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Abstract: An arbitrary Lagrangian-Eulerian lattice Boltzmann flux solver (ALE-LBFS) coupled with
the mode superposition method is proposed in this work and applied to study two- and three-
dimensional flutter phenomenon on dynamic unstructured meshes. The ALE-LBFS is applied to
predict the flow field by using the vertex-centered finite volume method with an implicit dual time-
stepping method. The convective fluxes are evaluated by using lattice Boltzmann solutions of the
non-free D1Q4 lattice model and the viscous fluxes are obtained directly. Additional fluxes due to
mesh motion are calculated directly by using local conservative variables and mesh velocity. The mode
superposition method is used to solve for the dynamic response of solid structures. The exchange of
aerodynamic forces and structural motions is achieved through interpolation with the radial basis
function. The flow solver and the structural solver are tightly coupled so that the restriction on the
physical time step can be removed. In addition, geometric conservation law (GCL) is also applied to
guarantee conservation laws. The proposed method is tested through a series of simulations about
moving boundaries and fluid–structure interaction problems in 2D and 3D. The present results show
good consistency against the experiments and numerical simulations obtained from the literature. It
is also shown that the proposed method not only can effectively predict the flutter boundaries in both
2D and 3D cases but can also accurately capture the transonic dip phenomenon. The tight coupling
of the ALE-LBFS and the mode superposition method presents an effective and powerful tool for
flutter prediction and can be applied to many essential aeronautical problems.

Keywords: flutter prediction; ALE-LBFS; mode superposition method; limit cycle oscillation;
transonic dip

1. Introduction

In aeronautical applications, aerodynamic flutter represents a formidable danger to
aircraft, characterized by its ability to enlarge the small amplitude oscillations swiftly
and result in catastrophic consequences. This phenomenon originates from the intricate
interplay of aerodynamic, inertial, and elastic forces, and it typically occurs in the transonic
flow regime, resulting in the structure engaging in undamped oscillations with constant
or increasing amplitude. Both numerical simulations [1,2] and experimental studies [3,4]
have been carried out to study the transonic flutter phenomenon and found that the
flutter boundary often shifts with the Mach number. Due to the development of high-
performance computing techniques, a variety of efficient effective computational fluid
dynamics/computational solid dynamics (CFD/CSD) solvers [5–9] have been developed.

Among the various CFD/CSD methods, the arbitrary Lagrangian-Eulerian method
(ALE) [10–12] distinguishes itself by maintaining mesh fitted to the solid structure all the
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time during the structural deformation, a vital element for accurately obtaining the aerody-
namic forces from the surrounding flow field with enhanced resolution near the boundaries.
ALE empowers mesh nodes near moving or deforming boundaries to evolve with the
structure, while those farther away remain fixed in the Eulerian description. ALE furnishes
physical meshes with arbitrary velocities independent of fluid motion, eliminating the
need to remap Lagrangian solutions to adjusted meshes. This not only enhances accuracy
but also significantly streamlines mesh computations, reducing computational overhead.
In terms of solutions on the moving mesh, both Euler equations and Navier–Stokes (NS)
equations with suitable turbulence models have worked as fluid solvers. Consequently, the
numerical schemes for the discretization of the convective terms should be adapted to the
dynamic meshes by considering the local velocity of the grids, which may be not trivial con-
sidering the requirement of low dissipation and high stability for transonic and supersonic
flows intensive shock waves. Lee-Rausch and Batina [13,14] have numerically discov-
ered the transonic dip phenomenon by coupling unsteady Euler and/or Navier–Stokes
equations with structural mode equations, separately. Comparing these two solvers, they
further present the important role of viscosity in flutter prediction. Yuan et al. [15] apply
the Roe flux difference splitting scheme to discretize the Euler/NS equations and tightly
couple them with structural dynamic equations. By the finite element method, the aircraft
wing deforms numerically, governed by the 3D elasticity equations. They succeeded in
predicting the aeroelastic instability of the rigid airfoil and elastic AGARD 445.6 wing. For
wide engineering applications, the ALE method is adapted and involves new techniques
together with various other numerical methodologies for the prediction of flutter, including
frequency-domain techniques [16], deep learning [17], and model order reduction [18–20].
Although some improvements are achieved, most of them still depend on solving the NS
equations by evaluating the fluxes in a macroscopic way.

In fact, with the rising tendency of complex flow environments and novel materials
for aircraft manufacturing, it is feasible and superior to obtain the macroscopic equations of
fluid mechanics from the mesoscopic point of view. In the merit of simple implementation
and parallelism, the lattice Boltzmann method (LBM) [21–23] turns out to be a good
choice in the domains of multiphase flow [24], microscale flow [25], thermal flow [26], and
turbulence [27]. The LBM is established on the kinetic theory and describes the flow as
discrete particle distribution functions associated with a set of discrete velocities statistically.
The particles propagate over time and tend to relax toward a local equilibrium state. The
density distribution of discrete particles evolves on simple rules of the collision and the
subsequent streaming. Its simplicity and efficiency make it an attractive alternative to
traditional CFD methods [28–31]. Cheylan et al. [29] couple the LBM with the immersed
boundary method for moving objects. The shear layer and near-wall effects are both
predicted in the high Reynolds number flow. Meldi et al. [22] apply the ALE approach to
the LBM to simulate the flow–structure interactions. Validated by a moving square cylinder
in a Poiseuille flow, it is confirmed that the ALE-LBM framework succeeds in capturing
the flow phenomena. For robustness, Bhadauria et al. [19] introduce a two-population
lattice Boltzmann formulation to describe the complex flows. Under the ALE scheme,
they accurately capture the dynamic behavior of multiple cylinders and simulate transonic
flutter over an airfoil. Coincidentally, Saadat et al. [21] investigate the unsteady flows over
forced pitching airfoils in transonic regions and even at high speeds. The moving boundary
is described by the ALE technique.

Stemming from lattice Boltzmann equations, a lattice Boltzmann flux solver (LBFS) [32–34]
has been proposed by Shu and his colleagues recently. The LBFS abandons the restriction on
the uniform meshes and endows itself with a flexible alternative for problems with complex
geometries, no matter structured or unstructured meshes [35–38]. Moreover, within the
framework of LBFS, the boundary and initial conditions are treated in a manner identical to
finite-volume NS solvers. Thanks to these aforementioned advantages, the applications of
lattice Boltzmann flux solver with various lattice Boltzmann models have been accessible
for multiphase flow [39], thermal flow [40], and compressible flow [41,42]. The LBFS
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coupled with the immersed boundary method has also been extended for the study of fluid–
structure interaction problems with large deformation on the simple Cartesian mesh. For
example, Wang et al. apply IBM-LBFS to simulate the flow-induced vibration of single and
multiple hyperelastic beams behind a cylinder [43] and falling freely solid objects [44,45].
Liu et al. [46] solve 3D FSI problems of complex multiple flexible structures. However, it
is rare to combine the LBFS with the ALE technique on unstructured dynamic meshes for
fluid–structure interactions in aeronautical applications, such as airfoil and wing flutter in
compressible flows, which motivates the present work.

In this study, an ALE-LBFS coupled with the mode superposition method is devel-
oped and applied to study both 2D and 3D transonic flutter phenomenon on dynamic
unstructured meshes. To simulate the transonic flow field on the dynamic meshes, the
vertex-centered ALE-LBFS with the non-free parameter lattice model D1Q4 [47] is pre-
sented. With the aid of reconstructed variables, the lattice Boltzmann solutions are obtained
locally and then employed to evaluate the fluxes across the interfaces. As the general
application of ALE to other problems, an additional velocity accounting for mesh motion
and morph is involved in the convective term of the governing equations. The mode
superposition method is applied to solve for the structural motion caused by the action of
the aerodynamic, structural, and inertial forces. Structural mode equations are obligatory
for the dynamic response of 2D airfoil and 3D wing, which project the generalized physical
domain onto the mode space. The first few mode equations are accurate enough to recover
the real structural dynamics so as to reduce the computational burden. The exchange of
information between the ALE-LBFS and the mode superposition method is achieved by
interpolations based on spline matrices using radial basis functions (RBF). A fully implicit
dual time-step method accelerates the computation. In the pseudo-time step, the artificial
mass term induced by geometric conservation law (GCL) is eliminated with the controlled
order of temporal error, as proposed by Biedron [48].

The rest of this paper is organized as follows: Section 2 states the principles involved
in the flutter prediction, including ALE kinematic description, ALE formulation of LBFS,
geometric conservation law, structural solver, interface mapping, and the coupling method.
Section 3 validates the proposed method by simulating a variety of 2D and 3D FSI problems.
Section 4 presents the conclusions.

2. Methodology
2.1. Governing Equations of the Aeroelastic System

The aeroelastics is one of coupled fluid–structure interaction problems. As introduced
in the reference [49], its general governing equations of the aeroelastic system include
three fields to account for the evolution of fluid, structural, and computational meshes,
respectively. Their coupled partial differential equations are described as follows:

∂(Jw)

∂t

∣∣∣∣ξ + J∇x ·
(

F(w)− ∂x
∂t

w
)
= J∇x · R(w) (1)

ρs
∂2us

∂t2 − div
(

σs

(
εs(us),

∂εs

∂t
(us)

))
= b (2)

ρ̃
∂2x
∂t2 − div(σ̃(ε̃(x))) = 0 (3)

Equation (1) is the ALE conservative form of the Navier–Stokes equations where x(t)
is the time-dependent displacement of a fluid grid point, and ξ, as well as J = det(dx/dξ),
denotes its position in a reference coordinate. Vector w is the convective variable in the fluid
domain, and F and R represent the convective and diffusive ALE fluxes. Depending on the
type of considered physical problem, such as compressibility and viscosity, diverse fluid
governing equations are developed. Limited by the transonic flutter problem, the viscous
Newtonian flow in the compressible regime is governed by Navier–Stokes equations. If
necessary, the large eddy simulation or RANS is employed to augment the compressible
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Navier–Stokes equations by solving transport equations of additional turbulent variables.
Rather, the unsteady aerodynamic forces are computed by the compressible Euler equations
if viscosity is neglected.

In the elastodynamic Equation (2), us and ρs denote the displacement and density
of the structure, σs and εs are the tensors for stress and strain, and b indicates the body
forces. By the finite element method, Equation (2) is solved and is capable of expressing
the nonlinearity of structure with satisfactory accuracy. In fact, under the assumption of
small displacement amplitudes, the harmonic motion method is a common alternative to
alleviate the intensive computation of the structure equations. Modal structural equations
are adopted here to achieve satisfactory accuracy with acceptable computational burden.

Equation (3) represents the dynamics of moving computational meshes. Similar to the
elastodynamic equation, it is treated as a pseudo-structural system. Since the technology is
out of interest in this work, the inverse-volume spring method is applied directly to treat
the mesh deformation.

Figure 1 displays that the statement of boundary conditions at the dynamic interface
is necessary, which couples tightly the aforementioned Equations (1)–(3) and closes the
complete governing equations of the aeroelastic system. First, Equations (1) and (3) are
directly coupled. Then, under the supposition that u f , p, σ f represent the ALE displacement,
pressure, and viscous stress tensor, respectively, the constraint conditions at the interface
between fluid and structure are expressed as

σs · n = −pn +σ f · n, on Γ (4)

∂us

∂t
=

∂u f

∂t
, on Γ (5)

where Γ denotes the fluid–structure interface boundary, and n is the corresponding normal
vector. On the interface boundary Γ, Equation (4) describes the tractions equilibrium
between the structure and fluid domain. Additionally, the compatibility of velocity among
the structure and fluid is guaranteed by Equation (5).
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where the vector W  is the conservative variable, cF  denotes the convective flux, gF  
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unit mass. u  and gu  are the fluid velocity vector and the mesh velocity vector. The sub-
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cous stress as common and Θ  describes the contribution made by other physical effects, 
such as heat conduction. 

Adapting spatial discretization with a vertex-centered finite-volume scheme, Equa-
tion (8) is semi-discrete as 

( )
1

1 fN
i

ck gk vk k
ki

d S
dt d =

= − − −
Ω W F F F  (11) 

Figure 1. Schematic of an interface boundary where fluid (Ω f ) and solid domain (Ωs) meet and their
outward normal vectors n f and ns point in opposite directions.

In conjunction with continuity constraint, the following equations describe the cou-
pling between the structure and dynamic mesh

x = us, on Γ (6)

∂x
∂t

=
∂us

∂t
, on Γ (7)
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2.2. ALE-LBFS for Fluid Solver
2.2.1. Macroscopic Conservation Laws

As one of the core components of flutter analysis, the lattice Boltzmann flux solver
(LBFS) acts as a fluid solver in the ALE formulation. LBFS is a novel numerical solver
developed from lattice Boltzmann equations. It involves the evaluation of flux at the
interface and obeys laws of conservation for mass, momentum, and energy. In a Cartesian
coordinate system of unstructured meshes, Equation (1) is rewritten, and the unsteady
ALE-LBFS for a finite control volume is

∂W
∂t

+∇ · Fc −∇ · Fg −∇ · Fv = 0 (8)

W =

 ρ
ρu
ρE

, (9)

Fc =

 ρun
ρuun + pn
(ρE + p)un

, Fg =

 ρug,n
ρuug,n
ρEug,n

 and Fv =

 0
τ · n
Θ · n

 (10)

where the vector W is the conservative variable, Fc denotes the convective flux, Fg indicates
the additional flux contributed by moving mesh, and Fv is the viscous flux. For a detailed
description, it is necessary to state that ρ is density, E is the total energy in unit mass. u
and ug are the fluid velocity vector and the mesh velocity vector. The subscript n in the un
and ug,n indicates the normal velocity component. n is the unit normal vector. Aside from
static pressure p, unit tensor I, and time t, tensor τ is the viscous stress as common and Θ

describes the contribution made by other physical effects, such as heat conduction.
Adapting spatial discretization with a vertex-centered finite-volume scheme, Equation (8)

is semi-discrete as
dWi
dt

= − 1
dΩi

N f

∑
k=1

(
Fck − Fgk − Fvk

)
Sk (11)

where Wi is the vector of aforementioned conservative variables specified for the i-th control
volume, and Fck and Fvk subscripted with k are the vectors of convective and viscous flux
across the kth interface of control volume for index i, respectively. Fgk is the additional flux
contributed by mesh motion on the kth interface. It is common to say that Sk denotes the
area of the kth interface, let alone cell volume Ωi and the number of the interface N f .

Figure 2 presents a schematic diagram for the control volume of a median-dual cell-
vertex scheme. The interfaces of a control volume are made up of the lines for 2D or
faces for 3D linked by the midpoint of the edge and element center around the considered
grid node. Contrary to the cell-centered approach, W is stored at the grid node together
with mesh velocity ug. As a consequence, the solutions of governing equations and mesh
velocity are directly computed and obtained at the nodes at the same time. Unlike the
conventional LBFS built on a cell-centered scheme treating dynamic meshes where it has to
integrate and average grid velocity from grid nodes to the cell center, it is novel and simple
to establish LBFS with a cell-vertex scheme.

To solve Equation (11), it needs to separately evaluate the convective, viscous, and
additional ALE flux according to Equation (10). First, the non-free parameter D1Q4
model [42,47] is responsible for building connections between local fluid properties and
lattice velocity and density distribution. Figure 3 shows the distribution of discrete lattice
particles. In the assumption of the 1D model, the lattice particles transport in lines. Derived
from the conservation of moment, the mathematic formulation of D1Q4 comes out as

g1 =
ρ
(
−d1d2

2 − d2
2u + d1u2 + d1c2 + u3 + 3uc2)

2d1
(
d2

1 − d2
2
) , (12)
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g2 =
ρ
(
−d1d2

2 + d2
2u + d1u2 + d1c2 − u3 − 3uc2)

2d1
(
d2

1 − d2
2
) , (13)

g3 =
ρ
(
d2

1d2 + d2
1u − d2u2 − d2c2 − u3 − 3uc2)

2d2
(
d2

1 − d2
2
) , (14)

g4 =
ρ
(
d2

1d2 − d2
1u − d2u2 − d2c2 + u3 + 3uc2)

2d2
(
d2

1 − d2
2
) (15)

with

d1 =

√
u2 + 3c2 −

√
4u2c2 + 6c4, (16)

d2 =

√
u2 + 3c2 +

√
4u2c2 + 6c4 (17)

where gi and dα are the equilibrium distribution function and lattice velocity depending on
the state of α-direction. c represents the peculiar velocity of particles defined as c =

√
p/ρ.

At the angle of the interface, the lattice particle is moving across or far away from it with
corresponding lattice velocity and distribution. It is essential to transform the conservative
variables to the local frame specified for each interface. uτ is the tangential component of
velocity and has the formulations as

uτ = u − unn (18)
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Substituting Equation (18) into Equations (9) and (10), the variables of interest can be
rewritten in the local Cartesian coordinate with uτ and un as

W =
_

W + Ŵ =

 ρ
ρunn

ρ
(

u2
n

2 + e
)
+

 ρ
ρuτ

ρ ∥uτ∥2

2

 (19)

Fc =
_
Fc + F̂c =

 ρun(
ρu2

n + p
)
n(

ρ
(

u2
n

2 + e
)
+ p

)
un

+

 ρun
ρuτun

ρun
∥uτ∥2

2

 (20)
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Furthermore, LBFS evaluates the normal component of W and Fc using the lattice
Boltzmann solution reconstructed locally. Using the distribution functions fα(r, t), the
components contributed by normal velocity have the following formulation

_
W =

N

∑
α=1

φα fα(r, t) (21)

and
_
Fc =

N

∑
α=1

ξαφα fα(r, t) (22)

where ξα is the particle velocity in the α-direction, i.e., ξ1 = d1, ξ2 = −d1, ξ3 = d2, ξ4 = −d2.
With the potential energy of particles ep = [1 − (γ − 1)/2]e, φα stands for the moments

φα =

 1
ξα

ξ2
α

2 + ep

 (23)

Within the D1Q4 compressible LBFS, the evaluation of convective flux depends on
fα(r, t), among which the equilibrium part acts as the inviscid flux while the latter is
responsible for numerical dissipation. Forced on fα(0, t) at the cell interface, its formulation
is as

fα(0, t) = gα(0, t) + f neq
α (0, t) (24)

Following the expansion of the Chapman–Enskog analysis, the nonequilibrium part
f neq
α (0, t) truncated by the first term is discretized by the finite difference scheme as

f neq
α (0, t) = − τ

δt
(gα(0, t)− gα(−ξαδt, t − δt)) (25)

Substituting Equation (25) into Equation (22), the flux
_
Fc at the interface can be calcu-

lated by
_
Fc =

N

∑
α=1

ξαφαgα(0, t)− τ

δt

N

∑
α=1

ξαφα(gα(0, t)− gα(−ξαδt, t − δt)) (26)

where τ is the collision time and δt is the streaming time step. N is the number of velocities
in the lattice model and is equal to 4 for the D1Q4 lattice model.

From Equation (26), it is apparent that
_
Fc is determined by the density distribution

function at the cell interface gα(0, t) as well as that streaming from the neighboring location
gα(−ξαδt, t − δt). In fact, this coincides with the conventional convective scheme at the
interface of the cell control volume, as depicted in Figure 4. Let FI

c and FI I
c be

FI
c =

N

∑
i=1

ξαφαgα(0, t) (27)

FI I
c =

N

∑
i=1

ξαφαgα(−ξαδt, t − δt) (28)
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In order to evaluate FI
c, gα(0, t) can be obtained using Equations (12)–(15) by the

conservative variable
_

W at the interface.
From the lattice structure in Figure 4, an upwind scheme is applied to evaluate

gα(−ξαδt, t − δt) by reconstructed variables on the left and right side of the interface,
that is,

gα(−ξαδt, t − δt) =
{

gL
α i f α = 1, 3

gR
α i f α = 2, 4

(29)

Thus,
_

W can be computed by

_
W =

N

∑
α=1

φαgα(0, t) = ∑
α=1,3

φαgL
α + ∑

α=2,4
φαgR

α (30)

where gL
α and gR

α are computed from Equations (12)–(15). Once the evaluation of
_

W is
completed, gα(0, t) can be calculated by Equations (12)–(15) and then used to calculate FI

c
in Equation (27). Within the calculation of FI I

c in Equation (28), gα(−ξαδt, t − δt) can be
determined according to the streaming discretion. Then,

FI I
c =

N

∑
α=1

ξαφαgα(−ξαδt, t − δt) = ∑
α=1,3

ξαφαgL
α + ∑

α=2,4
ξαφαgR

α (31)

To complete the evaluation of Fc in Equation (20), the terms related to ρunuτ and
ρun∥uτ∥2 are reconstructed locally as

ρunuτ = ∑
α=1,3

ξαgL
α uL

τ + ∑
α=2,4

ξαgR
α uR

τ (32)

ρun∥uτ∥2 = ∑
α=1,3

ξαgL
α

∥∥∥uL
τ

∥∥∥2
+ ∑

α=2,4
ξαgR

α

∥∥∥uR
τ

∥∥∥2
(33)

Substituting Equations (27), (28), (32) and (33) into Equation (20), the final convective
flux Fc is obtained.

The term Fgk is calculated by local conservative variables and mesh velocity is re-
constructed by the arithmetic average method. Other terms with regard to temporal
discretization and viscous flux Fν are all directly applied in the same way as the con-
ventional finite volume ALE-NS solver, along with the boundary and initial conditions.
In viscous flow, the unsteady RANS with SA turbulence model is used to simulate the
flow field.

2.2.2. Geometric Conservation Law

It is worth noting that the GCL should be obeyed in the simulation of unsteady flows
with dynamic meshes. Supposing that conservative variables W =

[
1 0 0 0 0

]T , the
mathematical form of GCL is recovered as

∂V
∂t

=
∫

S
Ug · ndS (34)

Since introduced by Thomas and Lombard [50], GCL has accounted for alleviating
the numerical instability induced by discretization errors in the treatment of grid velocity.
The Geometric Conservation Law may be discretized temporally by implicit dual time-
stepping as

Vp+1 − Vp

∆τ
+

1
∆t
(
ϕpVp + ϕnVn + · · ·

)
= − 1

V

(
Rp

GCL +
∂Rp

GCL
∂V

∆Vp

)
(35)
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The term Rp
GCL in Equation (35) is evaluated as follows

Rp
GCL =

∮
∂V

Ug · ndS ∼=
N f

∑
k=1

UgkdSk (36)

Taking advantage of surface integral with the midpoint rule, it yields a local error in the
order of ∆h∆S ∼ ∆h3 where ∆h is a characteristic dimension of the interface. The accuracy
of mesh velocity is in the same order as that of temporal discretization of Equation (11).

In order to control temporal errors, one can estimate the difference in residual contri-
bution at each time step. It is evaluated by approximations of time derivatives in sequent
levels. The norm of temporal error is selected as the exit criterion to terminate the subitera-
tion loop of the dual time-stepping procedure. Such a strategy makes temporal accuracy
uniform among all time steps and eliminates the prior work of selecting iterative steps or
residual reduction.

2.3. Modal Solver for Structural Field

Flutter is a classic topic of the aeroelastic problem, which is the dynamic response of
inertia force, aerodynamic force, and elastic force. Without loss of generality, its motion can
be described in the following governing equations

M
..
q + C

.
q + Kq = F (37)

where the matrices M, C, K denote mass, dampness, and stiffness.
..
q,

.
q, and q are the

acceleration, velocity, and displacement, respectively. F is the force imposed on the structure.
In order to solve Equation (37), the mode analysis is employed to decouple it into an
eigenvalue problem. The first N modes are taken into consideration and are enough to
approximate a dynamic system. It is given by

q =
N

∑
r=1

ηrΦr (38)

where Φr is the r-th eigenvector of the generalized eigenproblem, and ηr is the correspond-
ing normal coordinate. Truncated by the first N mode frequency, the displacement vector is
determined by the coordinate space of those N eigenmodes. The displacement vector can
be decomposed as

q = Φη (39)

Premultipling Equation (37) by ΦT , the generalized equations are formed as

ΦTMΦ
..
η+ ΦTCΦ

.
η+ ΦTKΦη = ΦTF (40)

It is notable that ΦTMΦ is an identity matrix. For a simplified and straight description,
Equation (40) can be rewritten as

..
ηi + 2ζiωi

.
ηi + ω2

i ηi = Qi (41)

Qi = ΦT
i F (42)

2ζiωi = ΦT
i CΦi (43)

ω2
i = ΦT

i KΦi (44)

where ζi and ωi are the modal damping and natural frequency of the i-th mode, respectively.

2.4. Fluid-Solid Coupling

In coupling Equations (8) and (37), two challenges arise. The former originates from the
question of how often solutions of the fluid and structure solver are computed within one
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physical time step and how the relevant kinematic and dynamic quantities are exchanged.
Depending on the frequency of the fluid–solid interaction, the coupling strategies can be
distinguished as the loose-coupling method and the tight-coupling method. For the former,
the coupling loop marches and is fixed per time step. The coupling constraints are weakly
enforced in each time step because data only communicate after each discrete time instance.
Thus, it is hard to guarantee the balance of forces and displacements between the fluid and
solid domains at the interface.

The favorite tight-coupling method relieves the restriction of the physical time step,
which is small enough so that the coupling accuracy is guaranteed. Tight-coupling method
exchanges data between fluid and structure several times within each physical time step,
as described in Figure 5. These operations, which are equivalent to pre-estimation and
correction iterations, eliminate time step delay and improve temporal accuracy.
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In Figure 5, the computational flowchart for the tight-coupling method displays the
progress of one physical time step from tn to tn+1. In the wake of structural response
yielding from structure solver qn at the time step tn, the new mesh is regenerated and
grid velocity is calculated according to the updated structural positions. After solving
fluid governing equations, the new flow state is obtained and the aerodynamic forces
acting on the solid are solved. Then, the next position of the dynamic object is determined
from the solutions of structural equations. For matching mesh, it is natural and easy to
realize the above displacements and force transfer. However, fluid and structure meshes
do not necessarily coincide in a node-to-node manner at the interface in most FSI problems.
Typically, the fluid domain is discretized with finer levels of mesh resolution compared
with the solid meshes. It constitutes the second challenge to couple the fluid and solid
solver and means that some mapping between the fluid and solid solver has to be applied
to interpolate necessary information between them. The general data transformation is in
the form of

h = Gx (45)

Fs = GTFa (46)

where matrix x represents the displacement for all elements of structural grids while h
represents the displacement for all vertexes accounting for the deformable boundary. G is
the connection matrix that relates and interpolates the elements on the structural grids to
the aerodynamic grids. GT is the transposed matrix interpolating force load on the grid of
the structure from loading on the aerodynamic grids. These mappings are guaranteed by
the principle of virtual work.

Here, the radial basis function (RBF) establishes the bridge to realize the communica-
tion of interface displacement and loading force between the fluid solver and the structure
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solver. The interpolation function adapts the radial basis function corrected with a linear
mapping related to the interpolation location as

w(x, y, z) = a0 + a1x + a2y + a3z +
N

∑
i=1

λiri(x, y, z) (47)

where ri(x, y, z) is the connection matrix relating the interpolating point (x, y, z) with the
i-th source point (xi, yi, zi). Its mathematic expression can be defined as

ri(x, y, z) =
√
(x − xi)

2 + (y − yi)
2 + (z − zi)

2 (48)

For interpolation using the function w(x, y, z), it is necessary to obtain all coefficients
in Equation (47) first. With constraints for coefficient λi,

N

∑
i=1

λi =
N

∑
i=1

λixi =
N

∑
i=1

λiyi =
N

∑
i=1

λizi = 0 (49)

a matrix mapping as stated in Yuan’s work [15] is constructed

0
0
0
0

w1
· · ·
wN


=



0 0 0 0 1 · · · 1
0 0 0 0 x1 · · · xN
0 0 0 0 y1 · · · yN
0 0 0 0 z1 · · · zN
1 x1 y1 z1 0 · · · r1N
· · · · · · · · · · · · · · · · · · · · ·
1 xN yN zN rN1 · · · 0





a0
a1
a2
a3
λ1
· · ·
λN


= KC (50)

Once a0, a1, a2, a3 and Fi are known, the value at any point is accessible with the aid
of function w(x, y, z). Figure 6 exhibits the data transformation of displacement and load
between fluid and structure with Equations (45), (46), and (50).
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2.5. Computational Sequence

Figure 7 displays the complete solution process with the tight-coupling method. The
procedure is as follows

1. In the very first time step, start with the prior setting of physical states and impose
grid velocity with zero to avoid fictitious velocities.

2. Interpolate the positions of aerodynamic mesh via Equation (45) from the structural
positions. Meanwhile, compute grid velocities if required.

3. Run the fluid solver in Equation (8). Owing to the vertex-centered finite volume
method, obtain and store the surface aerodynamic forces at the fluid nodes.
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4. Judge the type of structural motion. If the structural motion is specified, impose the
displacement field on the structural nodes directly. Otherwise,

(i) Interpolate the forces onto the structural nodes via Equation (46).
(ii) Run the structural solver in Equation (37) to update the positions.

5. Check the convergence on the structural displacements by evaluating the MSE of the
incremental structural displacements.

6. Once convergence is achieved, the nest structural displacements can be calculated.
Otherwise, relax the structural solution with an Aitken relaxation.

7. Repeat the steps from 2 to 6 until the maximum of physical time steps is reached.
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3. Numerical Validation

Since LBFS has the capability of simulating inviscid and viscid flow on steady meshes
with comparable performance to other numerical methods, it is interesting to combine
LBFS with ALE for unsteady flow on unstructured dynamic meshes. First, the performance
of ALE-LBFS on dynamic meshes is tested by fluid-solid coupling with forced motion.
In the case of forced pitching of the NACA 0012 airfoil, ALE-LBFS performs well in the
2D problems. The cases of uCRM-13.5 in harmonic motion and forced pitching of the
BSCW wing are responsible for validating the ability in 3D problems. Furthermore, flutter
boundaries for both NACA 64A010 airfoil and AGARD 445.6 wing are predicted. Their
motions of structure respond to the aerodynamic forces.

3.1. FSI with Forced Motion
3.1.1. Forced Pitching of Airfoil

The pitching NACA0012 airfoil in subsonic flow is considered to test the performance
of ALE-LBFS. The airfoil is forced to pitch around its pivot axis sinusoidally, on which
occasion the angle of attack is modified with the specified motion function depending on
time as

α(t) = αm + αo sin(ωt) (51)

where αm means the averaged angle of attack and αo is the oscillation amplitude.

kc =
ωc

2U∞
(52)
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ω is the angular frequency, along with airfoil chord c and free-stream velocity U∞. Detailed
conditions for NACA 0012 are listed in Table 1. Among them, a = 0.25 indicates that the
pivot axis lies a quarter chord away from the leading edge of the airfoil.

Table 1. Conditions for NACA 0012 airfoil.

Test Case Ma αm/(◦) αo/(◦) kc Re a

NACA0012 0.6 2.89 2.41 0.0808 4.8 × 106 0.25

Compared with numerical results obtained by Yang [51], the performance of ALE-LBFS
is validated by the forced pithing of the NACA 0012 airfoil. Figure 8 offers a comparison
of CL and Cm with numerical and experimental results. Its aerodynamic coefficients vary
over a pitch cycle and coincide with experimental results. Figure 9 plots various snapshots
of pressure coefficients distributed on the surface of NACA 0012. They correspond to
four phase angles in one pitch cycle, namely, ϕ = 45◦, 90◦, 135◦, 180◦. Calculated by
Equation (51), their angles of attack are equal to α = 4.59◦, 5.30◦, 4.59◦, 2.89◦, respectively.
The four subplots indicate that ALE-LBFS preserves satisfactory performance for simulating
the forced pitch of the NACA 0012 airfoil in moving meshes.
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There exist two complete cycles of harmonic motion in each mode. Measuring the 
steady-state pC  at the specified spanwise slices, namely, 0.35y b =  and 0.89y b =
, their results are presented in Figure 11. Figures 12 and 13 show how pC  changes in the 

Figure 9. Comparison of pressure coefficients distributed on NACA 0012 airfoil for four different
snapshots in one pitch cycle. (a) α = 4.59◦, ϕ = 45◦. (b) α = 5.30◦, ϕ = 90◦. (c) α = 4.59◦, ϕ = 135◦.
(d) α = 2.89◦, ϕ = 180◦.

3.1.2. uCRM-13.5 Wing in Harmonic Motion

The ALE-LBFS is further applied to the uCRM-13.5 wing in harmonic motion. A
schematic planform of the uCRM-13.5 [52] is plotted in Figure 10. The semi-span of interest
b is 35.996 m and the length of the root chord croot is 12.893 m. The Young’s modulus of
structural material is 6.9 × 1010 Pa, with Poisson’s ratio of 0.3 and density of 2700 kg/m3.
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Figure 10. Schematic diagram of the uCRM-13.5 wing.

In order to analyze the calculated pressure coefficient distribution accurately, the
harmonic motion is forced on each mode of the uCRM-13.5 wing, respectively. Thus,
ahead of harmonic simulations, the first four modes are extracted from the wing structure
by a modal approach. Here, we specify that the harmonic motion obeys the following
dynamic function

f = η sin(ωt) (53)

where η is the factor of amplitude and ω is the natural frequency calculated from reduced
frequency kc = ωcroot/V. In the harmonic simulations, the reduced frequency is selected
as kc = 0.1 and η is equal to 6.

There exist two complete cycles of harmonic motion in each mode. Measuring the
steady-state Cp at the specified spanwise slices, namely, y/b = 0.35 and y/b = 0.89, their
results are presented in Figure 11. Figures 12 and 13 show how Cp changes in the unsteady
harmonic motion. In each figure, four plots are shown, which correspond to the first four
respective modes. Three curves are drawn for the maximum, middle, and minimum points
in the second cycle of the harmonic motion with their phase angles Φ being 90◦, 180◦,
and 270◦.
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Figure 11. Distribution on the wing surface in a steady state. (a) Pressure coefficient contour. (b) Pressure
coefficient distribution along y/b = 0.35. (c) Pressure coefficient distribution along y/b = 0.89.

Normalized by the maximum amplitude, the discrepancy ∆Cp in each curve between
the time-dependent Cp and the steady-state Cp is displayed. Similar to the results by
Crow et al. [53], it can be seen that Cp at the phase angle of 180◦ is close to the steady
state compared with the other curves. For Φ = 90◦ and Φ = 180◦, the two plots exhibit
a nearly symmetrical relationship with each other. This could be accounted for by the
nonsymmetrical airfoil of uCRM-13.5. Although the pressure difference between Φ = 90◦

and Φ = 180◦ is not equal to zero, their magnitude values are nearly close. This concurs
with the idea that pressure is linearly dependent on the displacement.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 31 
 

unsteady harmonic motion. In each figure, four plots are shown, which correspond to the 
first four respective modes. Three curves are drawn for the maximum, middle, and mini-
mum points in the second cycle of the harmonic motion with their phase angles Φ  being 
90 , 180 , and 270 . 

 
(a) 

  
(b) (c) 

Figure 11. Distribution on the wing surface in a steady state. (a) Pressure coefficient contour. (b) 
Pressure coefficient distribution along 0.35y b = . (c) Pressure coefficient distribution along

0.89y b = . 

  
(a) (b) 

Figure 12. Cont.



Appl. Sci. 2024, 14, 3939 16 of 28Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 31 
 

  
(c) (d) 

Figure 12. Time-dependent pC  for the wing at 0.35y b = . (a) Mode 1, frequency 0.505 Hz. 

(b) Mode 2, frequency 1.670 Hz. (c) Mode 3, frequency 2.733 Hz. (d) Mode 4, frequency 3.843 Hz. 

Normalized by the maximum amplitude, the discrepancy pCΔ  in each curve be-

tween the time-dependent pC  and the steady-state pC  is displayed. Similar to the re-

sults by Crow et al. [53], it can be seen that pC  at the phase angle of 180  is close to the 

steady state compared with the other curves. For 90Φ =   and 180Φ =  , the two plots 
exhibit a nearly symmetrical relationship with each other. This could be accounted for by 
the nonsymmetrical airfoil of uCRM-13.5. Although the pressure difference between 

90Φ =    and 180Φ =    is not equal to zero, their magnitude values are nearly close. 
This concurs with the idea that pressure is linearly dependent on the displacement. 

  
(a) (b) 

  
(c) (d) 

Figure 13. Time-dependent pC  for the wing at 0.89y b = . (a) Mode 1, frequency 0.505 Hz. 

(b) Mode 2, frequency 1.670 Hz. (c) Mode 3, frequency 2.733 Hz. (b) Mode 4, frequency 3.843 Hz. 

Figure 12. Time-dependent Cp for the wing at y/b = 0.35. (a) Mode 1, frequency 0.505 Hz. (b) Mode 2,
frequency 1.670 Hz. (c) Mode 3, frequency 2.733 Hz. (d) Mode 4, frequency 3.843 Hz.
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Figure 13. Time-dependent Cp for the wing at y/b = 0.89. (a) Mode 1, frequency 0.505 Hz. (b) Mode 2,
frequency 1.670 Hz. (c) Mode 3, frequency 2.733 Hz. (d) Mode 4, frequency 3.843 Hz.

3.1.3. Forced Pitching of the BSCW Wing

The test case of the BSCW wing is accessible in the Aeroelastic Prediction Workshop
for forced oscillations. Supposing that the wing itself is rigid, the structural motion is
contributed by the pitch apparatus. The BSCW wing is forced to pitch with Reynolds
number Re = 4.56 × 106 based on the chord length c = 0.4064 m. The dynamic simulation
is tested at a Mach number Ma = 0.7 and a mean angle of attack of 3◦. With an oscillation
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frequency f = 10 Hz and a pitching amplitude of 1 degree, the pitching axis is located at
x/c = 0.3.

Figure 14 plots the time-averaged surface Cp distributed on the pitching wing, along
with the mean pressure coefficient extracted from the wing span at 60%. The result is
compared with the experimental data from the workshop, as well as the numerical re-
sults [54,55]. During the pitching motion, a shock wave forms at the leading edge of the
top surface. The present result obtained by ALE-LBFS has good agreement with experi-
mental data.
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These mismatches are common in other numerical work because some local deformations 
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The influence of the shock wave is also visible in the phase subplot. Meanwhile, differ-
ences arise near the trailing edge. Their magnitudes of phase are close to 180. 

Figure 14. Pressure distribution on 3D pitching wing. (a) Mean pressure distribution. (b) Mean
pressure coefficient at 60% wing span.

For investigating the unsteady aerodynamics, the transfer function is computed by
the Cp and the pitch angle. The variation of the amplitude and phase is shown in Figure 15.
From the subplot of amplitude, it can be seen that the present ALE-LBFS predicts two
peaks on the upper side. Both of them are close to the leading edge. It is visible that
some discrepancies between numerical and experimental results exist on the upper surface.
These mismatches are common in other numerical work because some local deformations
of the wing are ignored in numerical simulation due to the assumption of rigid motion.
Compared with Brehm’s work, the present result enables the recovery of the formation of
the two peaks. Because of the shock wave, the second peak is higher than the first one. The
influence of the shock wave is also visible in the phase subplot. Meanwhile, differences
arise near the trailing edge. Their magnitudes of phase are close to 180.
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Figure 15. The variation in terms of the amplitude and phase when the forced oscillation frequency
f = 10 Hz. (a) Amplitude. (b) Phase.
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3.2. FSI with Free Motion

In this section, flutter prediction and analysis are conducted on the NACA64A010
airfoil and AGARD 445.6 wing. Figure 16 presents their configurations, respectively. For
the sake of problem description, exemplified by the typical section of the wing model,
AGARG 445.6 wing in 3D problem is viable to analogy.
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In light of Figure 16a, the model contains two degrees of freedom, referred to as
pitching α and plunging h. The motions are governed by

m
..
h + Sα

..
α + Khh = −L

Sα

..
h + Iα

..
α + Kαα = MEA

(54)

where L and MEA denote the lift and moment about the elastic axis, respectively. Kh and
Kα are blending and torsional spring stiffness. m represents the mass per unit span, Sα

denotes the static moment around the elastic axis, and Iα indicates the rotational moment
of inertia. With dimensionless time reduced by the uncoupled natural frequency of the
torsional spring, τ = ωαt, the equation of motion is rewritten as

M
..
q + Kq = F (55)

where

M =

[
1 xα

xα r2
α

]
, (56)

K =

[(
ωh
ωα

)2
0

0 r2
α

]
(57)

are the dimensionless mass and stiffness matrices,
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F =
1

πµk2
c

[
−Cl
2Cm

]
=

U∗2

πµ

[
−Cl
2Cm

]
, (58)

q =

[ h
b
α

]
(59)

states the combination of loads and displacements. Cl and Cm are the coefficients of lift
and moments about the elastic axis. xα = Sα/b is static unbalance, ωh =

√
Kh/m is the

uncoupled natural frequency in plunge, ωα =
√

Kα/Iα is the uncoupled natural frequency
in pitch. r2

α = Iα/
(
mb2) is the squared radius of gyration, U∗ is the reduced velocity

defined as U∞/(ωαb), kc = ωαb/U∞ is the reduced frequency, and µ = m/(ρ∞υ) is the
mass ratio. ρ∞ is endowed with the density of flow and υ is the volume coefficient.

As a matter of fact, a dimensionless parameter, flutter velocity V∗
f , is put forth to

evaluate the critical value. When local velocity exceeds that, a small disturbance is going
to amplify.

V∗
f =

U∞

bωα
√

µ
(60)

The function of V∗
f depends on a Mach number, so there exists a flutter boundary

differing the situations into stable and unstable conditions. From a practical point of view,
good prediction about flutter boundary plays an important role in the transonic region.
The indicator V∗

f measures the flutter point in quantity. When V∗
f is lower than the critical

value, the oscillation is damped. As V∗
f increases, the neutrally stable point is reached.

When V∗
f exceeds the critical value, the amplitude of oscillation diverges, even inducing

collapse. To capture the flutter boundary, a series of simulations are performed by varying
the V∗

f . In a standard rule, various runs are needed until a zero damping response is
yielded. However, the process of operation in this work is simplified under the guidance
of the literature [56]. Owing to their accessible flutter boundary, for each Mach number,
only several V∗

f spanning beside the sensible and sensitive regions are simulated, with an
increment ∆V∗

f = 0.1. The intermediate value of two V∗
f is viewed as the critical point if

their responses differ—namely, one is stable while the other is not. For higher accuracy,
the increment ∆V∗

f would be halved and the aforementioned process is repeated until the
expected accuracy is received.

3.2.1. Flutter of NACA 64A010 Airfoil

The two free-degree structural systems are in free motion in response to the aerody-
namic forces, namely, pitch and plunge. The structural parameters for this case are xα = 1.8,
r2

α = 3.48, ωh = ωα = 100 rad/ sec, and µ = 60. a = −2.0 indicates that the pivot axis lies
on a semi-chord ahead of the leading edge of the NACA 64A010 airfoil.

The common practice [57,58] is to force the airfoil sinusoidally in pitch around the elas-
tic axis until three full cycles are completed with the frequency ω close to the first mode of
vibration. It is notable that the angle of attack is set as 1◦ for an obvious initial disturbance.

Figure 17 compares the flutter boundaries between the present work calculated by
ALE-LBFS and previous references [59–61]. It is apparent that the current algorithm predicts
the “transonic dip” phenomenon well. In addition to the flutter boundary in viscid flow,
the ALE-LBFS also predicts the inviscid flutter boundary in the Euler simulations. The
bottom of the dip is placed at the speed index of V∗

f = 0.75 at a Mach number Ma∞ = 0.825
while it is V∗

f = 0.55 in the inviscid flow. As can be seen in Figure 17, viscosity is vital when
predicting the flutter. The inviscid and viscous simulations agree well with each other until
the bottom of the transonic dip. Due to the consideration of viscosity, the critical flutter
velocities are lifted in the region of Ma = 0.8–0.9 and the S shape flutter boundary in inviscid
simulations disappears. For higher Mach numbers, the predicted viscous flutter boundary
has visible discrepancies compared with other references, which is caused by the use of
numerical schemes [15]. Figure 18 presents several responses in different pairs of a Mach
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number and flutter speed velocity, namely, damped response, divergent response, and limit
cycle oscillation (LCO). Figure 19 depicts four instantaneous snapshots in a circle of LCO
and their phase angles correspond to ω= 0, 90◦, 180◦, 270◦. Forced by shocks moving along
the surface of the airfoil, the structure pitches and plunges in a periodic process.
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Figure 19. Pressure coefficient contours at four snapshots in a circle of LCO when Ma = 0.85. The red
solid line represents the initial contour of the airfoil.

3.2.2. Flutter of the AGARG 445.6 Wing

AGARD 445.6 is a classical wing model for flutter analysis. Yates et al. [62] has
conducted mode analysis on AGARD 445.6 for two kinds of models. This section adapts
the AGARD 445.6 model as the object for studying. Figure 20 depicts the geometry of the
AGARD 445.6 wing and its airfoil. This wing takes NACA 65A004 as its airfoil and extends
it with no twist or curvature along its quarter-chord sweep angle (45◦). The corresponding
tip and root chords are 0.559 m and 0.368 m, respectively, while the semi-span is 0.762 m.
The material of the wing used in Yates’ experiment is laminated mahogany, which has
distinguished physical properties in different directions. Based on the experimental data
in Yates’ work and previous works by Silva [63], the material properties of the wing
model, such as elasticity modulus E, Poisson’s ratio ν, shear modulus G and density ρ, are
summarized and listed in Table 2.
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Table 2. The material properties in each direction for AGARD 445.6 wing.

Material Properties Value

E11 3.2456144 GPa
E22E33 0.416 GPa

ν12ν23ν23 0.31
G12G23G12 0.411942 GPa

ρ 381.98 kg/m3
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When it comes to solving the structural dynamic response, it is first necessary to
extract its eigenvalues and eigenvectors as described in Equation (38). With the aid of
finite element structural analysis software Patran/Nastran, mode analysis is conducted on
models of the wing entity. Several simplifications of the structural model, shell model, and
plate with constant thickness are analyzed as well. Their meshes are exhibited in Figure 21.
Table 3 compares the first six mode frequencies with numerical and experimental results
obtained by Yates. It suggests that contrasted with the experiment, a good agreement for
the wing entity is obtained. Due to the same principle assumption involved in the analysis
of shell and thin plate, they perform similarly but have differences in the 3rd, 5th, and 6th
modes in comparison with results obtained from experiments and numerical simulations.
Therefore, the eigenvalues and eigenvectors with the first six modes for the wing entity
are exploited in the following flutter analysis. Figure 22 shows the first four mode shapes
along with their deformation depicted by black lines.
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Then, tight coupling connects the fluid and structural solver. Within each physical
time iteration, the fluid and structural solver interact with each other for twenty inner time
iterations. As soon as the inner iterations are up to twenty or the residual is beneath the
tolerance, the loop ends and marches physical time. Second-order dual time-stepping with
10 internal iterations is responsible for time discretization in the simulation of the flow field.
In advance of flutter taking place, steady numerical simulation is solved with time step
∆t = 0.001 and angle of attack α = 0. Then, this perturbation of the steady-state solution is
used as an initial condition for the unsteady state.

Table 3. Comparison of mode frequency.

Modes Experiment Numerical Wing Entity Shell Plate with Thickness

1 9.6 9.5992 9.6224 9.5733 9.6
2 38.1 38.1650 40.925 35.736 35.778
3 50.7 48.3482 49.863 58.446 58.515
4 98.5 91.5448 98.796 97.663 97.724
5 / 118.1132 124.37 159.65 159.42
6 / 140.200 147.55 161.96 164.28

In the definition of flutter velocity V∗
f , b is the length of the semi-root chord and ωα is

the first torsional frequency of the wing. The time history of generalized displacements
is an indicator to determine the flutter boundary. The same as the flutter analysis in
NACA64A010, only if V∗

f approaches the critical point, the generalized displacements
are neutral. When V∗

f exceeds the critical point, the generalized displacements diverge.
Otherwise, they behave with a damped response.

Figure 23 shows the divergent responses of the first three generalized displacements
corresponding to Ma = 0.96 and V∗

f = 0.292. Through Equation (39), its displacements
in the x-, y-, and z-directions are easy to compute as shown in Figure 24. It describes
the displacements at the probe of the leading edge and trailing edge, which are drawn in
Figure 16b. The displacements in the x- and y-direction can be ignored compared with those
in the z-direction, though all of them are in divergence. At the same time, the distinction
of z-direction amplitudes between the leading edge and the trailing edge reflects that the
torsional motion exists. Judging from the dynamic motion of z-direction displacement,
its frequency is 14.5Hz, computed by the fast Fourier transform, which approaches the
first-order bending. In other words, current flutter, dominated by bending deformation, is
caused by the first-order bending mode.
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Figure 24. Displacement in x-, y-, z-directions at the probe of (a) the leading edge and (b) the trailing
edge for Ma = 0.96 and V∗

f = 0.292.

In order to depict the flutter boundary along a Mach number, it is necessary to run
several simulations for the specified Mach number until the neutral response is achieved.
The practice of identifying critical onset flutter is similar to the studies performed by
Chawdhury where a detailed flutter analysis is conducted with various wind velocities [8,9].
Here, flutter velocity V∗

f varies through the fixed value of density and manual adjustment
of pressure. After repeating the aforementioned process for different Mach numbers, the
flutter boundary is obtained, as shown in Figure 25. It compares the present result with the
work of others [62,64–66], including experimental and numerical data. It is found that a
good agreement with Yates’ experiment is obtained.
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In the subsonic flow, it is considered that the classical bending-torsion coupling flutter
takes place due to the inertia coupling between the bending and torsion of the elastic
wing. The additional aerodynamic forces yielding from flexural and torsional deformation
will excite the wing. The wing becomes an energy conversion switch, which converts the
energy of the incoming flow into energy with complex vibration properties, resulting in
the occurrence of wing flutter. In the initial stage shown in Figure 26, there exists a slight
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phase difference in the z-direction displacement between the leading edge and the trailing
edge. It indicates that the torsional deformation invites the flutter. Then, the phases are
synchronized by aerodynamic instability in a hurry. The mode of flutter is transited into
bending-torsion coupling vibration.
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The transonic dip occurs in the region of Ma = 0.9–1.1. For a Mach number Ma = 0.96,
the flutter velocity V∗

f is equal to 0.283. In fact, with the Mach number falling into the
transonic region, unstable shock waves occur and move back and forth on the surface of the
wing, further inducing a changeable aerodynamic force. Therefore, it is inferred that the
complex flow contributes to the dip of the flutter boundary as depicted in Figure 25. Mean-
while, for supersonic situations, the predicted flutter velocity is prone to the experiment
results obtained by Yates. It is clarified that the obvious discrepancy from the numerical
results obtained by others is due to the viscous effect.

4. Conclusions

In this paper, a tightly coupled ALE-LBFS with the mode decomposition method
is presented to predict the 2D and 3D flutter phenomenon in compressible flows. The
vertex-centered ALE-LBFS is applied to the unstructured mesh to solve for the flow field
and the mode decomposition method is applied for the solution of structural deformations.
The exchange of information between the flow field and solid field at the interface is carried
out by using the RBF interpolation. A tightly coupled temporal scheme is used to advance
the governing equations of the system. The performances of the proposed method are
summarized as follows.

(a) The ALE-LBFS on unstructured dynamic mesh achieves good accuracy in the cases
of the 2D forced pitching of the NACA0012 airfoil, the 3D uCRM-13.5 wing, and the BSCW
wing with harmonic motions. When tightly coupled with a structure solver, it is qualified
to solve aeroelastic problems, regardless of whether the dynamic of the structure is self-
executed or controlled manually. The dynamic changes in pressure coefficient distribution
Cp around the wing surface are obtained. Compared with the published results, it achieves
good agreement.

(b) The ALE-LBFS coupled with the mode decomposition method has been successfully
predicting the flutter phenomenon of the 2D airfoils and 3D wings. The so-called transonic
dip captured the critical flutter velocities at different Mach numbers compared with the
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published data. The damped response, divergent response, and limit cycle oscillation (LCO)
are demonstrated as well.

Witnessing the satisfactory performance, it seems that the ALE-LBFS coupled with the
mode decomposition method presented in this work has a high potential and can be used as
a powerful alternative to analyze flutter with more complex flow situations and structural
configurations. It is a reliable and accurate numerical tool and lays the methodical and
technical foundation for active flutter control as well.
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