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Abstract: Loads and strains in critical areas play a crucial role in aircraft structural health monitoring,
the tracking of individual aircraft lifespans, and the compilation of load spectra. Direct measurement
of actual flight loads presents challenges. This process typically involves using load-strain stiffness
matrices, derived from ground calibration tests, to map measured flight parameters to loads at critical
locations. Presently, deep learning neural network methods are rapidly developing, offering new
perspectives for this task. This paper explores the potential of deep learning models in predicting
flight parameter loads and strains, integrating the methods of flight parameter preprocessing tech-
niques, flight maneuver recognition (FMR), virtual ground calibration tests for wings, dimensionality
reduction of flight data through Autoencoder (AE) network models, and the application of Long
Short-Term Memory (LSTM) network models to predict strains. These efforts contribute to the predic-
tion of strains in critical areas based on flight parameters, thereby enabling real-time assessment of
aircraft damage.

Keywords: maneuver flight recognition (MFR); autoencoder (AE) neural network; flight parameter
dimensionality reduction; long short-term memory neural network (LSTM); strain prediction

1. Introduction

As performance requirements for aircraft continue to escalate, the structures of these
aircraft are subjected to increasingly extreme mechanical environments [1]. Consequently,
the structural health monitoring and maintenance of aircraft are of critical importance. Cur-
rently, structural health monitoring mainly focuses on the wings and key areas associated
with normal accelerations and loads based on the controlled maintenance costs [2].

Methods for studying those accelerations or loads mainly include the theoretical, direct
and indirect methods [3]. In engineering, indirect methods are the most widely used and
technically mature approach. The most common indirect method is based on strain gauge
load measurements, which involve calculating key loads using measured strain data and
stiffness matrices [4]. Brown et al. [5] were the first to propose the vision of applying this
method to the structural health monitoring system of the F-35 aircraft. Davies et al. [6]
further emphasized the necessity of implementing this method for health monitoring of this
aircraft model. Lei et al. [7] provided a detailed description of the method, which includes
the use of load equations and strain sensor measurements to determine external loads;
strain measurements are primarily employed to establish, calibrate, and optimize these load
equations. Research on the use of fiber Bragg grating (FBG) sensors for strain collection has
become highly advanced. Hu et al. [8] have conducted an in-depth study of these sensors,
characterizing and quantifying the strain transfer mechanisms and measurement accuracy
in composite structures.
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However, traditional methods encounter issues with both efficiency and accuracy.
First, in terms of accuracy, these conventional methods do not classify the maneuvers, and
as a result, the accuracy of load analysis cannot be further improved [9]. The recognition
and classification of aircraft maneuvers, also known as FMR, facilitate the establishment of
distinct calculation models for training and predicting flight parameter data with different
characteristics, thereby significantly enhancing accuracy [10]. Secondly, in terms of effi-
ciency, both experimental measurements of strain and computational simulations involve
high computational costs, resulting in low analytical efficiency. Currently, neural network
models based on deep learning offer high research value by training on existing data to
establish alternative models [11,12].

Although, one problem is that a high number of features in a dataset may lead to
dimensional disaster for deep learning methods, increasing computational complexity, and
leading to overfitting in some machine learning models [13]. For example, Gandy et al. [14]
described the data recording system of the F-22, which captures a comprehensive set of
670 flight parameters. This dataset encompasses 219 state parameters, including normal
overload, attitude angles, altitude, and velocity, alongside 451 switch parameters, such as
fuel mass, landing gear status, and door positions, as depicted in Figure 1.
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Figure 1. Flowchart for F-35 Aircraft load Monitoring (The green box represents the recorded data).

The higher dimensionality of the flight parameter load strains makes it more difficult
to build the prediction model, Silva et al. [15] suggested that the dimensionality of the
obtained flight parameters should be reduced while retaining some important dimensions.
Common dimensionality reduction methods include Principal Component Analysis (PCA),
AE, t-Distributed Stochastic Neighbor Embedding (t-SNE), and Locally Linear Embedding
(LLE) [16], where PCA belongs to linear dimensionality reduction methods [17], while
AE, t-SNE, and LLE belong to nonlinear dimensionality reduction methods [18]. Linear
dimensionality reduction methods assume that data can be represented by linear trans-
formations during the dimensionality reduction process, where the reduced features are
linear combinations of the original features. PCA achieves dimensionality reduction by
finding the directions of maximum variance in the data and projecting the data onto these
directions [19]. Nonlinear dimensionality reduction methods, on the other hand, assume
that data may contain nonlinear structures during the dimensionality reduction process,
allowing for more accurate capture of complex relationships within the data structure.
Among them, t-SNE is suitable for relatively small datasets, while the locality of LLE results
in poor performance in preserving global structure [20]. AE are unsupervised neural net-
work models aimed at learning data compression and are used to reconstruct the original
input data [11,21]. Flight parameters are extensive, and most parameters exhibit nonlinear
relationships. AE models may be more suitable for reducing the dimensions of flight data
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in this case, which is an innovative approach. The neural network prediction models after
AE dimensionality reduction should be selected for strain prediction of an aircraft. The
recurrent neural network (RNN) [22] and LSTM [23] are the mostly used models for this
purpose. However, there has been less previous research to determine which model is more
suitable for predicting strain in aircraft structures.

In this paper, based on the recording data with a small fixed-wing unmanned aerial
vehicle (UAV) sourced from the xx Institute of China, we identify the states of typical
flight parameters, establish stiffness matrices between loads and strains through virtual
ground calibration experiments, and develop a physical model to establish the mapping
relationship between measured strain areas and critical strains. This provides necessary
inputs and outputs to solve the mapping relationship between flight parameters and
critical loads (and strains). The obtained data will serve as raw data for training AE model
dimensionality reduction and deep learning neural network models, which will then be
used to predict structural strains of new aircraft models and compare their accuracy. This
study will proceed through five steps of strain prediction research, including dimensionality
reduction of flight parameters, maneuver recognition based on flight parameters using
MRF, wing virtual ground calibration testing, dimensionality reduction using AE neural
networks, and strain prediction using LSTM. The research process is illustrated in Figure 2.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 22 
 

data structure. Among them, t-SNE is suitable for relatively small datasets, while the lo-
cality of LLE results in poor performance in preserving global structure [20]. AE are un-
supervised neural network models aimed at learning data compression and are used to 
reconstruct the original input data [11,21]. Flight parameters are extensive, and most pa-
rameters exhibit nonlinear relationships. AE models may be more suitable for reducing 
the dimensions of flight data in this case, which is an innovative approach. The neural 
network prediction models after AE dimensionality reduction should be selected for 
strain prediction of an aircraft. The recurrent neural network (RNN) [22] and LSTM [23] 
are the mostly used models for this purpose. However, there has been less previous re-
search to determine which model is more suitable for predicting strain in aircraft struc-
tures. 

In this paper, based on the recording data with a small fixed-wing unmanned aerial 
vehicle (UAV) sourced from the xx Institute of China, we identify the states of typical flight 
parameters, establish stiffness matrices between loads and strains through virtual ground 
calibration experiments, and develop a physical model to establish the mapping relation-
ship between measured strain areas and critical strains. This provides necessary inputs 
and outputs to solve the mapping relationship between flight parameters and critical 
loads (and strains). The obtained data will serve as raw data for training AE model dimen-
sionality reduction and deep learning neural network models, which will then be used to 
predict structural strains of new aircraft models and compare their accuracy. This study 
will proceed through five steps of strain prediction research, including dimensionality re-
duction of flight parameters, maneuver recognition based on flight parameters using 
MRF, wing virtual ground calibration testing, dimensionality reduction using AE neural 
networks, and strain prediction using LSTM. The research process is illustrated in Figure 2. 

 
Figure 2. The flowchart of strain prediction. 

2. Flight Parameter Preprocessing 
2.1. Composition of the Flight Data 

Flight data includes information collected by the flight recording system during the 
take-off and landing of the aircraft, generally including: 

Figure 2. The flowchart of strain prediction.

2. Flight Parameter Preprocessing
2.1. Composition of the Flight Data

Flight data includes information collected by the flight recording system during the
take-off and landing of the aircraft, generally including:

(1) Flight landing and take-off labeling information, such as flight time, and flight subject, etc.;
(2) Aircraft attitude parameters, such as altitude, speed, Mach number, latitude and

longitude, wind speed, acceleration in all directions, pitch angle, and roll angle;
(3) Information on the status of aircraft maneuver parameters, such as the deflection of

the rudder and flaps as well as the position of the horizontal stabilization plane;
(4) Condition parameters of the power unit, such as high and low-pressure engine speeds,

and full engine oil level.
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The main focus of this paper is to study the mapping relationship among flight
parameters, strains, and loads, with an emphasis on aircraft attitude parameters and
navigation position information. To meet the requirements for load identification and
strain prediction, 30 common flight attitude parameters are selected for data recording
and analysis, including three-axis load factors, three-axis accelerations, aircraft angle of
attack, Euler angles, altitude, and speed. The selected flight attitude parameters are listed
in Table 1.

Table 1. Flight parameters selected in the paper.

Flight Parameter Name Unit Flight Parameter Name Unit

Deflection Angle of Left Horizontal Stabilizer rad Pitch Angle rad
Deflection Angle of Right Horizontal Stabilizer rad Roll Angle rad

Deflection Angle of Left Aileron rad Yaw Angle rad
Deflection Angle of Right Aileron rad Axial Angular Acceleration rad/s2

Rudder Deflection Angle rad Normal Angular Acceleration rad/s2

Left Leading Edge Slats Deflection Angle rad Lateral Angular Acceleration rad/s2

Right Leading-Edge Slats Deflection Angle rad Normal Load Factor g
Pitch Angular Velocity rad/s Axial Load Factor g
Roll Angular Velocity rad/s Lateral Load Factor g
Yaw Angular Velocity rad/s Mach Number Ma

Dynamic Pressure MPa Atmospheric Airspeed m/s
Total Aircraft Fuel Quantity kg Sideslip Angle rad

Elevation m Attack Angle rad
Low-Pressure Turbine Speed of Right Engine m/s Low-Pressure Turbine Speed of Left Engine m/s
High-Pressure Turbine Speed of Left Engine m/s High-Pressure Turbine Speed of Right Engine m/s

2.2. Extraction of Effective Flight Phases

In actual flight, the flight phases include ground run, taxiing, take-off, climb, departure,
aerobatics, cruise, descent, approach landing and ground taxiing. Compared to airborne
flight, the ground run and taxiing phases are subjected to smaller loads. In this study, the
effective flight phase is defined as the remaining flight process excluding the ground run,
so that the ground taxi take-off and air maneuver cruise phases are analyzed. The judgment
of the ground taxi take-off relies on the state of the landing gear, and due to the lack of
landing gear information in the data, the ground speed calculated by airspeed and wind
direction is used to judge the effective flight data. The correspondence between ground
speed and flight phases is shown in Table 2.

Table 2. Correspondence between ground speed and flight phase.

Ground Speed vg/(m/s) Flight Stage

Vg = 0 vg = 0 Ground run
vg ≤ 80 Taxi, take-off, approach landing, descent
vg > 80 Climbing, heading out, aerobatics, cruising.

2.3. Interpolated Data for Different Sampling Rate

The sampling rate refers to the frequency at which the flight reference recorder collects
flight data per second. Different flight parameters have different sampling rates. For
instance, parameters such as fuel load and engine RPM change slowly and do not require a
high sampling rate. Moreover, increasing the sampling rate would exponentially increase
the data volume. However, for subsequent training of deep learning models using sequen-
tial models, complete data are required. This poses a challenge because it leads to missing
flight parameter data within the same time interval, and blindly increasing the sampling
rate cannot solve this issue. To ensure data continuity, interpolation methods are typically
used to fill in missing values for flight parameters with different sampling rates [24]. The
filled data is presented in Table 3. The data originates from a flight of a small fixed-wing
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UAV used for testing flight data, sourced from the Aircraft XX Institute of China. These
data were provided to us after undergoing certain de-identification procedures.

Table 3. Data generated by linear interpolation method.

Raw Data Data after Interpolation

Total Oil
Volume/kg

Low-Pressure Speed
of the Left Engine Normal Load/g Total Oil

volume/kg
Low-Pressure Speed

of the Left Engine Normal Load/g

1367 73.7 11.547 1367 73.7 11.547
11.406 1366.875 73.7 11.406

73.7 11.496 1366.75 73.7 11.496
11.211 1366.625 73.65 11.211

73.6 11.539 1366.5 73.6 11.539
73.6 11.070 1366.375 73.6 11.070

11.453 1366.25 73.6 11.453
73.6 11.754 1366.125 73.6 11.754

1366 73.6 10.992 1366 73.6 10.992

3. Flight Maneuver Recognition

In order to improve the identification accuracy of the load and strain models, it is
necessary to identify the states of the flight parameters and build the models in the identified
states, respectively. This chapter focuses on typical load state delineation and typical
maneuver action delineation. The flight parameters used to delineate the states in this
chapter are the flight parameters reflecting the flight attitude in the flight parameters after
the removal and supplemental processing of the distorted data and the filtering process.

3.1. Typical Load State Recognition

During aircraft operation, it is almost impossible to compile load spectra for all
possible states due to the rapid changes in load status [25]. Therefore, this paper adopts a
multi-parameter statistical combination and induction method to identify transient load
states with significant impacts. After selecting 1 h takeoff and landing data, based on the
classification results of typical load states, six typical load states are identified: symmetric
subsonic low altitude small angle of attack (M1), symmetric subsonic low altitude large
angle of attack (M2), symmetric subsonic medium altitude small angle of attack (M3),
symmetric subsonic medium altitude large angle of attack (M4), symmetric subsonic high
altitude small angle of attack (M5), and symmetric subsonic high altitude large angle of
attack (M6). Identification is based on thresholds of several typical flight parameters, and
these datasets will serve as inputs for the flight parameter neural network model in our
work. Additionally, strain data measured at different positions during virtual ground
calibration testing are also included as inputs. The following are the characteristic values
of the selected identification results for these six load states, as shown in Table 4.

Table 4. Eigenvalues of the landing load state classification results of a flight.

Rolling Angular
Rate (deg/s)

Ground Speed
(m/s) Altitude (m) Inertial Attack

Angle (deg) Strain (µε) Status Category

0.52 199.44 1438 2.77 107.69 M1
0.27 83.44 1577 10.79 388.81 M2
−0.02 211.06 4197 4.04 287 M3
−0.02 201.25 6230 10.04 350.97 M4
0.05 215.25 7025 3.54 501.17 M5
−0.02 193.75 7868 12.68 712.12 M6
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3.2. Flight Maneuver Recognition

Despite the preceding preprocessing, the regularity of the flight parameter data persists
poorly, posing challenges in distinguishing between different maneuvers. Identifying ma-
neuver segments is imperative, relying on the characteristics exhibited by flight parameter
data of various maneuver types and comparing these traits to ascertain the corresponding
maneuver segments for the current data segment. An illustration of the general maneuver
recognition process is depicted in Figure 3.
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Generally, aircraft maneuvers are classified into three categories: vertical plane, hori-
zontal plane, and spatial maneuvers. The maneuver recognition algorithm based on the
time series of significant points, utilizing the trend states of trajectories projected onto the
horizontal and vertical planes, which can be referred to our previous proposed Sequence
Important Point-Based Method. The specific steps are as follows:

Step 1: Divide the flight parameters into multiple segment sequences with fixed
lengths, and then project the trajectory of each sequence onto the horizontal plane.

Step 2: Apply certain merging rules, utilizing the piecewise linear representation and
perceptually important point algorithm (PLR-PIP) to segment the trajectory projection,
identify the sequence trend, and merge adjacent trend sequences with the same state.

Step 3: Project the merged trend sequences onto the vertical plane; then, the PLR–PIP
algorithm is used to segment the trajectory projection, identify the sequence trend, and
subdivide the trend sequences by subdivision rules.

Step 4: Superimpose the trend states of the two plane projections to obtain the basic
aircraft maneuvers, as illustrated in Figure 4.
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Details can be found in our previous work [26].

4. Strain Measurement and Calculation of Wings

Finite element modeling (FEM) and virtual strain gauges for ground calibration testing
were utilized. This process allowed us to establish stiffness matrices and correlation
matrices between load input and strain gauge output paths, enabling us to obtain strain
data for the aircraft wing.

4.1. Finite Element Modelling

The 3D shell cells of the wing model were discretized using Finite Element Analysis
(FEA) software HyperMesh (Ansys 19.0) [7]. Unnecessary edges and lines were removed,
and the model was geometrically processed into a common nodal model. The mesh used in
this study consisted of S4R elements, which are four-node surface thin shell elements aimed
at reducing integration and eliminating circular controls. The mesh size was 10, resulting
in a total of 83,990 elements. The wing material chosen was LY12, and based on ground
calibration tests, the wing components were firmly connected to the fuselage structure. The
boundary conditions for virtual ground calibration testing were applied at the nodes where
the wing connects to the fuselage in the finite element model. These boundary conditions
were restricted to six degrees of freedom. The boundary conditions for virtual ground
calibration testing were applied to all nodes connected to the wing and fuselage junction,
and constrained to have six degrees of freedom, representing a fully fixed support.

The FEM of the wing is depicted in Figure 5.
(a) Schematic diagram of the wing finite element method (FEM): This diagram il-

lustrates the structural analysis of the wing using the finite element method, which is a
computational tool for predicting the behavior of the wing under various loading con-
ditions. The engine loads were not directly simulated, because the engine layout of this
type of Unmanned Aerial Vehicle (UAV) is within the fuselage. However, the loads were
correlated with strains by extracting corresponding loads from the FE model provided by
the research institute.

(b) Arrangement of the Bending Moment Bridge: Based on the structural characteristics
of the wing, the upper and lower flanges of the wing beam primarily bore the bending
moments generated by the wing. Consequently, the bending moment strain gauge bridges
were positioned on the upper and lower flanges of the wing beam at the section where
measurements are taken. Strain gauge bridges numbered 1 and 4 were placed along the
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lengthwise direction of the flanges, while strain gauge bridges numbered 2 and 3 were
oriented perpendicular to bridges 1 and 4, respectively.

(c) Arrangement of the Shear Bridge: The webs and skins of the wing beam and rib
primarily withstand the shear forces produced by the wing. Therefore, the shear strain
gauge bridges were positioned on the neutral axis or a location close to the neutral axis of
the webs and skins of the wing beam and rib. A shear full bridge, composed of four strain
gauges arranged at 90-degree intervals to each other, was used to measure the shear forces.
This arrangement ensures that the relative bending moment load was minimized, and it
was the direction where the maximum shear stress could be most accurately measured by
the strain gauges.

(d) Arrangement of the torque bridge: The wing box of the aircraft wing is mainly
subjected to the torque generated by the wing. Hence, the torque strain gauge bridges
were positioned at the center of the skin of the wing box section where measurements were
conducted. A torque full bridge, consisting of four strain gauges arranged at 90-degree
intervals, was utilized to measure the torque. This configuration allowed for the accurate
detection of the torque effects on the wing structure.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 22 
 

Unmanned Aerial Vehicle (UAV) is within the fuselage. However, the loads were corre-
lated with strains by extracting corresponding loads from the FE model provided by the 
research institute. 

(b) Arrangement of the Bending Moment Bridge: Based on the structural characteris-
tics of the wing, the upper and lower flanges of the wing beam primarily bore the bending 
moments generated by the wing. Consequently, the bending moment strain gauge bridges 
were positioned on the upper and lower flanges of the wing beam at the section where 
measurements are taken. Strain gauge bridges numbered 1 and 4 were placed along the 
lengthwise direction of the flanges, while strain gauge bridges numbered 2 and 3 were 
oriented perpendicular to bridges 1 and 4, respectively. 

(c) Arrangement of the Shear Bridge: The webs and skins of the wing beam and rib 
primarily withstand the shear forces produced by the wing. Therefore, the shear strain 
gauge bridges were positioned on the neutral axis or a location close to the neutral axis of 
the webs and skins of the wing beam and rib. A shear full bridge, composed of four strain 
gauges arranged at 90-degree intervals to each other, was used to measure the shear 
forces. This arrangement ensures that the relative bending moment load was minimized, 
and it was the direction where the maximum shear stress could be most accurately meas-
ured by the strain gauges. 

(d) Arrangement of the torque bridge: The wing box of the aircraft wing is mainly 
subjected to the torque generated by the wing. Hence, the torque strain gauge bridges 
were positioned at the center of the skin of the wing box section where measurements 
were conducted. A torque full bridge, consisting of four strain gauges arranged at 90-de-
gree intervals, was utilized to measure the torque. This configuration allowed for the ac-
curate detection of the torque effects on the wing structure. 

 

 
(b) 

 
(c) 

 
(a) (d) 

Figure 5. Schematic wing diagram of the FEM and bridge arrangements: (a) schematic diagram of 
the wing FEM; (b) arrangement of bending moment bridge; (c) arrangement of the shear bridge; 
and (d) arrangement of the torque bridge. 

4.2. Virtual Strain Bridge 
Owing to the complexity of the wing structure and loading conditions, strain often 

arises from the combination of multiple loads. To decouple this strain data, the design of 
the placement and paths of strain gauge components must allow for the separation of 
multiple loads. The Virtual Strain Bridge technique is an advanced method employed for 
measuring material strain, renowned for its non-contact nature, high accuracy, and flexi-
ble arrangement. This paper employed this method for strain measurement. 

4.2.1. Arrangements of Virtual Strain Bridges 

Figure 5. Schematic wing diagram of the FEM and bridge arrangements: (a) schematic diagram of
the wing FEM; (b) arrangement of bending moment bridge; (c) arrangement of the shear bridge; and
(d) arrangement of the torque bridge.

4.2. Virtual Strain Bridge

Owing to the complexity of the wing structure and loading conditions, strain often
arises from the combination of multiple loads. To decouple this strain data, the design
of the placement and paths of strain gauge components must allow for the separation of
multiple loads. The Virtual Strain Bridge technique is an advanced method employed for
measuring material strain, renowned for its non-contact nature, high accuracy, and flexible
arrangement. This paper employed this method for strain measurement.

4.2.1. Arrangements of Virtual Strain Bridges

The arrangement of strain bridges should ensure accurate and reliable measurement of
the structure’s strain. This requires selecting appropriate placement positions and orientations.

The upper and lower spar caps of the wing beam primarily withstand the bending
moment generated by the characteristics of wing’s structural force. Bending moment strain
gauges No. 1 and No. 4 were positioned along the length of the spar caps, while strain
gauges No. 2 and No. 3 were oriented perpendicular to strain gauges No. 1 and No. 4.
The ribs and web of the wing beam, along with the wing skin, primarily experienced shear
forces generated by the wing. Each shear strain gauge comprised four interconnected 90◦
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strain gauges. The arrangement of shear strain gauges is illustrated in Figure 5c. The
wing box primarily experienced torsional forces generated by the wing. Each torsion strain
gauge comprised four interconnected 90◦ strain gauges. The arrangement of torsion strain
gauges is illustrated in Figure 5d.

4.2.2. The formation of Virtual Strain Bridge

The ground calibration test strain group bridge method utilized a Wheatstone full
bridge, comprising four strain gauges employing the group bridge method depicted in
Figure 6. Each strain bridge represented a bridge arm, providing strain data based on the
layout position and direction.
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Figure 6. Diagram of bridge group method.

4.2.3. Strain Measurement by Virtual Strain Bridge

The strain response of the four virtual strain bridges arranged at the top and bottom
rim strips of the wing girder was denoted as ε1, ε2, ε3, ε4, while the response of the bending
moment virtual bridge was represented as

Xbm = ε1 + ε3 − ε2 − ε4 (1)

where ε1 and ε4 could be directly extracted from the nodal strains of the finite element
results, ε1 and ε2 were obtained from the equations of mechanics of materials:

ε2 = −µε1, ε3 = −µε4 (2)

where µ represents the Poisson’s ratio of the material at the location where the strain bridge
is affixed. Then, the strain response of the bending moment bridge is

Xbm = (1 + µ)(ε1 − ε4) (3)

The calculation of shear force and torque can be referred by the virtual strain bridge,
which is in Appendix A.1 Note 1.

4.3. Definition of Load Condition

The load of the ground calibration test includes three factors: loading point, loading
direction and load value. Usually, in the FEM, the intersection point of the wing beam and
the wing rib is selected as the loading point, including single point and multi-point; the
loading direction is generally perpendicular to the wing surface, upwards or downwards;
the load is loaded step by step under different working conditions, and the load condition
of each working condition is satisfied by transforming the position of the loading point.
The magnitude of the load (5 kN) primarily originates from the surface pressure of the
wings and the equivalent engine load on the fuselage, which are obtained through strain
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gauges and sensors attached to critical components. In this article, the magnitude of loads
was directly extracted from the FE model provided by the research institute. The boundary
conditions were defined as shown in Figure 7a, and the calibration load was applied
vertically upwards at the intersection of the wing rib and the wing beam; the loading point
is shown in Figure 7b.
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4.4. Virtual Calibration Sample Data
4.4.1. Load Strain Sample Data

After completing the virtual ground calibration experiment, it is imperative to analyze
the response of the strain gauges to ascertain their suitability for integration into the load
equation. Details can be found in Appendix A.2 Note 2. After considering the repeatability
of strain gauge responses and loading conditions, the loads were applied at the intersection
points near the wingtip of the wing beams and ribs. Subsequently, calibration equations
for the load-strain data at six single-point loads, namely RP1, RP3, RP5, RP7, RP9, and
RP11, were derived. The data for each loading point included the shear force, bending
moment, torsional moment, the response values of bending moment, torsional moment
and shear strain gauges measuring the load profiles. The original data of the loading model
are presented in Table 5, which will serve as the training sample library for subsequent
deep learning models.

As shown in Table 5, there was a significant disparity between the values of loads and
strain data. In order to improve the identification accuracy of the load model, the data
were normalized prior to modeling [27]. Additionally, the actual load data can be obtained
through inverse normalization [28]. The normalized load and strain data are presented
in Table 6.
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Table 5. Load modelling raw data.

Shear Force
(kN)

Bending Moment
(kN·m) Torque (kN·m) The Bending Moment

Bridge (µε) Shear Bridge (µε) Torque Bridge (µε)

5 14.91 1.66 2014.02 −184.3 63.2
8 20.67 2.38 2788.74 −319.26 73.72
10 21.85 2.62 2947.55 −427.91 54.27
15 26.8 3.41 3606.49 −687.65 24.54
18 24.99 3.47 3357.53 −874.91 −39.75
20 19.8 3.16 2655.46 −1030.43 −113.17

Table 6. Normalized load strain data.

Shear Force
(kN)

Bending Moment
(kN·m)

Torque
(kN·m)

The Bending Moment
Bridge (µε) Shear Bridge (µε) Torque Bridge (µε)

−1.0000 −1.0000 −1.0000 −1.0000 1.0000 0.8874
−0.6000 −0.0314 −0.2063 −0.0270 0.6810 1.0000
−0.3333 0.1675 0.0658 0.1724 0.4242 0.7919
0.3333 1.0000 0.9388 1.0000 −0.1898 0.4737
0.7333 0.6953 1.0000 0.6873 −0.6324 −0.2143
1.0000 −0.1779 0.6552 −0.1944 −1.0000 −1.0000

4.4.2. Strain Sample Data at Critical Locations

Since the processing method is unchanged, the strain data for the critical parts are
given here, the raw strain data are shown in Table 7 and the normalized strain data are
shown in Table 8.

Table 7. Raw strain data for critical sites.

Loads Strain of Critical
Position (µε)

The Bending
Moment Bridge (µε)

Shear Bridge
(µε)

Torque Bridge
(µε)

5 2093.2 2014.02 −184.3 63.2
8 2957.07 2788.74 −319.26 73.72

10 3206.18 2947.55 −427.91 54.27
15 4076.41 3606.49 −687.65 24.54
18 4005.85 3357.53 −874.91 −39.75
20 3466.17 2655.46 −1030.43 −113.17

Table 8. Normalized strain data for key structures.

Loads Strain of Critical
Position (µε)

The Bending
Moment Bridge (µε)

Shear Bridge
(µε)

Torque Bridge
(µε)

5 −1 −1 1 0.88742
8 −0.1288 −0.02702 0.68099 1

10 0.1224 0.17243 0.42418 0.79186
15 1 1 −0.18977 0.4737
18 0.9288 0.68733 −0.6324 −0.2143
20 0.3846 −0.19441 −1 −1

5. Strain/Load Prediction Based on Deep Learning Model

The input data were obtained through the previous sections, which included prepro-
cessing, flight parameter maneuver recognition classification, and wing virtual ground
calibration tests. The deep learning model incorporated the AE, RNN, and LSTM models,
considering the time-sequential characteristics of the flight parameters and strains/loads.
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5.1. Dimensionality Reduction by Neural Networks

An AE network model consists of two parts, the encoder and the decoder networks, as
shown in Figure 8. The encoder maps the input data to the latent space (or low dimensional
space), while the decoder maps the latent data back to the original dimensional data space.
Typically, the encoder contains one or more hidden layers with a decreasing number of
nodes that ultimately generate the latent representation. The structure of a decoder is usu-
ally the opposite of an encoder, containing one or more hidden layers with a progressively
increasing number of nodes. The objective of an AE model optimization is to minimize the
reconstruction error between the input data and the reconstruction data. The most common
objective function is Mean Squared Error (MSE), which minimizes the reconstruction error
by adjusting the weights of the encoder and decoder.
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Figure 8. The structure of AE model.

The settings of some methods can be found in SI Note 3, respectively. Using 18 flight
parameters such as altitude, Mach number, center of gravity normal overload, attack angle,
aileron deflection, roll angular velocity, and others as inputs to the neural network model for
dimensionality reduction, the target dimensionality after reduction was set to 13. Figure 9a
displays the visualization results obtained by transforming the data reduced by AE using
local linear interpolation method into a new three-dimensional space. Clustering was also
performed, with colors representing the classes to which each data point belongs; different
colors indicate different clusters. Figure 9b illustrates the Mean Squared Error (MSE) data
of the reconstructed data X̂i by the encoder, denoted as

MSE =
1
n

n

∑
i=1

(
Xi − X̂i

)2

which represents the numerical value of information loss during the encoding and decoding
process. Notably, the maximum MSE does not exceed 0.068, meeting the requirements.
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From these dimensionality reduction graphs, it is evident that the AE exhibits the most
accuracy and stability among all dimensions based on Figure 9c.
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Figure 9. The results of dimensionality reduction achieved by AE model: (a) results of dimensional
clusters; (b) the mean squared error (MSE) of reconstruction; (c) the change history of MSE along
with time sequence.

The reconstruction MSEs of the LLE and PCA models, both of which are higher
than that of the AE model, are shown in Figures 10a and 10b, respectively, under the
same parameter settings (detailed settings can be found in Appendix A.3 Note 3). This
demonstrates that the AE model achieves the highest accuracy in reconstructing the lower-
dimensional parameters back to their original dimensional space.
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5.2. Deep Learning Modelling for Strain Prediction

A neural network prediction model is also required after downscaling the high-
dimensional data using an AE. Figure 11 illustrates the MSE error plots of the RNN
and LSTM prediction models based on part of our processed data, respectively. With an
increase in the number of iterations, the dataset errors of both network models can converge
to 0. Specifically, the dataset errors of the RNN model converge at epochs = 43, while those
of the LSTM model converge at epochs = 30, indicating a significantly faster convergence
speed for the LSTM model compared to the RNN model. Therefore, the LSTM network can
ensure both the convergence speed and the training accuracy of the flight parameter–strain
model, which was selected as the deep learning prediction model.
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5.3. Flight Parameter–Strain Model Simulation Results

Although it has been validated in the previous step that the LSTM deep learning
model may offer better accuracy, both LSTM and RNN were still employed to train on all
input data. Using AE, the 18 flight parameters (such as pitch angle, pitch rate, roll rate, yaw,
angular velocity, longitudinal acceleration, lateral acceleration, normal acceleration, roll
angle, ground speed, heading angle, altitude, inertia, etc.) were reduced (dimensionality
reduction) to 13, and then RNN and LSTM prediction models were used separately to
predict strain data. Figure 12a,b show the comparison results between real flight data and
the predicted one by (a) LSTM model and (b) RNN model predicted data and real data.
Generally, large strains are predominant in structural damage, so it is important that the
predicted values should ideally cover the true values of large strain amplitudes as much
as possible. Evidently, in Figure 12b, the RNN model significantly underestimated a large
portion of the true strain values indicated by blue, potentially placing the structural design
strength of the aircraft in an unsafe condition or uncontrolled risk.

Figure 13 displays the results of LSTM with FMR and without FMR at different maneu-
vers (State 1 and 3). Observably, after FMR processing, the prediction accuracy of the data
significantly improves, particularly in predicting the maximum amplitude of strain. Further-
more, the area of the 95% confidence interval decreases substantially, indicating a reduction in
uncertainty. This highlights the indispensability of FMR as a preprocessing step in the deep
learning strain prediction model based on a considerable amount of flight parameter data.
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6. Conclusions

This study focuses on the flight parameters obtained from a certain type of aircraft,
combined with data processing methods (pre-processing interpolation, flight maneuver
recognition), and wing virtual ground calibration experiments. The study obtained com-
plete flight data including strain based on this, and established a high-precision flight
parameter-strain prediction model. Considering the large volume and high dimensionality
of the flight data, the study (1) adopted flight maneuver recognition (FMR) to segment air-
craft maneuver actions, segmenting different maneuver actions for targeted deep learning
training, thus improving prediction accuracy; (2) Autoencoder (AE) neural network mod-
els were used for data dimensionality reduction, reducing the dimensions of subsequent
learning models to improve accuracy while increasing efficiency. The study draws several
conclusions as follows:

(1) Compared to methods such as locally linear embedding (LLE), principal component
analysis (PCA), etc., the AE model has the smallest maximum MSE (the maximum
MSE does not exceed 0.068, meeting the requirements), and the clustering effect is
also obvious. Under equal conditions, the priority should be given to the AE model
for flight data dimensionality reduction.

(2) The long short-term memory (LSTM) model has temporal characteristics. Combined
with the AE model and FMR, this model can accurately estimate the load or strain
of key parts. Particularly, the accuracy of predicting strain amplitudes is higher than
that of RNN and other neural network models.

(3) Compared to recurrent neural network (RNN) model, the LSTM model has a smaller
area of uncertainty within the 95% confidence interval, indicating better stability.
Therefore, the LSTM model is more suitable for learning and training the flight data
model, and can be also used for subsequent preparation of the aircraft load and
stress spectrum.

In conclusion, future research can utilize specific flight data for a particular aircraft
type as the main dataset. Based on the methods proposed in this paper, including flight
data preprocessing, FMR, and data obtained from virtual ground calibration tests, com-
bined with the AE dimensionality reduction and LSTM method, a flight parameter-strain
prediction model can be established to analyze aircraft loading and damage conditions.
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Appendix A

Appendix A.1. Note 1 Shear Stress and Torque Virtual Strain

The strain response of the four virtual strain bridges arranged in the webs of the wing
girder is ε1, ε2, ε3, ε4, then the response of the shear force virtual bridge is

Xs f = ε1 + ε3 − ε2 − ε4 (A1)

Nodal strains ε1, ε2, ε3, ε4 cannot be extracted directly from the finite element results.
Using the knowledge about plane problem in finite element [29], the nodal strains extracted
from finite elements are used to calculate ε1, ε2, ε3, ε4. The theory and solution method for
building a strain bridge are described below.

The shell cell of the simplified wing model belongs to the planar problem, the strain
vector can be expressed as:

εx
εy
εxy

 =


∂

∂x 0
0 ∂

∂y
∂

∂y
∂

∂x

{u
v

}
= [L][N]{δ}e = [B]{δ}e (A2)

The strain matrix [B] in Equation (A3) is expressed in terms of nodal chunks as
[B] = [B1, B2, B3, B4], Where:

[Bi] =


∂Ni
∂x 0
0 ∂Ni

∂y
∂Ni
∂y

∂Ni
∂x

(i = 1, 2, 3, 4) (A3)

For a general-shaped planar domain, it can be subdivided into arbitrary quadrilaterals,
in which a local coordinate system is constructed, ensuring specific numerical values at
the boundary points. All points within this domain correspond to points in the established
local coordinate system, enabling the mapping of the actual element to a square.

Therefore: {
∂Ni
∂ξ

∂Ni
∂η

}
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]{
∂Ni
∂x

∂Ni
∂y

}
= [J]

{
∂Ni
∂x

∂Ni
∂y

}
(A4)
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From Equation (A4), we get. [
∂Ni
∂x

∂NI
∂y

]
= [J]−1

{
∂Ni
∂ξ

∂Ni
∂η

}
(A5)

where:

[J] =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

1
4

[
−(1 − η) 1 − η 1 + η −(1 + η)
−(1 − ξ) −(1 + ξ) 1 + ξ 1 − ξ

]
x1 y1
x2 y2
x3 y3
x4 y4

 (A6)

In the formula, xi, yi is the value of the node coordinates, and replacing Equation (A5)
into Equation (A6) to obtain the strain matrix [B], so that the strain at any point on the
plane can be obtained. At this point, the response of the virtual strain bridge can be solved
from the nodal strain data. From the mechanics of materials, the three strain components
of the finite element node εx, εy, εz, any positive strain at an angle to the x-axis of α is
calculated as:

εα = εxcos2 α + εysin2 α + γxysin αcos α (A7)

where α is the strain bridge patch direction; εα is the corresponding positive strain for the
specified direction.

From Equation (A7), the response of the individual strain bridges that make up the
Wheatstone strain bridge can be obtained as:{

εQ1,Q3 = ε45◦ =
(
εx + εy + γxy

)
/2

εQ2,Q4 = ε135◦ =
(
εx + εy − γxy

)
/2

(A8)

Substituting Equation (A8) into Equation (A1):

Xs f = 2γxy (A9)

The method of deriving the relationship between the torque virtual strain bridge
and the nodal strain follows the same process as that of the shear strain bridge, and it is
sufficient to refer to the derivation process of the shear virtual strain bridge.

Appendix A.2. Note 2 Original Samples from Virtual Calibration

After completing the virtual ground calibration experiment, it is imperative to analyze
the response of the strain gauges to ascertain their suitability for integration into the load
equation. This analysis primarily involves evaluating the linearity, effectiveness, and
sensitivity of the strain gauges. The strain data extracted from the wing finite element
model for a load of 5 kN is presented in Table A1. The analysis of the selected strain gauge
characteristics is depicted in Figure A1, illustrating that as the load level increases, the
strain gauges demonstrate excellent linearity, effectiveness, and sensitivity.

Table A1. Strain data for a load of 5 kn.

Load Level M1 (µε) M4 (µε) Q11 (µε) Q12 (µε) Q22 (µε) T11 (µε) T12 (µε) T22 (µε)

0 0 0 0 0 0 0 0 0
0.01 7.577 −7.577 0.399 −0.897 −0.117 −6.854 0.616 2.005
0.02 15.154 −15.153 0.798 −1.795 −0.231 −13.706 1.233 4.012

0.035 26.52 −26.517 1.398 −3.14 −0.399 −23.979 2.159 7.026
0.058 43.569 −43.563 2.299 −5.159 −0.641 −39.376 3.548 11.557
0.091 69.144 −69.128 3.654 −8.188 −0.983 −62.445 5.636 18.376
0.142 107.509 −107.469 5.694 −12.731 −1.449 −96.985 8.776 28.655
0.218 165.06 −164.967 8.771 −19.548 −2.041 −148.646 13.501 44.193
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Table A1. Cont.

Load Level M1 (µε) M4 (µε) Q11 (µε) Q12 (µε) Q22 (µε) T11 (µε) T12 (µε) T22 (µε)

0.332 251.392 −251.177 13.426 −29.78 −2.684 −225.769 20.63 67.793
0.503 380.897 −380.399 20.502 −45.154 −3.077 −340.497 31.417 103.936
0.759 575.149 −573.983 31.341 −68.306 −2.252 −509.884 47.825 160.178

1 757.888 −755.784 41.835 −90.242 0.386 −665.208 63.515 215.963
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Figure A1. The characteristic analysis of strain gauge bridge.

Appendix A.3. Note 3 The Settings of All Deep Learning Models Used in This Paper

The models are constructed by Python code. The following functions involved are all
from publicly available Python libraries.

Table A2. The Settings of Autoencoder Model Parameters.

Input Layer Encoder
Layer

Decoder
Layer

Activation
Function

Loss
Function Optimizer Training

Epochs Batch Size

18 dimensions 13 neurons 18 neurons ReLU MSE Adam optimizer 200 32

Table A3. The Settings of Locally LLE Model.

Input Data Target
Dimensionality Test Set Size Random Seed Loss Function Linear Regression

Model

18 dimensions 13 components 50% 42 MSE Linear Regression

Table A4. PCA Model Parameters.

Input Data Target
Dimensionality Test Set Size Random Seed Loss Function

18 dimensions 13 components 50% 42 MSE
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Table A5. The Settings of RNN Model Parameters.

Input Data Simple RNN
Layer

Activation
Function Loss Function Validation Sets Training Epochs Batch Size

13 dimensions 50 neurons ReLU MSE 20% 50 32

Table A6. The Settings of LSTM Model Parameters.

Input Data LSTM Layer
Layer

Activation
Function Loss Function Validation Sets Training

Epochs Batch Size

13 dimensions 50 neurons ReLU MSE 20% 50 32
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