAM requires more CPU resources than LiDAR SLAM, primarily due to additional data
storage requirements, emphasizing the impact of environmental factors on resource requirements. In
conclusion, LiDAR SLAM is more suitable for the outdoors due to its comprehensive nature, while
Visual SLAM excels indoors, compensating for sparse aspects in LiDAR SLAM. To facilitate further
research, a technical guide was also provided for the researchers in related fields.

Keywords: 3D SLAM; Visual SLAM; LiDAR SLAM; 3D reconstruction; robotics

1. Introduction

SLAM has emerged as a prominent subject within the robotics community in recent
years, leading to the development of numerous associated open-source projects. These
projects encompass a wide range of applications, including autonomous vehicles, drones,
architectural surveying, and scene scanning. SLAM stands for Simultaneous Localization
and Mapping, representing a vital technique with immense potential. It enables a robot
to robustly ascertain its position (localization) while concurrently constructing a real-time
representation of previously unexplored environments (mapping) [1]. Various sensors are
employed to gauge distances in the real world and capture pertinent features. Among these
sensors, cameras and LiDAR systems are the most prevalent. Consequently, the SLAM
domain primarily encompasses visual-based SLAM and LiDAR-based SLAM, contingent
upon the input from the specific sensors.

In our previous study, we discussed mainly mapping for mobile robots in outdoor
environments involving LiDAR SLAM and Visual SLAM [2]. Thus, this study primarily
revolves around the performance comparison between Visual SLAM and LiDAR SLAM in
terms of localization and mapping for mobile robots operating in real-world environments.
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With an emphasis on maintaining continuity and universality, we strive to opt for cost-
effective solutions. Therefore, the chosen algorithm representatives for these two SLAM
methods are ORB-SLAM3 [3] and SC-LeGO-LOAM [4], respectively.

Visual SLAM (VSLAM) mainly infers the motion of the camera and the surrounding
environment based on the continuous color image stream. To ensure minimal distortion
and reduce calculations related to the epipolar geometry-based positional relationships,
depth image streams are often integrated into the camera’s positioning. As exemplified
by our research focus, ORB-SLAM3 [3] is a feature-based SLAM system that employs
pinhole and fisheye lens models to facilitate visual, visual-inertial, and multi-map SLAM
by monocular, stereo, and RGB-D cameras. Based mainly on ORB-SLAM2 [5] and ORB-
SLAM visual-inertial [6], ORB-SLAM3 introduces several novel methods, including a
multi-map system, bag-of-words for loop closure, and advanced mid-term and long-term
data association techniques.

LiDAR SLAM can be roughly divided into 2D and 3D LiDAR SLAM, generating 2D
and 3D maps separately. Early LiDAR SLAM systems, such as Gmapping [7], and Simul-
taneous Localization, Mapping, and Moving Object Tracking (SLAM-MOT) [8] primarily
utilized 2D LiDAR sensors and were often based on the Extended Kalman Filter (EKF)
algorithm [9]. EKF is the nonlinear version of the Kalman Filter (KF), which approxi-
mates the state of a nonlinear system through a linear system that employs a first-order
Taylor expansion. As hardware advances and algorithms become increasingly refined,
optimization-based techniques and the integration of multiple scanning channels with 3D
LiDAR play increasingly significant roles in the field of LiDAR SLAM. SC-LeGO-LOAM [4]
is an expansion of the LOAM (Lidar Odometry And Mapping) [10] approach and in-
corporates a scan context loop detection technique [11] that utilizes a global descriptor
obtained through the scan context to detect loops. The main objective of SC-LeGO-LOAM
is to perform real-time odometry and mapping by efficiently processing the point cloud
data acquired from a 3D LiDAR sensor and to achieve accurate and robust localization
and mapping.

An Inertial Measurement Unit (IMU) can also be used as a supplement to the SLAM
position relationship, providing vision with fast-moving positioning. However, the external
parameter matrix from the camera or LiDAR to IMU must be obtained through physical
measurement and sensor calibration. If the external reference calibration is not accurate
enough, the positioning effect of the experimental restoration may be seriously wrong.
Therefore, the experiments involved in this paper did not use IMU data.

Three-dimensional reconstruction serves as both an application and a component of
SLAM technology. It furnishes the essential three-dimensional geometric data necessary
for constructing environment maps and plays a pivotal role in realizing the perception,
positioning, and navigation functions of the SLAM algorithm within the environment.
Typically, these 3D reconstruction representations take the form of point cloud models,
mesh models, and geometric models. For example, Kinect Fusion [12] can use the RGB-D
Kinect camera to achieve instant 3D reconstruction of the environment through dense
point cloud sampling and real-time tracking algorithms. Furthermore, algorithms from the
LOAM series can also find applications in the Architecture, Engineering, and Construction
(AEC) field [13].

The dataset determines the upper limit of the algorithm, so another focus of this
paper is to record datasets using 3D LiDAR scans and RGB-D camera streams. Current
public datasets differ with target scenes, recorded sensor data, and ground truth collection
methods. For example, the TUM (Technical University of Munich) dataset [14,15] is suitable
for pure Visual SLAM and visual-IMU SLAM, where the motion capture system records
the ground truth. Another example is the KITTI (Karlsruhe Institute of Technology and
Toyota Technological Institute) dataset [16], which also provides high-quality data. KITTI
employs Real-Time Kinematic GPS (RTK-GPS, [17]) in conjunction with Inertial Navigation
Systems (INS) to establish ground truth data. But it uses a stereo camera sensor instead of
an RGB-D camera sensor.
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In previous SLAM research or common service robots in the market, SLAM technology
is often used only in one specific scenario. As SLAM technology advances with modern
technology, robots are required to continuously navigate between indoor and outdoor envi-
ronments. However, different environments may be suitable for different SLAM algorithms.
Our research aims to assist researchers in gaining a more comprehensive understanding
of the performance of various SLAM approaches. Moreover, the literature [2,18], is also
useful for us to choose suitable locations for conducting multiple experiments, thereby
enhancing the variability and assessing the performance of various SLAM systems.

The summary of this research work can be succinctly encapsulated as follows:
(a) A systematic review of the SLAM algorithms including Gmapping, ORB-SLAM3,

SC-LeGO-LOAM, and Cartographer is introduced for the comparison. (b) The robot plat-
form used for implementation, the process to establish datasets including RGB-D and 3D
LiDAR data, and the mapping approach utilized in this study are introduced. In addition,
the benchmark calculated by the Cartographer algorithm for the trajectory error estimation
is acquired. (c) The comparative analysis is divided into three main sections: localization,
mapping, and performance evaluation. The localization focuses on evaluating the accuracy
of pose tracking by ATE and RPE, which can be acquired by calculating the Euclidean
distance between the ground-truth poses and the estimated poses [19]. The mapping
section focuses on evaluating 3D reconstruction performance, considering factors such as
the quality of reconstructed models and adaptability to varying environmental conditions.
Additionally, the performance evaluation encompasses metrics such as CPU utilization and
memory usage. Effective resource management is deemed crucial for real-time applications
and overall system usability.

2. Theories

This section offers a concise overview of pertinent SLAM (Simultaneous Localization
and Mapping) algorithms, specifically Gmapping, ORB-SLAM3, SC-LeGO-LOAM, and
the Cartographer algorithm. Gmapping stands out as one of the most widely-used SLAM
algorithms; however, it relies on odometry data as the input, making it suitable solely
as a reference for positional effects in Section 4. The primary focus of evaluation lies on
ORB-SLAM3 and SC-LeGO-LOAM. Additionally, the Cartographer algorithm comes into
play for calculating ground-truth trajectories. Ultimately, 3D reconstruction is employed to
assess the mapping outcomes.

2.1. Gmapping

Gmapping combines the wheel odometry of the robot with current observation data
so that the uncertainty can be reduced. However, it depends severely on the existence
of odometers, which affect its robust performance [7]. To solve the error accumulation
problem of learning grid maps with RBPFs (Rao-Blackwellized particle filters), Gmapping
presents proposal distribution of statistics and adaptive resampling to improve the accuracy
of particle filters. The adaptive resampling mechanism in Gmapping is based on a threshold
Nth, which is usually set to half of the total particle number, and the currently effective
number of particles Neff, which can be calculated by Equation (1).

Neff =
1

N
∑

i=1

(
w̃(i)

)2
(1)

where N is the total number of the particles and w̃(i) is the normalized weight of the
particle i. Under the condition that Neff is less than Nth, adaptive resampling will be
performed.

This method combines robot encoder data with current observation data so that the
uncertainty of robots can be reduced. However, it depends heavily on the existence of
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odometers, which affected its robust performance. Furthermore, the number of particles
became larger and influenced the calculation speed in a large scale scene.

2.2. ORB-SLAM3

ORB-SLAM3 [3] is a highly efficient system designed for Visual SLAM. It operates
through three concurrent threads: tracking, local mapping, and loop and map merging,
alongside an independent full bundle adjustment (BA) thread for map enhancement.

Bundle adjustment [20] is a non-linear optimization method utilized in the ORB-
SLAM3 algorithm; it estimates accurate camera 3D locations and poses by minimizing the
reprojection error with respect to the matched key points on the digital image. The SE(3),
Special Euclidean Group, represents the special Euclidean group within Lie group algebra.
It is a six-dimensional vector encompassing three rotational degrees of freedom and three
translational degrees of freedom. The SE(3) manifold possesses a topological structure that
renders it differentiable. Consequently, SE(3) can effectively determine an alignment. The
error can be formulated as

ei,j = xi,j − πi(Tiw, Xw,j) (2)

and the minimized cost function is represented as Equation (3),

C = ∑
i,j

ρh(e
T
i,jΩ

−1
i,j ei,j) (3)

where ρh is the Huber robust cost function and Ωi,j = σ2
i,jI2×2 is the covariance matrix

related to the scale of the detected key point.
In ORB-SLAM3, the tracking thread processes image data, extracts key feature points,

and matches them between consecutive frames to determine the current frame’s position.
To enhance pose estimation, this thread employs a motion-only BA, refining the accuracy
of the calculated pose. Additionally, keyframes are discerned through predefined criteria.
The local mapping thread implements the tracking thread’s decisions, generating new
keyframes and updating the local map. A culling mechanism is employed to systematically
eliminate redundant keyframes and points, thereby bolstering the robustness of tracking.
Furthermore, the local bundle adjustment optimizes all points within the local area for
map accuracy. The loop and map merging thread operates within the atlas multi-map
system, searching for similar scenes to achieve loop closure and integrate maps smoothly.
Lastly, the full BA thread independently performs pose-graph optimization to refine the
entire map without compromising real-time performance. By coordinating these threads,
ORB-SLAM3 delivers real-time and optimal performance for diverse applications requiring
accurate and up-to-date maps.

2.3. SC-LeGO-LOAM

SC-LeGO-LOAM [4], an extension of the LeGO-LOAM [21] method, incorporates a
loop detection technique based on the scan context for enhanced loop identification. The
process begins with the 3D LiDAR data points obtained from the scan, which are initially
categorized into ground and segmented points using a ground segmentation method.
Subsequently, an image segmentation method refines the segmented points into distinct
clusters, each assigned a specific label for identification purposes.

By evaluating the roughness values c of both ground and segmented points and
comparing them with a predefined threshold cth, the classification of edge and planar
features is then carried out. The roughness c is defined as follows:

c =
1

|S| · ∥ri∥
∥ ∑

j∈S,j ̸=i
(rj − ri)∥ (4)

where ri and rj are the Euclidean distances from points pi and pj in set S to LiDAR,
respectively.



Appl. Sci. 2024, 14, 3945 5 of 20

The estimation of the robot’s motion follows, involving a comparison between the
current feature set and that of the previous time step, with label matching enhancing
the precision of matching results. The subsequent application of a two-step Levenberg–
Marquardt (L–M) Optimization computes the pose transformation matrix. Loop detection
is facilitated through the integration of a scan context method, transforming the 3D point
cloud into polar coordinates and extracting global descriptors.

Utilizing a K-dimensional (KD) tree and conducting the nearest neighbor search, the
frame with the highest similarity score is identified as the loopback frame, facilitating loop
detection. The similarity score between queried and the candidate point clouds can be
calculated by

d(Iq, Ic) =
1

Ns

Ns

∑
j=1

(1 −
cq

j · cc
j

∥cq
j ∥∥cc

j∥
) (5)

where Ns represents axial sector number in scan context I and cq
j , cc

j represent column
vectors at the same index in queried and the candidate frame, respectively.

The final stages encompass map optimization via the iterative closest point (ICP, [22])
method and the integration of positional data, culminating in the determination of an
accurate final position and estimation.

2.4. Cartographer

The Cartographer [23] stands as an open-source real-time 2D and 3D mapping library
and SLAM system, with its primary development carried out by Google. The original
source code was introduced in 2016 [23] and has been updated subsequently. Consequently,
we are presently utilizing the latest release version, which received its most recent update
in 2021.

The Cartographer system employs a dual approach, incorporating both local and
global optimization techniques to rectify errors and estimate poses. These two optimization
methods are relatively independent and align with the distinct mapping processes: the front
end, responsible for converting scans into submaps, and the back end, tasked with linking
submaps into the global map. The latter can also be viewed as managing loop closures.

1. Scans-to-submap (Local map)

Initially, the LiDAR raw data were transformed into scans without any pose estimation.
A sequence of consecutive scans was then employed to construct a submap, represented
as a probability grid. To enhance the quality of the scans, a bicubic interpolation method
was utilized for filtering and smoothing noisy data. This refined scan output is referred to
as a grid scan. The scan matching process, utilizing a Ceres-based [24] scan matcher, was
employed to perform this task, simplified as a nonlinear least squares problem.

argmin
ξ

K

∑
k=1

(1 − Msmooth(Tξ hk))
2 (6)

where Tξ transforms hk from the scan frame to the submap frame according to the scan
pose. The function Msmooth: R2 → R is a smooth version of the probability values in the
local submap. Consequently, this process enabled the estimation of the poses, with the grid
scan subsequently incorporated into the submap.

2. Submaps-to-map (Global map)

As the front-end process gradually accumulates errors, the back end characterizes
this optimization as a nonlinear least squares problem, akin to the local mapping step,
termed sparse pose adjustment (SPA). This challenge involves handling scan poses and
submap poses, incorporating constraints related to relative poses and their associated
covariance matrices. To prevent an excessive computational burden when exploring
the entire domain, the Cartographer employs a Branch-and-Bound (BAB) scan matching
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approach. Its algorithm can be summarized as a method for refining the search process to
obtain an optimal pose estimate.

2.5. Three-Dimensional Reconstruction

In this section, for the goal of 3D reconstruction, two maps generated separately by
two SLAM methods are briefly introduced.

1. RGB-D Point Cloud

An RGB-D point cloud is a data representation that combines color information from
a traditional RGB (Red, Green, and Blue) image with depth information to create a three-
dimensional reconstruction of a scene or object. Figure 1 shows a typical RGB-D point
cloud reconstruction process.
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Initially, the preprocessed input data are aligned and used for local reconstruction.
Next, we can determine the position and orientation of the cameras by establishing associ-
ations between visual features. This involves the process of matching observed features
or landmarks in the environment with their corresponding features in a known or ref-
erence map. And loop closure detects and corrects errors in the estimated trajectory.
Finally, based on the estimated camera pose, the input data are integrated into the 3D
reconstruction mapping.

2. LiDAR Point Cloud

LiDAR Point cloud maps, generated by LiDAR SLAM, provide information regarding
the positions of objects. This is achieved through the emission of laser beams by the
LiDAR sensor, which is then reflected back from the objects to calculate their respective
positions. Due to the properties of 3D LiDAR beams being emitted in a specific angular
range and covering multiple directions at the same time, the point cloud maps possess the
advantage of fast and wide-ranging simultaneous generation. As a result, it is well-suited
for applications involving large-scale environments. To alleviate computational load and
down-sampling, some mapping algorithms will preserve features like points, lines, and
surfaces as data points.

3. Dataset and Benchmark
3.1. Robot Platform

This section describes the robot platform setups used in the experiments, which
are modified from [25]. The differential wheeled mobile robot deployed several sensors,
computer, and power. The sensors contain Stereolab Depth Camera Zed2, LSLIDAR
16-Line mechanical LiDAR, and wheel odometry. Thus, we collect wheel odometry, RGB
and depth images, and 3D LiDAR scans. The transform matrixes of the different sensor
frames are also calculated as Figure 2. The mobile robot (Figure 2) was constructed by our
laboratory. The positions of the depth camera and 3D LiDAR mounted on the robot have
been accurately measured by the 3D model file and the extrinsic calibration parameters
have been computed using the D–H (Denavit–Hartenberg) parameter table in the field
of robotics. It is worth mentioning that the robot also has 2D LiDAR; however, it is not
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used because of poor accuracy. The computer deployed an Intel Core i7-9700TE (8 cores @
3.8 GHz), which was used for all the dataset records and SLAM experiments. And 64-bit
Ubuntu 20.04 was used for all of the experiments.
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3.2. Benchmark

This section primarily focuses on the acquisition of cost-effective datasets with the
ground truth serving as the benchmark. In essence, our task is to devise a methodology for
obtaining ground truth data and crafting scenarios that align with our specific evaluation
requirements for assessing the performance of various algorithms. In order to manage
costs, it becomes crucial to obtain datasets that are economically viable while still serving
as a valid benchmark for algorithmic effectiveness. As a result, we need to derive ground
truth values based on the available sensors and data sources. Fortunately, the wheeled
robots are typically designed to travel on flat ground and often have fixed sensors. Thus,
the 2D SLAM algorithm aids in deriving the ground truth, encompassing both the robot’s
poses and their corresponding LiDAR timestamps. Additionally, we utilize interpolation to
enhance the data content and synchronize LiDAR and image timestamps, contributing to
the accurate calculation of error between camera poses obtained from ORB-SLAM3 and
ground truth. Finally, leveraging the Cartographer as our foundation, we have proposed a
technique for calculating ground truth. At the same time, we select scenes with engineering
drawings or tiles as references while recording dataset scenes.

In this study, we recorded real-world datasets from two scenes on the campus of
National Taiwan University (NTU) in Taipei, Taiwan. These scenes include (1) the corridor
on the sixth floor of the College of Engineering Building as an indoor environment and
(2) the second floor outdoor venue of the College of Engineering Building as an outdoor
environment. Combined with comparing the engineering drawings of the building, we
believe that the accuracy of this dataset can be guaranteed. In addition, the paper [23]
shows that the relative error of the Cartographer is less than 1%, which is within our error
margin. At this point, we have obtained benchmarks for comparing localization effects.

3.3. Mapping (3D Reconstruction)

Our subsequent goal is to obtain the mapping benchmark by expanding upon our
established localization. As illustrated in Figure 3, this paper introduces two distinct RGB-D
reconstruction processes based on different data association methods. Figure 3a shows a
RGB-D reconstruction with loop closure, relying on ORB-SLAM3. In contrast, Figure 3b
illustrates RGB-D reconstruction based on ground truth, preventing additional loop closure
as acquiring ground truth incorporates loopback correction. To optimize the effect of
mapping and reduce the amount of calculation, we use three filters when constructing
the map. (i) Pass-through filters are employed to filter data along a specific dimension
efficiently. It can remove errors caused by the inherent characteristics of the system and the
imaging principle. (ii) Voxel filters are utilized to reduce point sampling and mitigate bias.
(iii) Statistical outlier removal filters serve the purpose of eliminating outliers.
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Figure 3. Two types of RGB-D reconstruction processing methods are referred to in this paper.
(a) Based on ORB-SLAM3, RGB-D reconstruction with a loop closure. (b) Based on ground truth,
RGB-D reconstruction.

4. Comprehensive Performance Evaluation

The evaluation and comparison of the purposed SLAM algorithms can be divided
into two categories: localization and mapping in an indoor environment and localization
and mapping in an outdoor environment. The organization aims to compare the overall
performance of SLAM algorithms in two environments. There are five outdoor datasets
and five indoor datasets, including 3D LiDAR data, RGB-D images, and the corresponding
benchmarks. In this paper, the trajectory paths for the self-recorded indoor dataset are
about 90 m, while the outdoor dataset has a trajectory path of about 40 m. Additionally,
when running SLAM results (both trajectory and mapping), programs (Ros-noetic-rviz
1.14.20 on ROS Netics and debugging messages) are employed to ensure that both SLAM
methods in every running achieve loop detection and result in the best SLAM outcomes.
During the recording of datasets in this paper, the mobile robot moved along the same route
five times with the same starting and ending positions each time. Therefore, in Table 1, for
example, I1 represents the first recording in an indoor environment, while O5 represents
the fifth recording in an outdoor environment. The numbers in the descriptors only indicate
the order of dataset recording in each environment. In the indoor environment, we used
the third dataset (I3) for our implementation. In the outdoor environment, we used the
fourth dataset (O4) for our implementation. It has been modified in the manuscript.

Table 1. ATE with SE(3) Umeyama alignment in an indoor environment (Unit: m).

Gmapping ORB-
SLAM3

SC-LeGO-
LOAM Gmapping ORB-

SLAM3
SC-LeGO-

LOAM

MAX 4.91518 0.78351 2.38522 MAX 1.88854 0.46741 0.56568

MEAN 2.68788 0.48961 0.5693 MEAN 0.90588 0.27761 0.27293

RMSE 3.05934 0.50410 0.69376 RMSE 1.09383 0.29589 0.29494
Dataset I1

STD 1.4611 0.11998 0.39648

Dataset I4

STD 0.61307 0.10238 0.1118

MAX 2.39814 0.65616 0.73112 MAX 1.31456 0.79217 0.92859

MEAN 1.23568 0.39849 0.35394 MEAN 0.50987 0.3197 0.4894

RMSE 1.48806 0.40884 0.38915 RMSE 0.65464 0.36851 0.53221
Dataset I2

STD 0.82911 0.09143 0.16174

Dataset I5

STD 0.41060 0.18328 0.20911

MAX 4.80831 0.38631 1.07315 MAX 3.06494 0.61711 1.13675

MEAN 2.45052 0.16167 0.39211 MEAN 1.55796 0.32941 0.41554

RMSE 2.87831 0.17358 0.44974 RMSE 1.83484 0.35018 0.47196
Dataset I3

STD 1.50985 0.0632 0.22025

Average

STD 0.96475 0.11205 0.21988
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4.1. Indoor Environment

The indoor datasets describe a rectangular corridor (low-texture, low-structure) with
a total length of over 90 m. Due to different robot speeds, the durations of the datasets are
approximately 350 to 450 s.

4.1.1. Localization

Figure 4 displays the ground truth of the robot poses obtained from one of the indoor
datasets (I3). Other datasets have similar trajectories. The absolute trajectory error (ATE)
and relative pose error (RPE) are utilized to evaluate SLAM algorithms [26]. ATE measures
the difference between the actual and estimated values of camera poses, directly showing
the advantages and disadvantages of the algorithm. Relative pose error is a measure of
the difference between the estimated pose and the ground truth pose at each point in time
along the trajectory. In addition, SE(3) transformation parameters are calculated using the
Umeyama algorithm [27] to align the two values.
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Figure 4. The ground truth of the robot poses obtained from one of the indoor datasets (I3).

Four metrics are chosen to assess the algorithm, comprising the maximum value
(MAX), mean value (MEAN), root mean square error (RMSE), and standard deviation
(STD).

The RMSE can quantify the accuracy of the constructed trajectory through the follow-
ing mathematical expression

RMSE =

√
∑n

t=1
(
Xt − X̂t

)2

n
, (7)

where X̂t represents the ground truth of the localization of the mobile robot, Xt is the
measured value, n is the total number of positions, and t stands for the serial number.

The STD reflects the degree of stability of the build trajectory error and the mathemati-
cal expression is

σ =

√
∑n

t=1
(
Xt − Xt

)2

n − 1
, (8)

where Xt is the mean value.
Additionally, Gmapping serves as an extra reference. However, given that Gmapping

is a 2D LiDAR SLAM algorithm utilizing odometry as an additional input, its involvement
is limited to the evaluation of localization.
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The results of the metrics ATE (with SE(3) Umeyama alignment) are shown in Table 1.
It is obvious that in indoor environments, ORB-SLAM3 has smaller errors, highlighted
in bold font, and outperforms other methods. Moreover, ORB-SLAM3 also demonstrates
smaller standard deviation, indicating higher stability for localization. Due to the smooth
surface of the indoor floor, the robot is susceptible to slipping, leading to inaccurate
mileage counting values. Consequently, this issue adversely impacts the precision of the
Gmapping algorithm.

As illustrated in Figure 5, we conducted a comparison of RPE in an indoor environment
(I3), unveiling the discernible impact of loop closure on ORB-SLAM3 and SC-LeGO-LOAM,
respectively. Analysis of the four sub-figures allows us to draw the following conclusions.
(1) In indoor environments, loop closure detection effectively corrects the results of the two
SLAM algorithms, enhancing their accuracy and robustness. (2) The RPE of Visual SLAM
is positively correlated with the robot’s speed and changes in the field of view, with the
most pronounced performance observed in Figure 5a. The local maximum values occur at
corners, while the RPE approaches zero in the initial and final static states. (3) Conversely,
the correlation of LiDAR SLAM’s RPE is relatively inconspicuous. We attribute this to the
LiDAR’s 360-degree horizontal range, which scans the operator behind it, introducing a
different dynamic.
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Figure 5. I3 RPE with regard to the translation part (m) for delta = 1 (frames) using consecutive pairs 
(with SE(3) Umeyama alignment, while processing panning rotation and scale): (a) ORB-SLAM3 
with loop closure; (b) SC-LeGO-LOAM with loop closure; (c) ORB-SLAM3 without loop closure; 
and (d) SC-LeGO-LOAM without loop closure. 

  

Figure 5. I3 RPE with regard to the translation part (m) for delta = 1 (frames) using consecutive pairs
(with SE(3) Umeyama alignment, while processing panning rotation and scale): (a) ORB-SLAM3
with loop closure; (b) SC-LeGO-LOAM with loop closure; (c) ORB-SLAM3 without loop closure; and
(d) SC-LeGO-LOAM without loop closure.

4.1.2. Mapping

1. LiDAR SLAM mapping analysis

The robot trajectory is illustrated by the colored line is shown in Figure 6, which
presented from a top-view perspective of the LiDAR SLAM mapping result, the yellow
point cloud denotes the lowest elevation corresponding to the floor, while the red point
cloud represents the highest elevation corresponding to the ceiling. The central point
cloud in the map captures reflections from exterior high-rise objects encountered when
traversing corridor windows. After completing a circuit around the building, it is observed
that the 3D reconstructed map of LiDAR SLAM presents the architectural structure of the
indoor environment in a comprehensive geometrically precise manner. However, when
viewed locally, the map exhibits sparser details and there is a lack of discernibility on
planar features.
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Figure 6. A top-view perspective of the LiDAR SLAM mapping result. The colored point clouds depict
the robot’s poses. The white boxes represent specific scenarios: (1.) Multiple corners. (2.) Extended
corridor.

2. Visual SLAM based on two mapping methods

Figure 7 depicts local reconstructed maps based on the ground truth or ORB-SLAM3
within a depth range of 7 m, with the reconstruction areas and perspectives corresponding
to the white field of view (FOV) trapezoids and arrows labeled (1) and (2) in Figure 6.
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Figure 7. Local reconstructed indoor maps within a depth range of 7 m. (a) The first perspective
(1) based on ground truth; (b) The first perspective (1) based on ORB-SLAM3; (c) The second
perspective (2) based on ground truth; (d) The second perspective (2) based on ORB-SLAM3.
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Firstly, a comparison of the 3D reconstruction effects between the two Visual SLAM
mapping approaches is performed. In the first perspective, Figure 7a,b, the reconstruction
from ORB-SLAM3, exhibits multiple image overlap phenomena on the fire hydrant on the
wall, the door in the background, and the window frame on the right wall. This results in
distorted and shifted object shapes. In contrast, the reconstruction based on the ground
truth appears more detailed, continuous, and visually superior, closely aligning with the
actual scene.

Moving to the second perspective within the indoor environment, Figure 7c,d, the fire
extinguisher on the wall and its signage similarly appear more blurred in the reconstruction
from ORB-SLAM3, consistent with the issues observed in the previous location. This
problem arises from the differences in data sources and algorithms between the ORB-
SLAM3 and Cartographer models. ORB-SLAM3 calculates camera poses based on feature
point matching for each image, leading to cumulative errors in the z-axis direction due to
robot vibrations during movement. This results in discontinuous height differences in the
overlay of each frame during mapping. In contrast, the Cartographer model utilizes 3D
LiDAR data with wheel odometry for calculation, imposing fixed constraints on the pose
in the z-axis direction. This ensures consistency in height along the z-axis in the ground
truth, resulting in a smoother overlay of each frame during mapping.

3. Comparison between LiDAR SLAM and Visual SLAM

In this section, we compare Visual SLAM and LiDAR SLAM mapping based on three
aspects.

The first aspect to be discussed is the ability to identify items. In Figure 7, the map
constructed by Visual SLAM displays more detailed and rich surface features. For example,
the fire hydrant on the wall surface and the colors of surrounding objects are reconstructed,
enhancing map identifiability and closely resembling the real scene. In contrast, the LiDAR
SLAM reconstruction only outlines the structural aspects of the environmental architecture.
The scanning characteristics of LiDAR result in uniform point clouds on the same plane of
corridor walls, making it challenging to distinguish features and positions of individual
objects in finer detail. As a result, the visual discernibility is comparatively lower in
LiDAR SLAM.

The second aspect is deficiencies caused by indoor lighting sources. Defects, such as a
lack of point cloud, are observable in the reconstruction based on Visual SLAM on both the
floor and ceiling. This is attributed to the installation of fluorescent lights on the ceiling,
causing reflections on the floor that introduce errors in depth measurements based on the
binocular disparity of Zed2. These errors are subsequently mitigated through filtering
during the mapping process. Conversely, the scanning nature of 3D LiDAR in LiDAR
SLAM is unaffected by indoor lighting sources and it does not experience the same issue.

The third aspect is the blind spot of local maps. Due to the limited FOV inherent in
the camera’s imaging principle, certain parts of the scene may not be captured, such as
corners during turns at intersections. This issue results in the absence of objects around
corners, as depicted in Figure 8. However, in LiDAR SLAM, the 3D LiDAR used in this
experiment provides a 360-degree scan of the environment, eliminating blind spots in the
LiDAR reconstruction results.
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4.2. Outdoor Environment

The outdoor datasets describe a rectangular pathway over the yard with a total
length of over 40 m. The durations of the datasets are approximately 200 s with a stable
robot speed.

4.2.1. Localization

Figure 9 displays the ground truth of the robot poses obtained from one of the outdoor
datasets (O4). Other datasets start at slightly different locations but have similar journeys.
The results of the metrics absolute trajectory error (with SE(3) Umeyama alignment) are
shown in Table 2. In outdoor environments, SC-LeGO-LOAM demonstrates better posi-
tioning accuracy, namely lower errors highlighted in bold font, particularly in scenarios
with richer textures compared to indoor environments. Moreover, SC-LeGO-LOAM also
demonstrates smaller standard deviation, indicating higher stability for localization.
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Table 2. ATE with SE(3) Umeyama alignment in an outdoor environment (Unit: m).

Gmapping ORB-
SLAM3

SC-LeGO-
LOAM Gmapping ORB-

SLAM3
SC-LeGO-

LOAM

MAX 0.18999 0.62861 0.16018 MAX 0.27816 1.87328 0.16234

MEAN 0.13034 0.36844 0.08666 MEAN 0.131768 0.34227 0.05432

RMSE 0.13735 0.39105 0.09413 RMSE 0.14738 0.38218 0.06009
Dataset

O1

STD 0.04333 0.13104 0.03674

Dataset
O4

STD 0.06602 0.17004 0.02568

MAX 0.19983 0.62096 0.16714 MAX 0.23663 0.66725 0.17237

MEAN 0.10030 0.30119 0.06705 MEAN 0.10678 0.34068 0.06945

RMSE 0.11021 0.32724 0.07239 RMSE 0.11844 0.36635 0.07693
Dataset

O2

STD 0.04567 0.12794 0.02728

Dataset
O5

STD 0.05125 0.13473 0.03308

MAX 0.20131 0.78556 0.19174 MAX 0.22118 0.91513 0.17075

MEAN 0.09545 0.31753 0.07116 MEAN 0.11292 0.33402 0.06972

RMSE 0.10189 0.34955 0.0776 RMSE 0.12306 0.36327 0.07622
Dataset

O3

STD 0.03564 0.14614 0.03095

Average

STD 0.04839 0.14198 0.03074
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As shown in Figure 10, we conduct a comparison between RPE in an outdoor en-
vironment (O4), revealing the discernible impact of loopback on ORB-SLAM3 and SC-
LeGO-LOAM, respectively. This further underscores the beneficial impact of loop closure
detection in error elimination. However, unlike the indoor environment discussed in the
preceding section, the outdoor environment possesses richer texture information. Conse-
quently, the role of loop closure in LiDAR SLAM is mitigated and the operator’s influence
on the SLAM results is not as substantial.
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4.2.2. Mapping

1. LiDAR SLAM mapping analysis

Figure 11 shows LiDAR SLAM mapping in different views and the real scene and
the robot trajectory is represented as colored lines. Figure 11a,b are presented as top and
side views of the reconstructed map, respectively. Figure 11c provides the real scene of
the outdoor environment. By circling around the central platform during data collection,
it is evident from Figure 11a,b that the 3D LiDAR reconstruction faithfully captures the
complex architectural structures surrounding the platform, including every beam, column,
and the stairs on either side.
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2. Visual SLAM based on two mapping methods

Figure 12 depicts local reconstructed maps based on the ground truth or ORB-SLAM3
within a depth range of 7 m, with the reconstruction areas and perspectives corresponding
to the white FOV trapezoids and arrows labeled (1) and (2) in Figure 11.
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Figure 12. Local reconstructed outdoor maps within a depth range of 7 m. (a) The first perspective
(1) based on ground truth; (b) The first perspective (1) based on ORB-SLAM3; (c) The second
perspective (2) based on ground truth; (d) The second perspective (2) based on ORB-SLAM3.

In the first perspective, the reconstruction from ORB-SLAM3, Figure 12b, exhibits phe-
nomena of multiple image overlaps on the beams of the building, outdoor air conditioning
units, and patterns on the floor. This results in a blurry appearance of objects and the floor
patterns appear distorted as a consequence. However, the reconstruction based on ground
truth, Figure 12a, while showing slight distortion in some subtle areas, maintains an overall
finer and more continuous effect.

Moving to the second perspective, Figure 12c,d, similar issues are observed in the
reconstruction from ORB-SLAM3, including blurred floor patterns and double-image
displacement in the architectural structure. The reason for these problems is consistent
with the indoor conditions discussed in the previous section and will not be reiterated here.

3. Comparison between LiDAR SLAM and Visual SLAM

In this section, a comparison between Visual SLAM and LiDAR SLAM is conducted. By
examining the Visual SLAM-based reconstruction map, Figure 13a, and the LiDAR SLAM-
based reconstruction map, Figure 13b, we discuss the following three points sequentially.
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The first aspect is the difference in the size of the reconstructed area. From the
results of both mapping approaches, under the same robot trajectory, the global map
reconstructed by Visual SLAM covers only a portion of the LiDAR SLAM global map. This
difference arises from the distinct maximum measurement distances provided by the two
sensors. In hardware specifications, the optimal measurement depth for the camera is
approximately 20 m and exceeding this range introduces larger errors. Therefore, in Visual
SLAM reconstruction, the mapping range is set to pixels within a depth of 7 m to ensure
more accurate mapping. In contrast, the 3D LiDAR used in this experiment has a maximum
scanning range of up to 150 m, resulting in a broader map coverage by LiDAR SLAM while
maintaining precision in distant areas.

The second aspect is object recognizability. In outdoor scenes, while LiDAR SLAM
provides a more comprehensive environmental structure and outline, it lacks the capability
to recognize local objects and features. This limitation, similar to that in an indoor environ-
ment, arises from the scanning nature of LiDAR, where point clouds on the same plane
exhibit no height differences, making it challenging to distinguish features between each
point cloud. Consequently, LiDAR SLAM cannot recognize objects as effectively as Visual
SLAM, which utilizes complete color and feature shapes for object identification.

The third aspect is about defects and blind spots in local maps. In the mapping
analysis of Visual SLAM, we observed the issue of multiple image overlaps caused by
vibrations. Additionally, as in indoor mapping, the limited field of view (FOV) results
in some local environments that cannot be captured, creating blind spots in the mapping
results. However, in LiDAR SLAM, the blind spot issues are also eliminated by the
usage of a 360-degree 3D LiDAR for the reconstruction. Moreover, the SC-LeGO-LOAM
algorithm used in LiDAR SLAM leverages feature set matching between timestamps for
pose estimation and its detection range is broader. Therefore, the impact of vibrations on
mapping effectiveness is milder in LiDAR SLAM, with no apparent ghosting phenomena.

4.3. Computational Resource Analysis

To quantitatively demonstrate the computational resource requirements of the two
SLAM methods, we simultaneously record the CPU resource allocation during the map
creation process. In this study, we run 10 datasets for the nondeterministic nature of the
system and show average results for the CPU utilization under various types of tasks and
memory usage increasing ratio in Table 3. “User” is responsible for time spent by normal
processes executing in user mod [28]. “System” shows time spent by executing processes in
kernel mode. And “Idle” is the portion of CPU time during which the processor is inactive.
In addition to these three main states, there are other types of CPU usage; therefore, these
three types will not add up to 100%. Moreover, “Memory” is the temporary storage
for active processes. Finally, the increasing ratio is computed by subtracting the normal
memory usage occupancy rate from the active occupancy rate and dividing the result by
the normal memory usage occupancy rate.

According to Table 3, we conducted comparisons from three different perspectives
and the results are presented in Table 4. Firstly, we compare the CPU utilization statistics
of the two SLAM methods indoors and outdoors (Scenario 1). In indoor environments,
Visual SLAM occupies 51.25% more CPU compared to LiDAR SLAM, while outdoors,
it occupies 35.02% more than LiDAR SLAM. This result confirms that Visual SLAM has
higher computational requirements than LiDAR SLAM. The reason behind this lies in the
fact that the map constructed by Visual SLAM stores more information.

Next, we compare each CPU utilization of the two SLAM methods indoors and
outdoors with the original CPU utilization without running any programs (Scenario 2).
The CPU utilization of Visual SLAM during the execution of indoor and outdoor datasets is
77.80% and 70.67% higher compared to the original usage, respectively. On the other hand,
for LiDAR SLAM, it is 17.55% and 26.41% higher than the original usage, respectively. The
relatively minor increase in indoor CPU utilization may be due to the simpler structure of
indoor walls, resulting in a lower point cloud volume and lower density for mapping.
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Table 3. Average results for the CPU utilization under various types of task and memory usage
increasing ratio * (Unit: %).

CPU Utilization Memory Usage

User Sys Idle Occupancy Rate Increasing Ratio

Org 14.93 3.03 73.08 27.20 NA

ORB_I 26.54 3.13 60.83 34.20 22.18

ORB_O 25.48 3.20 61.80 33.69 12.12

SC_I 17.55 3.08 70.25 31.49 2.40

SC_O 18.87 3.32 68.45 30.42 2.68
* Note that the notation ‘Org’ denotes the average CPU usage in User without SLAM algorithm running. ‘ORB_I’,
‘ORB_O’, ‘SC_I’, and ‘SC_O’ mean the average amount of CPU time spent in user mode indoors using the ORB
algorithm, outdoors using the ORB algorithm, indoors using SC-the LeGO-LOAM algorithm, and outdoors using
SC-LeGO-LOAM algorithm, respectively.

Table 4. Three comparisons among different perspectives * (Unit: %).

Scenario 1 Scenario 2 Scenario 3

In Terms of CPU Usage
in User

In Terms of CPU Usage
in User

In Terms of Memory
Increasing Ratio

ORB_I vs. SC_I 51.25 ORB_I vs. Org 77.80 ORB_I 22.18

ORB_O vs. SC_O 35.02 ORB_O vs. Org 70.67 ORB_O 12.12

SC_I vs. Org 17.55 SC_I 2.40

SC_O vs. Org 26.41 SC_O 2.68
* The comparison of A to B refers to the latter, B. The notations carry the same meaning as those in Table 3.

Finally, due to the indoor dataset recording time being approximately 350 to 450 s and
the outdoor dataset recording time being around 200 s, we compare the memory usage in-
creasing ratios of the two SLAM methods indoors relative to outdoors (Scenario 3). It can be
observed that the memory usage increasing ratio of Visual SLAM indoors is approximately
twice that of outdoors, consistent with the doubled dataset recording time. However, in
LiDAR SLAM, the memory usage increasing ratio outdoors is slightly higher than indoors,
possibly due to the larger scanning range and point cloud volume in outdoor environments.

5. Conclusions

This study undertook a thorough assessment of SLAM algorithms in both indoor
and outdoor environments, leveraging state-of-the-art techniques. Two pivotal SLAM
algorithms, namely ORB-SLAM3 and SC-LeGO-LOAM, were utilized, along with the
ground truth creation method Cartographer. Additionally, two 3D reconstruction methods
employing RGB-D and LiDAR point clouds were employed. The experiments entailed
the collection of real-world datasets across varied settings, with a focus on analyzing
the algorithms’ efficacy in terms of localization, mapping, and computational resource
demands. The ensuing findings are derived from the outcomes:

• In terms of localization performance, ORB-SLAM3 exhibits superior positioning accu-
racy in indoor environments, while SC-LeGO-LOAM excels in outdoor settings. This
distinction arises from the nature of SLAM algorithms, which benefit from environ-
mental intricacies, making it easier for the robot to calculate and match features;

• In terms of mapping capability, the effectiveness of mapping is closely tied to the sen-
sor’s characteristics and each has its unique drawbacks. For instance, SLAM mapping
using depth cameras may suffer from imperfections and blind spots due to indoor
lighting sources and limitations on FOV, respectively. Three-dimensional LiDAR-based
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mapping may lack the level of detail and textural information required for precise ob-
ject recognition. Nevertheless, in accordance with the distinct mapping spatial scopes
between indoor and outdoor environments, LiDAR SLAM is more suitable in an out-
door environment due to its comprehensive characteristics. In contrast, Visual SLAM
is more suitable in an indoor environment due to its recognizability characteristic and
ability to compensate for the sparse aspects inherent in LiDAR SLAM;

• Regarding performance evaluation, quantitative analysis of computational resource
requirements indicates that Visual SLAM demands more CPU resources compared to
LiDAR SLAM, attributing this to the storage of additional depth and color data. The
study also explores CPU utilization and memory usage increase ratios, emphasizing
the impact of environmental factors on resource demands.

As part of future work, expanding the datasets to encompass indoor and outdoor
environments, more complex robotic experiment scenarios, the ability to identify objects,
and longer recording times will allow for a comprehensive comparison of SLAM perfor-
mance in these diverse situations. At the same time, the use of more sensors should also be
considered to test the performance of more sensor fusion algorithms.
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