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Abstract: The mechanical behavior of unsaturated porous media under non-isothermal conditions
plays a vital role in geo-hazards and geo-energy engineering (e.g., landslides triggered by fire and
geothermal energy harvest and foundations). Temperature increase can trigger localized failure and
cracking in unsaturated porous media. This article investigates the shear banding and cracking in
unsaturated porous media under non-isothermal conditions through a thermo–hydro–mechanical
(THM) periporomechanics (PPM) paradigm. PPM is a nonlocal formulation of classical poromechan-
ics using integral equations, which is robust in simulating continuous and discontinuous deformation
in porous media. As a new contribution, we formulate a nonlocal THM constitutive model for
unsaturated porous media in the PPM paradigm in this study. The THM meshfree paradigm is
implemented through an explicit Lagrangian meshfree algorithm. The return mapping algorithm
is used to implement the nonlocal THM constitutive model numerically. Numerical examples are
presented to assess the capability of the proposed THM mesh-free paradigm for modeling shear
banding and cracking in unsaturated porous media under non-isothermal conditions. The numerical
results are examined to study the effect of temperature variations on the formation of shear banding
and cracking in unsaturated porous media.

Keywords: shear banding; cracking; unsaturated porous media; THM; periporomechanics

1. Introduction

The thermo–hydro–mechanical (THM) behavior of unsaturated porous media, such
as soils, plays a crucial role in various engineering applications, including nuclear waste
disposal storage, pavement design, fault propagation, landslides, geothermal energy uti-
lization, and the performance of buried high-voltage cables (e.g., [1–8]). Temperature
variations can significantly impact the mechanical and physical properties of unsaturated
soils, influencing parameters such as shear strength, deformation characteristics, fluid flow
behavior, and mass transport properties at multiple length scales [9–16]. For instance, tem-
perature changes can lead to complex behaviors in unsaturated soils, including volumetric
strain or dilation, which may vary depending on factors like the overconsolidation ratio of
the soil. Consequently, both physical experiments and numerical simulations are essential
tools for investigating and understanding the coupled multi-physical processes involved
in solid deformation, fluid flow, and heat conduction within thermally unsaturated soils
(e.g., [10,11,17,18]). These studies, such as the mesoscale finite element modeling of shear
banding in thermal unsaturated soils [11] provide valuable insights into the behavior of
unsaturated soils under the influence of temperature variations, contributing to more
accurate and reliable engineering designs and assessments. Meanwhile, the heat transfer
mechanism in porous media at the pore scale and nanosacale [19–21] have been studied in
recent years. For instance, in [19], the authors conducted a critical review of the heat transfer
enhancement methods in the presence of porous media, nanofluids, and microorganisms.
Bai et al. [20] studied the coupled THM mechanism considering the soil particle rearrange-
ment of granular thermodynamics. Farahani et al. [19] investigated the heat transfer in
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unfrozen and frozen porous media on the pore scale. In this study, as a new contribution, we
develop a nonlocal mesh-free THM paradigm for modeling shear banding and cracking in
unsaturated soils under elevated temperatures. For this purpose, we formulate a nonlocal
THM constitutive model for unsaturated soils and implement the THM constitutive model
into the meshfree periporomechanics (PPM) paradigm [22–27]. We refer to the related
literature for other numerical methods such as the discrete element method, the extended
finite element method (XFEM), and the phase-field method for modeling shear banding and
cracking in unsaturated soils (e.g., [28–33], among others). It is worth noting that in [25,34],
the authors presented an in-depth review of these methods for modeling unsaturated soils.
Next, we sequentially review the constitutive modeling of thermal unsaturated soils and
the PPM paradigm.

Significant progress has been made in thermal constitutive modeling for unsaturated
soils in recent decades, addressing the intricate interplay between thermal, mechanical,
and hydraulic behavior under non-isothermal conditions [35–40]. These advancements are
pivotal in understanding the response of unsaturated soils in a wide range of geotechnical
applications. Numerous constitutive models have been formulated, each tailored to cap-
ture specific aspects of thermal–mechanical coupling in unsaturated soils (e.g., [17,41,42]).
Some constitutive models have integrated thermal effects into established critical state
theories [43], while others have explicitly accounted for temperature-induced alterations in
the water retention curve [38]. Unified models have emerged, combining both mechanical
and thermal aspects, e.g., leveraging concepts from bounding surface theory [35,42]. In
addition, micro-structural-based constitutive models have been developed to elucidate the
influence of temperature on capillary stress at solid–water–air interfaces [39]. Noteworthy
contributions include hierarchical models that hierarchically incorporate hydro–mechanical
hardening and thermal softening and models tailored to study cyclic behavior under vary-
ing thermal conditions [17,42]. Collectively, these thermal constitutive models provide
invaluable tools for comprehensively characterizing the behavior of unsaturated soils in
response to temperature fluctuations, contributing to safer and more efficient engineering
designs and geotechnical assessments. These advanced constitute models for thermal
unsaturated soils have been implemented into the finite element program [44], which is
robust for modeling continuous deformation in unsaturated soils but not for discontinuities
such as shear bands and cracks. In the present study, we formulate a nonlocal thermal con-
stitutive model for unsaturated soils and implement it into the mesh-free PPM paradigm to
better study shear banding and cracking in thermal unsaturated soils.

PPM is a nonlocal formulation of classical coupled poromechanics through the peridy-
namic state concept and the effective force concept for unsaturated porous media [45,46],
which is robust for modeling continuous and discontinuous mechanical and physical be-
havior of porous media [22–26,34,47,48]. In PPM, equations of motion and mass balance are
expressed as integral–differential equations [46–48]. PPM stands out for its natural ability
to simulate multiphase discontinuities through field equations and material models [25]. By
using the stabilized multiphase correspondence principle, classical advanced constitutive
models and physical laws are readily incorporated into PPM, enabling the modeling of
coupled deformation, shear banding, and fracturing in porous media [22]. In PPM, the
energy-based bond breakage criterion has been formulated for modeling cracks leveraging
the effective force state concept [25]. Furthermore, the large-deformation PPM through the
updated Lagrangian framework was developed for unsaturated porous media in [24]. The
µPPM has been formulated to model dynamic shear bands and crack branching in porous
media considering the rotational degree of freedom of the solid skeleton of porous media
in [49,50]. In the present study, we investigate the shear banding and cracking in thermal
unsaturated soils leveraging PPM. The PPM paradigm [22] is used by incorporating a
thermal constitutive model for unsaturated soils.

In this study, we delve into the intricate phenomena of shear banding and cracking
within unsaturated porous media under non-isothermal conditions. A notable contribution
of this study is the implementation of a classical THM material model tailored for unsat-
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urated porous media into the computational meshfree PPM paradigm. A pivotal aspect
of this integration is the utilization of a stabilized multiphase correspondence principle
that effectively mitigates the zero-energy mode instability. Our implementation of the
THM PPM paradigm is realized through an explicit Lagrangian meshfree algorithm in
which the unsaturated soil is represented by a collection of a finite number of material
points. Each material point has its own displacement, pore pressure, and temperature.
At each material point, the return mapping algorithm in computational plasticity is used
to numerically implement the THM constitutive model. To assess the capabilities of our
proposed THM meshfree paradigm, we present numerical examples that illustrate its
efficacy in modeling shear banding and cracking phenomena within unsaturated porous
media under non-isothermal conditions. The second-order work criterion for instability
of unsaturated soils [51] is adopted to validate our numerical results of shear banding in
thermal unsaturated soils. Our numerical results offer valuable insights into the intricate
interplay between temperature variations and the formation of shear bands and cracks
within unsaturated porous media.

The remainder of this article is organized as follows. Section 2 presents the mathemati-
cal formulation of the THM PPM framework, including the thermal elastoplastic material
model. Section 3 is dedicated to the numerical implementation of the proposed PPM
paradigm. Section 4 presents numerical examples to assess the accuracy of the numerical
implementation at the material point level and utilize the THM PPM paradigm to model
dynamic shear banding and fracturing in unsaturated porous media under non-isothermal
conditions, followed by a summary in Section 5. Throughout this work, we adopt the
sign convention in continuum mechanics, wherein tensile forces and deformations under
tension are considered positive. For pore fluid pressure, compression is positive, and
tension is negative.

2. Mathematical Formulation

In this section, we introduce the governing equation, the stabilized constitutive cor-
respondence principle, the thermal elastoplastic material model, and the energy-based
bond breakage criterion. In this study, we assume that the matric suction and temperature
are known variables, i.e., one-way coupling. We also assume that no phase change exists
between the three phases, i.e., solid, water, and air.

2.1. Governing Equation

In PPM, the porous media is represented by a set of mixed material points. A material
point X has mechanical and physical interactions with any material point X ′ within its
neighborhood, i.e., a spherical domain H with a radius of δ called horizon. The bond
between material points X and X ′ is defined as ξ = X ′ − X in the reference configuration.
For notation simplicity, the variables with no prime are associated with X and the variables
with a prime means the variables associated with X ′. For a partially saturated porous
medium (i.e., solid, water, and air), assuming a weightless air phase, the total density is
defined as

ρ = (1− ϕ)ρs + ϕSrρw, (1)

where ϕ is the porosity, ρs is the intrinsic density of the solid skeleton, Sr is the degree of
saturation, and ρw is the intrinsic density of water. In this study, the degree of saturation is
determined through a temperature-dependent water retention model for unsaturated soils
at elevated temperatures [17], which reads

Sr =

 1

1 +
[

a1γθ(ν− 1)b1 s
]ñ


−m

, (2)
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where ν is the specific volume of unsaturated porous media, s is matric suction, a1, b1, ñ,
and m are material parameters, and γθ is a temperature-dependent air-entry matric suction.
This variable can be determined by

γθ =

(
a2 + b2θ0

a2 + b2θ

)b2

, (3)

where a2 and b2 are material parameters, θ0 is a reference temperature, and θ is the temper-
ature of the mixture.

The motion equation for this porous medium in the PPM framework is written as

ρü =
∫
H

(
T −T ′

)
dV ′ − ρg, (4)

where ρ is the total density as defined in (1), ü is the acceleration, T and T ′ are the total
force vector states (i.e., associated with the bond ξ), and g is gravitational acceleration.
Through the effective state concept [46] and assuming that matric suction and temperature
are given, the motion equation for the porous media can degenerate into the motion
equation for the solid phase as

ρsü =
∫
H

(
T −T

′)dV ′ − ρsg, (5)

where ρs = (1 − ϕ)ρs is the partial density of the solid phase, and T and T
′ are the

effective force states. Assuming the passive air pressure (i.e., zero air pressure), the effective
force state [25] at X is defined as

T = T − SrT w. (6)

It is noted that the impact of temperature and matric suction on the mechanical
behavior of unsaturated soils is considered through the thermal constitutive model given
the temperature and matric suction. In what follows, we present the kinematics of the
solid phase.

2.2. Kinematics

In PPM, the Lagrangian coordinate is used to model the solid phase [25]. Let y and y′

be the positions of material points X and X ′ in the current configuration, respectively. Let
u and u′ be the displacements of material points X and X ′, respectively. The deformation
and displacement states are defined as

Y = y′ − y, (7)

U = u′ − u. (8)

Given Y , the deformation gradient tensor in PPM [24] is defined as

F =

[∫
H

ω
(
Y ⊗ ξ

)
dV ′

]
K −1, (9)

where ω is a weighting function, and K is the shape tensor [46]. The shape tensor is
defined as

K =
∫
H

ω
(

ξ ⊗ ξ
)

dV ′. (10)

It is noted that the shape tensor K is defined referring to the initial configuration.
Then, the rate form of the deformation gradient tensor follows from (10), (9), and (8), and
can be written as
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Ḟ =

[∫
H

ω
(
U̇ ⊗ ξ

)
dV ′

]
K −1. (11)

From (9) and (11), the velocity gradient tensor is determined as

L = ḞF−1. (12)

Given (12), the rate of deformation tensor D can be computed as

D =
1
2

(
L + LT

)
, (13)

where the superscript T is the transpose operator.
According to the polar decomposition theorem, the nonlocal deformation gradient F

can be decomposed as
F = RU, (14)

where R is the rotation tensor that is a proper orthogonal tensor, and U is the right stretch
tensor that is a symmetric positive-definite tensor. The unrotated rate of deformation tensor
d̂ can be obtained by

d̂ = RDRT . (15)

Given the unrotated rate of deformation tensor, the strain increment can be written as

∆ε = ∆td̂, (16)

where ∆t is the time increment. Finally, given (9), the porosity [52,53] in the current
configuration is written as

ϕ = 1− (1− ϕ0)

J
, (17)

where J is the Jacobian of the nonlocal deformation gradient, and ϕ0 is the initial porosity.
We note that in this study, the soil water retention curve is dependent on the porosity, as
introduced in Section 2.3.2. Next, we introduce the stabilized constitutive correspondence
principle through which the advanced thermal constitutive model is implemented into the
meshfree PPM paradigm.

2.3. Correspondence THM Constitutive Model

To complete (5), a constitutive model is needed to determine the effective force state.
In this study, the stabilized constitutive correspondence principle [22] is used to implement
an advanced thermal constitutive model for unsaturated soils.

2.3.1. Constitutive Correspondence Principle

The constitutive correspondence principle is based on the notion that the internal
energy in a porous body from the local formulation in classical poromechanics is equal
to that from the nonlocal formulation in periporomechanics. We refer to [22,26,46] for the
detailed derivation. The effective force state in PPM can be written in terms of the effective
Piola stress as

T = ωPK −1ξ, (18)

where P is the effective Piola stress, which can be obtained from the local constitutive model
given the nonlocal deformation gradient. It is noted that, assuming passive air pressure
(i.e., atmospheric air pressure), the effective stress σ is written as

σ = σ − Sr pw1, (19)
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where σ is the total Cauchy stress tensor, pw is pore water pressure, and 1 is the second-
order identity tensor. Thus, it follows from (18), (6), and (19), that the fluid force state can
be written as

T w = ωpw1K −1ξ. (20)

Note that in (20), the small deformation of a solid is assumed.
From (18), the effective force state can be computed from a thermal elasto-plastic

constitutive model for unsaturated soils given matric suction, temperature change, and
the nonlocal deformation gradient. The effective Piola stress can be written in terms of the
unrotated Cauchy stress as

P = Jσ̂F−T . (21)

The unrotated effective Cauchy stress reads

σ̂ = RσRT , (22)

where σ can be determined from an advanced thermal constitutive model for unsaturated
soils. Next, we introduce the thermal elastoplastic model for unsaturated soils.

2.3.2. Thermal Elastoplastic Model for Unsaturated Soils

In this study, the thermal elastoplastic constitutive model is formulated based on the
critical state soil mechanics. Following the small strain theory, the total strain is additively
decomposed to elastic and plastic components as

ε = εe + εp, (23)

where εe is the elastic strain tensor and εp is the plastic strain tensor. For the thermal
elastic model, the total elastic strain is assumed to consist of the mechanical elastic strain
and the thermal elastic strain. Thus, the total elastic strain is additively decomposed into
mechanical and thermal parts as

εe = εe
me + εe

θ , (24)

where εe
me is the mechanical elastic strain, and εe

θ is the thermal elastic strain. Given a
temperature change, the thermal elastic strain is determined as

εe
θ = βθ(θ − θ0)1, (25)

where βθ is the volumetric thermal expansion coefficient, which is assumed to be a constant
in this study, θ is the temperature of soils, and θ0 is a reference temperature. Given the total
elastic strain, the effective stress can be written through a linear thermal elastic model as

σ = C : εe, (26)

where C is the fourth-order linear elastic stiffness tensor that reads

Cijkl = K δij δkl + µ (δikδjl + δilδjk − 2
3 δij δkl), (27)

where i, j, k, l = 1, 2, 3, K is the elastic bulk modulus, and µ is the shear modulus.
Next, we present the thermal plastic model. First, we define the effective mean stress

p and the deviatoric stress q as

p =
1
3

tr(σ), (28)

q =

√
3
2
||σ − p1||, (29)
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where || || is the norm of a tensor. Following the modified Cam–Clay model [17], the yield
function is written as

f = p2 − ppc +
q2

M2 , (30)

where M is the slope of the critical state line and pc is the apparent preconsolidation
pressure. In this study, the apparent preconsolidation pressure depends on the volumetric
plastic strain, matric suction, and temperature changes [17]. Specifically, the apparent
preconsolidation pressure reads

pc = − exp(â)(−pc,0)
b̂
[

1− αθ log
(

θ

θ0

)]
, (31)

where

â =
N(ĉ− 1)

λ̃ĉ− κ̃
, (32)

b̂ =
λ̃− κ̃

λ̃ĉ− κ̃
, (33)

ĉ = 1− c1[1− exp (c2ζ)], (34)

and ζ is a bonding variable related to water meniscus between grains, N is the specific
volume of the soil under a unit saturated preconsolidaiton pressure, c1 and c2 are con-
stants [54], pc,0 is the apparent preconsolidation pressure at the reference temperature, θ0,
and αθ is a thermal parameter that characterizes the impact of temperature variation on the
apparent preconsolidation pressure. It is noted that the parameter ĉ is the ratio between
the specific volume of the virgin compression curve in the partially saturated state to the
corresponding specific volume in the fully saturated state. The bonding variable ζ [17] at
the reference temperature (i.e., ambient temperature) is defined as

ζ = (1− Sr) f̂ (s), (35)

where (1− Sr) accounts for the number of water menisci per unit soil volume and f̂ (s) is
the stabilizing normal force exerted by a single water meniscus. The latter is written as

f̂ (s) = 1 +
s/patm

10.7 + 2.4(s/patm)
, (36)

where patm is the atmospheric pressure.
Adopting the associative flow rule, the total THM plastic strain is written as

ε̇p = λ̇
∂ f
∂σ

, (37)

where λ̇ is a plastic multiplier, which is determined by the consistency condition [55]. Next,
we introduce the energy-based bond breakage criterion.

2.4. Energy-Based Bond Breakage Criterion

In this study, the energy-based bond breakage criterion [26] is adopted to detect the
bond breakage in the THM PPM framework. The effective force state is used to determine
the deformation energy. Thus, the energy density in bond ξ is obtained as

W =
∫ t

0

(
T −T

′)
U̇ dt, (38)
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where t is the load time. In PPM, the broken bond is modeled through the influence function at
the constitutive model level. In this study, the influence function for bond ξ is defined as

ω =

 1 for W <Wcr,

0 for W ≥ Wcr,
(39)

whereWcr is the critical bond energy density. Following linear elastic fracture mechanics,
the critical bond energy density can be calculated from the critical energy release rate as

Wcr =
4Gcr

πδ4 , (40)

where Gcr is the critical energy per unit fracture area. In PPM, when a bond breaks, it will not
sustain any mechanical load. The local damage parameter D at a material point is defined as

D = 1−
∫
H ωdV ′∫
H dV ′

. (41)

In this study, it is assumed that the crack initiates when D > 0.5 at a material point. In
the following section, we present the numerical implementation of the THM PPM paradigm.

3. Numerical Implementation

The THM PPM paradigm is implemented numerically through an explicit Newmark
scheme [44,56] in time and a Lagrangian meshfree method in space. The return mapping
algorithm in computational plasticity is adopted for implementing the nonlocal thermal
elasto-plastic constitutive model at the material point level. Figure 1 presents the flowchart
of the explicit numerical scheme of the implementation of the THM PPM paradigm.
Algorithm 1 summarizes the global explicit meshfree numerical scheme and the local
return mapping algorithm at the material point.

3.1. Global Integration in Time

In this part, we present the time integration of the governing equations at each material
point. In this study, the explicit Newmark scheme is adopted. Let un, u̇n, and ün be
the displacement, velocity, and acceleration vectors at time step n. The predictors of
displacement and velocity in a general Newmark scheme read

˙̃un+1 = u̇n + (1− β1)∆tün, (42)

ũn+1 = un + ∆tu̇n + (1− 2β2)∆t2ün, (43)

where β1 and β2 are the numerical integration parameters. Given (42) and (43), the effective
force state can be determined from the thermal elasto-plastic constitutive model introduced
in Section 2.3.2. Then, the acceleration at time step n + 1 is determined by

ün+1 =M−1
n+1

(
T̃n+1 −Mn+1g

)
, (44)

whereMn+1 is the mass of the solid at time step n + 1 and T̃n+1 is the effective force at
time step n + 1. The two terms for a material point i are written as

Mn+1 =ρs(1− ϕn+1,i)Vi, (45)

T̃n+1 =
Ni

∑
j=1

(
T̃ n+1,ij − T̃

′
n+1,ji

)
VjVi, (46)

where Ni is the number of neighbor material points of material point i. From (44), the
displacement and velocity at time step n + 1 can be obtained as
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u̇n+1 = ˙̃un+1 + β1∆tün+1, (47)

un+1 = ũn+1 + β2∆t2ün+1. (48)

 Solve elastic strain and 

effective stress through 

return mapping algorithm

Compute effective 

force state

Compute velocity and 

displacement predictor 

Update displacement  
Update time 

increment

YES

Solve acceleration and update velocity  

NO

NO

Given:                

Compute deformation gradient 

and unrotated rate of deformation tensors

Compute bond energy

Update influence 

function 

Update damage 

variable
Go to next time step

Bond energy greater 

than critical value

Check energy 

convergence

YES

Update temperature and suction 

Figure 1. Flowchart for the explicit numerical implementation of the thermo–hydro–mechanical
(THM) periporomechanic (PPM) paradigm.

In this study, the explicit central difference solution scheme is adopted, i.e., β1 = 1/2
and β2 = 0. The energy balance check is used to ensure the numerical stability of the
algorithm in time. The internal energy, external energy, and kinetic energy of the system at
time step n + 1 are written as

Wint,n+1 =Wint,n +
∆t
2

(
u̇n +

∆t
2

ün

)
(Tn +Tn+1), (49)

Wext,n+1 =Wext,n +
∆t
2

(
u̇n +

∆t
2

ün

)
(Mng +Mn+1g), (50)

Wkin,n+1 =
1
2

u̇n+1Mn+1u̇n+1. (51)
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The energy conservation criterion requires

|Wkin,n+1 −Wext,n+1 +Wint,n+1| ≤ ε̂max(Wkin,n+1, Wint,n+1, Wext,n+1), (52)

where ε̂ is a small tolerance on the order of 10−2 [56].

Algorithm 1 Summary of the numerical integration algorithm of the thermo–hydro–mechanical
(THM) periporomechanic (PPM) paradigm
Given: un, u̇n, ün, θn, sn, ∆θ, ∆s, ∆t and compute: un+1, u̇n+1, ün+1, θn+1, sn+1
1: Update time tn+1 = tn + ∆t
2: while tn+1 ≤ t f do
3: for all points do
4: Compute the velocity predictor ˙̃un+1 using (42)
5: Apply boundary conditions
6: Compute displacement predictor ũn+1 using (43)
7: for each neighbor do
8: Update deformation state Y n+1 using (53)
9: Compute deformation gradient tensor Fn+1 using (54)

10: end for
11: Compute unrotated rate of deformation tensor dn+1 using (57)
12: Update temperature θn+1 using (60) and suction sn+1 using (59)
13: Update preconsolidation pressure pc,n+1

14: Compute trial elastic strain tensor εe,tr
n+1 using (62)

15: Compute the trial effective stress σtr
n+1

16: Compute the trial yield function f tr
n+1

17: if f tr
n+1 ≤ 0 then

18: Update effective stress σn+1 = σtr
n+1

19: else if f tr
n+1 > 0 then

20: Compute the residual rk
n+1

21: if ||rk
n+1|| ≤ Tol then

22: Go to line 30
23: else if ||rk

n+1|| > Tol then

24: Compute (∂r/∂x)k
n+1 using (73)

25: Solve δxk
n+1 using (71)

26: Update the xk+1
n+1 using (72)

27: k← k + 1
28: Go to line 20
29: end if
30: Update effective stress σn+1 using (26)
31: end if
32: Compute the effective force state using (75)
33: ComputeMn+1 using (45)
34: Solve acceleration ün+1 using (44)
35: Update velocity u̇n+1 using (47)
36: Update displacement un+1 using (48)
37: Compute kinematic energy Wkin,n+1 using (51)
38: Compute internal energy Wint,n+1 using (49) and external energy Wext,n+1 using (50)
39: Check energy balance
40: for each neighbor do
41: Compute bond energyW
42: ifW >Wcr then
43: Update influence function
44: Update damage variable Dn+1
45: end if
46: end for
47: end for
48: end while
49: n← n + 1

3.2. Implementation of the Material Model

This part deals with the numerical implementation of the thermal elasto-plastic model
at the material point level through the return mapping algorithm (e.g., [11,18]). First, we
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present the procedure for determining the strain increment at a material point i. Given (43),
the deformation state on bond ij at time step n + 1 is written as

Ỹ n+1,ij = Y n,ij + ∆Ỹ n+1,ij. (53)

Then, the nonlocal deformation gradient at material point i at time step n + 1 is
computed by

F̃n+1,i =

[
Ni

∑
j=1

ω
(
Ỹ n+1,ij ⊗ ξij

)
Vj

]
K −1

i . (54)

The spatial velocity gradient at material point i at time step n + 1 is written as

L̃n+1,i =

[(
Ni

∑
j=1

ω
˙̃U n+1,ij ⊗ ξijVj

)
Ki
−1

]
F̃
−1
n+1,i. (55)

The rate of deformation tensor at time step n + 1 is written as

D̃n+1,i =
1
2

(
L̃n+1,i + L̃

T
n+1,i

)
, (56)

Given (56), the unrotated rate of deformation tensor dn+1,i can be written as

d̃n+1,i = Rn+1,iD̃n+1,iRT
n+1,i. (57)

where Rn+1,i is rigid body rotation at material point i at time step n + 1. Then, the incre-
mental strain tensor at material point i at time step n + 1 is computed as

∆εi = ∆td̃n+1,i. (58)

Second, we present the procedure for updating the effective stress, given the in-
crements of mechanical strain, temperature, and/or matric suction, through the return
mapping algorithm. For brevity in notation, the subscript i of the material point is omitted
in the following presentation. Let sn, θn, and εe

n be the suction, temperature, and elastic
strain, respectively, at material point i at time step n. Let ∆εme, ∆θ, and ∆s be incremental
mechanical strain tensor, temperature, and matric suction from time steps n to n + 1. Here,
we assume no return mapping on the suction and temperature [17,54]. In this case, the
matric suction and temperature at time step n + 1 can be written as

sn+1 = sn + ∆s, (59)

θn+1 = θn + ∆θ. (60)

Given (60), the incremental thermal elastic strain ∆εe
θ is defined as

∆εe
θ =

1
3

βθ∆θ1. (61)

By freezing plastic deformation, the trial elastic strain is written as

εe,tr
n+1 = εe

n + ∆ε + ∆εe
θ , (62)

Then, the trial-specific volume, degree of saturation, and bonding variable at time step
n + 1 can be updated as
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νn+1 = νn exp
(

1 + tr(εe,tr
n+1)

)
, (63)

Sr,n+1 =

 1

1 +
[

a1γθ(νn+1 − 1)b1 sn+1

]ñ


−m

, (64)

ζn+1 = (1− Sr,n+1) f̂ (sn+1). (65)

The trial preconsolidatation pressure at time step n + 1 can be obtained from
Equation (31). To conduct the return mapping algorithm in the elastic strain space, we
define the unknown vector as

xn+1 ={εe
v,n+1, εe

d,n+1, ∆λ}T , (66)

where εe
v,n+1 is the elastic volume strain, εe

d,n+1 is the elastic deviatoric strain, and ∆λ is the
plastic multiplier at time step n + 1. The residual vector is defined as

rn+1 ={r1,n+1, r2,n+1, r3,n+1}T , (67)

The elements of the residual vector are defined as

r1,n+1 = εe
v,n+1 − εe,tr

v,n+1 + ∆λ

(
∂ f
∂p

)
n+1

(68)

r2,n+1 = εe
d,n+1 − εe,tr

d,n+1 + ∆λ

(
∂ f
∂q

)
n+1

(69)

r3,n+1 = f tr
n+1 (70)

where εe,tr
v,n+1 is the trial elastic volume strain and εe,tr

d,n+1 is the trial elastic deviatoric
strain at time step n + 1. The unknown vector x can be solved following the Newton’s
method as follows.

δxk
n+1 = −

(
∂r
∂x

∣∣∣∣k
n+1

)−1

rk
n+1 (71)

xk+1
n+1 = xk

n+1 + δxk
n+1 (72)

where k is the iteration number. The tangent matrix in (71) reads

∂r
∂x

∣∣∣∣k
n+1

=


∂r1
∂εe

v

∂r1
∂εe

d

∂r1
∂∆λ

∂r2
∂εe

v

∂r2
∂εe

d

∂r2
∂∆λ

∂r3
∂εe

v

∂r3
∂εe

d

∂r3
∂∆λ


k

n+1

. (73)

After solving the elastic strain, the effective stress at time step n + 1 can be updated
through (26). The unrotated effective stress is

σ′n+1 = RT
n+1σn+1Rn+1. (74)
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From (21), the effective Piola stress at time step n + 1 can be computed. Then, the
effective force state at time step n + 1 can be written as

T n+1 = ωPn+1K
−1ξ. (75)

4. Numerical Examples

In this section, we present three numerical examples to showcase the effectiveness
of the THM PPM paradigm in modeling shear banding and cracking in unsaturated
porous media under THM conditions. Example 1 focuses on the isoerror map to assess the
accuracy of the proposed return mapping algorithm at the material point level. Example
2 addresses shear banding in an unsaturated elasto-plastic porous material under biaxial
compression and varying temperature conditions. Example 3 examines crack formation
in a disk specimen of an unsaturated elastic porous material under displacement control
loading with increasing temperature.

4.1. Accuracy Assessment with Isoerror Maps

This example evaluates the precision of the return mapping algorithm at the material
point level through numerical testing. To gauge the accuracy of our proposed implicit
algorithm, we employ isoerror maps [55]. The relative error is defined as follows:

Error =

√
(σ − σ⋆) : (σ − σ⋆)√

σ⋆ : σ⋆
× 100, (76)

where σ represents the algorithm’s output, and σ⋆ denotes the exact solution, determined
for specific strain and temperature increments. Following the methodology in [55], the
exact solution is attained by repeatedly subdividing increments until further division yields
negligible changes in the numerical result. It is important to note, as pointed out in [55],
that while this approach effectively evaluates the algorithm’s overall accuracy, it is not a
substitute for a comprehensive analysis of accuracy and stability [55].

For this numerical test, the input material parameters [17,54] are as follows: bulk modulus
K = 83 MPa, shear modulus µ = 18 MPa, reference pressure pc,0 = −35 kPa, reference specific
volume ν0 = 1.9, elastic thermal coefficient βθ = 6.67× 10−4, swelling/recompression index
κ̃ = 0.03, compression index λ̃ = 0.11, critical state line slope M = 1, and plastic thermal
parameters αθ = −0.23, a1 = 0.038 kPa−1, b1 = 3.49, a2 = −335 ◦C, b2 = 1, ñ = 0.718,
m = 0.632, N = 2.76, θ0 = 25 ◦C, c1 = 0.185, and c2 = 1.42.

We consider three distinct cases, each with specific initial conditions. For all cases,
the initial effective isotropic stress is set uniformly at σ11 = σ22 = σ33 = −150 kPa,
and the preconsolidation pressure is established at −250 kPa. For Case 1, the initial
temperature is 25 ◦C, with a constant matric suction of 50 kPa. For Cases 2 and 3, the
initial temperature is raised to 50 ◦C, and the constant matric suction is increased to
100 kPa. For all three cases, the maximum temperature increment is set at 10 ◦C, and
the maximum volumetric strain increment is −2%. To visualize the accuracy, we utilize
isoerror maps plotted on a plane defined by the volumetric strain increment and the
temperature increment. These maps employ a color bar to represent the error percentage.
Figure 2 displays the isoerror maps for Case 1. Figure 3 illustrates the isoerror maps for
Case 2. Figure 4 shows the isoerror maps for Case 3. The results in Figures 2–4 indicate
that greater algorithmic accuracy can be achieved by adopting smaller increments in
both temperature and strain.
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Figure 2. Isoerror map for Case 1.

Figure 3. Isoerror map for Case 2.

Figure 4. Isoerror map for Case 3.



Geosciences 2024, 14, 103 15 of 34

4.2. Shear Banding Under Non-Isothermal Conditions

This example deals with the shear banding in thermal unsaturated porous media
under dynamic loading conditions. Specifically, we investigate the influence of the effects
of temperature and matric suction on shear banding. Figure 5 illustrates the model setup
for this example. A vertical displacement of uy = 10 mm is applied to the top boundary
at a rate of 5 mm/s. A constant lateral confining pressure of 35 kPa is enforced on the
left and right boundaries. The thermal elastoplastic constitutive model is utilized for
this example. The second-order work criterion can be used to detect material instability,
including shear banding in porous media [24,51]. It states that the material loses stability
(e.g., shear banding) if the second-order work becomes zero. In this example, we use the
second-order work as a sufficient condition for shear banding to validate our numerical
results of shear banding in thermal unsaturated soils. The PPM second-order work [24] in
terms of the effective force state can be written as

d2E =
∫
H

(
∆T · ∆Y

)
dV ′. (77)

The input material parameters for the base simulation are: solid phase density
ρs = 2000 kg/m3, bulk modulus K = 83 MPa, shear modulus µ = 18 MPa, elastic
thermal coefficient βθ = 6.67× 10−4, reference pressure pc,0 = −20 kPa, reference specific
volume ν0 = 1.9, swelling index κ̃ = 0.03, compression index λ̃ = 0.11, critical state line
slope M = 1, and plastic thermal parameters αθ = −0.23, a1 = 0.038 kPa−1, b1 = 3.49,
a2 = −335 ◦C, b2 = 1, ñ = 0.718, m = 0.632, N = 2.76, θ0 = 25◦C, c1 = 0.185, and
c2 = 1.42. The specimen is discretized into a grid of 25 × 50 material points using a
uniform grid spacing of ∆x = 4 mm. The horizon δ is set to 8 mm, and the time increment
∆t is 1 × 10−4 s.

100 mm

2
0

0
 m

m

x

y

Figure 5. Model setup for the example of shear banding.
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For the base simulation, a constant temperature of 25 ◦C is prescribed within the
problem domain. The matric suction decreases from 25 kPa to 10 kPa at a rate of 7.5 kPa/s.
The results of the base simulation are presented in Figures 6–9. Figure 6 plots the loading
curve on the top boundary, demonstrating a softening stage after the peak load due to the
reduction of matric suction. Figure 7 displays the curve of deviatoric stress with vertical
strain and the stress path (in the p − q space) of the point at the specimen center. The
results indicate that the deviator stress increases with mean stress until it reaches the critical
state line, after which it starts to decrease due to softening. Figure 8 presents snapshots of
the equivalent plastic shear strain in the deformed configuration at three loading stages.
Figure 9 provides snapshots of the plastic volumetric strain at the same three loading stages.
It is important to note that a magnification factor of 5 is applied to all contours in this
example. The results in Figures 8 and 9 demonstrate the development of two conjugate
shear bands originating from the specimen center. Notably, in our nonlocal PPM framework,
the initiation of shear banding does not require a weak element, as typically seen in finite
element modeling of shear banding. Figure 9 shows that the plastic volumetric strain
in the shear zone is positive, indicating dilatation. Figure 10 shows the snapshots of the
second-order work in the deformed configuration at the three loading stages. As shown in
Figure 10, the second-order work within the shear band zone is zero, which confirms our
numerical modeling result.

Figure 6. Loading curve on the top boundary.

(a) (b)

Figure 7. (a) Plot of the deviator stress versus the vertical strain and (b) the stress path in the p− q
space at the point of the specimen center. Note: The dashed line in red is the critical state line and the
same holds for the following figures in the p− q space.



Geosciences 2024, 14, 103 17 of 34

(a) (c)(b)

Figure 8. Contours of the equivalent plastic shear strain superimposed on the deformed configuration
at (a) uy = 4 mm, (b) uy = 7 mm, and (c) uy = 10 mm.

(a) (c)(b)

Figure 9. Contours of the plastic volume strain on the deformed configuration at (a) uy = 4 mm,
(b) uy = 7 mm, and (c) uy = 10 mm.

(a) (c)(b)

Figure 10. Contours of the second-order work on the deformed configuration at (a) uy = 4 mm,
(b) uy = 7 mm, and (c) uy = 10 mm. Note: The second-order work is normalized with the maximum
value and the same holds for the following contours of the second-order work.

To investigate the impact of spatial discretization on the results, we examine
two different spatial discretization schemes: one with a grid of 25 × 50 points and
∆x = 4 mm (grid 1), and the other with a grid of 40 × 80 points and ∆x = 2.5 mm
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(grid 2). Both simulations utilize the same horizon value of δ = 8 mm, while all other
conditions and parameters remain consistent with the base simulation. Figure 11 presents
a comparison of the loading curves obtained from the two simulations. These two loading
curves are identical until the onset of the softening stage. Figure 12 displays the contours
of equivalent plastic shear strain at uy = 10 mm for both simulations, while Figure 13
shows the contours of plastic volumetric strains at the same displacement level. The results
from Figures 9 and 12 suggest that the choice of spatial discretization has a relatively minor
influence on shear band formation, primarily due to the adoption of the same nonlocal
length scale. Figure 14 compares the contour of the second-order work at uy = 10 mm for
the two simulations. In the subsequent sections, we investigate the impact of temperature
on shear banding in unsaturated porous media at elevated temperatures. Three scenarios
are considered: (i) elevated constant temperature (Scenario 1), (ii) increasing temperature
at constant suction (Scenario 2), and (iii) increasing temperature under decreasing suction
(Scenario 3).

Figure 11. Comparison of the loading curves on the top boundary from the simulations with
two spatial discretizations.

(a) (b)

Figure 12. Contours of the equivalent plastic shear strain on the deformed configuration at uy = 10 mm
from the simulations with (a) Grid 1 and (b) Grid 2.



Geosciences 2024, 14, 103 19 of 34

(a) (b)

Figure 13. Contours of the plastic volume strain on the deformed configuration at uy = 10 mm from the
simulations with (a) Grid 1 and (b) Grid 2.

(a) (b)

Figure 14. Contours of the second-order work on the deformed configuration at uy = 10 mm from
the simulations with (a) Grid 1 and (b) Grid 2.

4.2.1. Scenario 1: Elevated Constant Temperature

In this scenario, we explore the influence of temperature on shear banding un-
der constant suction conditions. To achieve this, we conduct numerical simulations at
three different temperatures, 25 ◦C, 50 ◦C, and 75 ◦C, all while maintaining a constant
matric suction of 25 kPa. All other conditions and parameters remain consistent with
the base simulation. The results of these simulations are presented in Figures 15–18.
Figure 15 compares the loading curves obtained from the three simulations. As shown in
Figure 15, the loading capacity of the specimen decreases at higher temperatures due to
the temperature-induced softening effect. Figure 16 illustrates the curves of deviator stress
versus vertical strain and the stress paths at the specimen center from the three simulations.
Regardless of the temperature, the stress paths at the same point demonstrate that the
soil element reaches the same critical state line under loading. It is noteworthy that the
critical state line remains consistent due to the adoption of the Bishop-type effective stress
model for unsaturated soils. Figure 17 displays the contours of equivalent plastic shear
strain at uy = 10 mm from the three simulations, while Figure 18 presents the contours of
plastic volumetric strain at the same displacement level. Figure 19 compares the contours
of the second-order work at uy = 10 mm for the three simulations. These results imply
that temperature affects the magnitudes of dilation and shear strain within the specimen
under the same mechanical load. Specifically, higher temperatures lead to more significant
dilation and shear strain compared to lower temperatures.
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In the subsequent section, we further investigate the impact of varying temperatures
on the formation of shear banding.

Figure 15. Comparing of the loading curves from the simulations at three temperatures.

(a) (b)

Figure 16. (a) Plot of deviatoric stress versus vertical strain, and (b) the stress paths in the p− q space
for the material point at the specimen center.

(a) (c)(b)

Figure 17. Contours of the equivalent plastic shear strain on the deformed configuration: (a) θ = 25 ◦C,
(b) θ = 50 ◦C, and (c) θ = 75 ◦C.



Geosciences 2024, 14, 103 21 of 34

(a) (c)(b)

Figure 18. Contours of the plastic volume strain on the deformed configuration at uy = 10 mm:
(a) θ = 25 ◦C, (b) θ = 50 ◦C, and (c) θ = 75 ◦C.

(a) (c)(b)

Figure 19. Contours of the second-order work on the deformed configuration at uy = 10 mm:
(a) θ = 25 ◦C, (b) θ = 50 ◦C, and (c) θ = 75 ◦C.

4.2.2. Scenario 2: Increasing Temperature

In this scenario, we examine the effect of temperature increase on the development
of shear banding in unsaturated soils after the peak load. Specifically, we consider three
different temperature changes applied after reaching the peak load of the base simulation,
∆θ = 25 ◦C, 25 ◦C, and 50 ◦C, all while maintaining a constant suction level of 25 kPa.
It is important to note that the simulation with ∆θ = 25 ◦C is included for comparison
purposes. All other conditions and input parameters remain consistent with the base
simulation. The results are presented in Figures 20–23. Figure 20 provides a comparison of
the loading curves obtained from the three simulations. As depicted in Figure 20, increasing
the temperature after the peak load has a notable effect on the post-localization regime
in unsaturated soils, with a larger temperature increase resulting in a more significant
reduction in strength. Figure 21 displays the curves of deviatoric stress versus vertical
strain and the stress paths at the specimen center from the three simulations. The results in
Figures 20 and 21 reinforce the influence of temperature increase on the post-localization
behavior in unsaturated soils, where a larger temperature increase leads to a more pro-
nounced strength reduction. Figure 22 presents the contours of equivalent plastic shear
strain at uy = 10 mm from the three simulations, while Figure 23 plots the contours of
plastic volumetric strain at the same displacement level. Figure 24 compares the contours of
the second-order work at uy = 10 mm for the three simulations. These results, as shown in
Figures 22 and 23, illustrate that a larger temperature increase, under the same conditions,
results in more significant dilation and shear strain within the shear banding zone. In the
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subsequent section, we delve into the combined effect of varying temperature and suction
on shear banding.

Figure 20. Comparison of the loading curves from the simulations with three temperature changes.

(a) (b)

Figure 21. (a) Plot of the deviatoric stress versus the vertical strain, and (b) the stress paths in the
p− q space at the specimen center under three temperature changes.

(a) (c)(b)

Figure 22. Contours of the equivalent plastic shear strain on the deformed configuration at uy = 10 mm:
(a) ∆θ = 0 ◦C, (b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.



Geosciences 2024, 14, 103 23 of 34

(a) (c)(b)

Figure 23. Contours of the plastic volume strain on the deformed configuration at uy = 10 mm:
(a) ∆θ = 0 ◦C, (b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.

(a) (c)(b)

Figure 24. Contours of the second-order work on the deformed configuration at uy = 10 mm:
(a) ∆θ = 0 ◦C, (b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.

4.2.3. Scenario 3: Increasing Temperature and Decreasing Suction

In this scenario, we investigate the combined effect of increasing temperature and
decreasing suction on shear banding instability in unsaturated soils. To achieve this, we
consider three different temperature changes, ∆θ = 0 ◦C, 25 ◦C, and 50 ◦C, while con-
currently decreasing suction from 25 kPa to 10 kPa. All other parameters and loading
conditions are kept consistent with the base simulation, and the results are presented in
Figures 25–28. Figure 25 displays the loading curves obtained from the three simulations.
As shown in Figure 25, there is a notable reduction in loading capacity under the combined
effect of temperature increase and suction reduction during the post-localization regime of
unsaturated soils. Figure 26 presents the curves of deviatoric stress versus vertical strain
and the stress paths from the three simulations. These results, depicted in Figure 26, further
emphasize the impact of the coupling effect, showing that the soil reaches a critical state
line at the same point for all three temperature–suction scenarios. Figure 27 compares
the contours of equivalent plastic shear strain at uy = 10 mm in the deformed configu-
ration for the three simulations. Meanwhile, Figure 28 compares the contours of plastic
volumetric strain at uy = 10 mm. Figure 29 presents the contours of the second-order
work at uy = 10 mm for the three simulations. The results in Figures 25–28 illustrate a
significant reduction in loading capacity under the coupling effect of temperature increase
and suction reduction during the post-localization regime in unsaturated soils. In summary,
these findings highlight the complex interplay between temperature and suction on shear
banding instability in unsaturated soils.
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Figure 25. Comparison of the loading curves on the top boundary for Scenario 3.

(a) (b)

Figure 26. (a) Plot of the deviatoric stress versus the vertical strain, and (b) the stress loading path in
the p versus q space at the specimen center for Scenario 3.

(a) (c)(b)

Figure 27. Contours of the equivalent plastic shear strain on the deformed configuration at
uy = 10 mm for Scenario 3: (a) ∆θ = 0 ◦C, (b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.
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(a) (c)(b)

Figure 28. Contours of the plastic volume strain on the deformed configuration at uy = 10 mm for
Scenario 3: (a) ∆θ = 0 ◦C, (b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.

(a) (c)(b)

Figure 29. Contours of the second-order work on the deformed configuration at uy = 10 mm for
Scenario 3: (a) ∆θ = 0 ◦C, (b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.

4.3. Cracking in an Elastic Unsaturated Disk Specimen

In this example, we focus on cracking phenomena in unsaturated elastic porous
materials. The modeling of cracking is based on an energy-based bond breakage criterion.
Specifically, we simulate cracking in a disk specimen. Figure 30 illustrates the disk specimen
and its loading scheme. The disk has a radius of 200 mm and a thickness of 5 mm. As
depicted in Figure 30, vertical displacement loads are applied to the top and bottom plates
of the disk. The displacement load on each plate is set at u = 2.0 mm, with a loading rate
of u̇ = 200 mm/s. The short-range forces within the PPM framework are employed to
simulate the contact between the disk and the rigid plates [23]. The matric suction present
in the specimen is s = 10 kPa. For this example, we adopt the thermo-elastic material model.
The material parameters include: solid phase density ρs = 2000 kg/m3, bulk modulus
K = 83 MPa, shear modulus µ = 18 MPa, and an elastic thermal expansion coefficient
βθ = 6.67× 10−4/◦C. In the base simulation scenario, the temperature is increased by
50 ◦C. The energy-based bond breakage criterion is implemented with a critical energy
release rate, Gcr = 20 N/m. The specimen discretization involves 10,408 points arranged in
a uniform grid, with a spacing of ∆x = 2.5 mm. The horizon size is set to δ = 4∆x. The
simulation uses a time increment of ∆t = 1× 10−5 s.
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x

y

Figure 30. Model setup for the disk specimen under compression.

First, we present the results of the base simulation conducted under ambient tem-
perature conditions. Figure 31 displays the loading curve applied to the top plate of the
specimen, revealing a peak load of approximately 0.2 kN. To illustrate the progression
of crack formation within the specimen, we provide contours of displacements at three
distinct loading stages. Figure 32 depicts the vertical displacement contours on the de-
formed specimen at these stages, with a uniform magnification factor of 5 applied to
all contours in this example. Similarly, Figure 33 presents the horizontal displacement
contours under the same conditions. Analysis of the results shown in Figures 32 and 33
indicates the initiation of a crack at the specimen’s center, which then extends towards the
top and bottom of the disk. Notably, there is a discontinuity in the x-direction displacement
along the vertical center line, whereas the vertical displacement remains continuous along the
horizontal center line. This observation aligns with the expectations set by classical Brazil-
ian testing, suggesting that the crack results from the discontinuous deformation in the x
direction, as further evidenced by the deformed configurations depicted in Figures 32 and 33.
Furthermore, Figure 34 illustrates the vertical stress contours (σyy) on the deformed speci-
men at the three stages, highlighting the maximum compression stress occurring under
the plate. Figure 35 focuses on the contours of horizontal stress (σxx), elucidating that
the specimen experiences tension in the x direction, with the crack process zone around
the crack tip being under horizontal tension and vertical compression. Figure 36 shows
the contours of the damage parameter at the same three loading stages. It is noted that
the damage variable is a post-processing variable (see Equation (41)). The contour in
Figure 36a represents the initial damage zone (in the sense of the damage parameter) in the
disk specimen under compression. For the crack pattern, it would be more accurate to refer
to the contour of displacement (e.g., Figure 33). The results from Figures 34–36 collectively
indicate that the crack formation is primarily due to tensile stress perpendicular to the
specimen’s vertical center line.
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Figure 31. Loading curve on the top plate.

(a) (c)(b)

mm

Figure 32. Contours of the vertical displacement (mm) superimposed on the deformed configuration
at (a) u = 1.1 mm, (b) u = 1.25 mm, and (c) u = 1.4 mm.

(a) (c)(b)

mm

Figure 33. Contours of the horizontal displacement (mm) on the deformed configuration at (a) u = 1.1 mm,
(b) u = 1.25 mm, and (c) u = 1.4 mm.

(a) (c)(b)

kPa

Figure 34. Contours of stress σyy (kPa) on the deformed configuration at (a) u = 1.1 mm, (b) u = 1.25 mm,
and (c) u = 1.4 mm.
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(a) (c)(b)

kPa

Figure 35. Contours of stress σxx (kPa) on the deformed configuration at (a) u = 1.1 mm, (b) u = 1.25 mm,
and (c) u = 1.4 mm.

(a) (c)(b)

Figure 36. Contours of the damage parameter on the deformed configuration at (a) u = 1.1 mm,
(b) u = 1.25 mm, and (c) u = 1.4 mm.

Second, in the base simulation, we also investigate the influence of spatial discretiza-
tion on the results by employing two distinct spatial discretization schemes. The first
scheme utilizes 6224 points with a grid spacing (∆x) of 3.3 mm (referred to as grid 1),
while the second scheme involves 10,408 points with ∆x = 2.5 mm (referred to as grid 2).
Both schemes adopt the same horizon size, δ = 10 mm. The comparative results of these
two discretization schemes are presented in Figures 37–42. Figure 37 displays the verti-
cal loading curves obtained from simulations using both spatial discretization schemes.
For a detailed comparison, we present contours of displacement and stress at a uniform
displacement load (u = 1.25 mm) for both simulations as follows. Figure 38 compares the
vertical displacement contours. Figure 39 contrasts the horizontal displacement contours.
Figure 40 showcases the differences in vertical stress contours (σyy). Figure 41 illustrates the
comparison in horizontal stress contours (σxx). Figure 42 compares the damage parameter
contours at the same displacement load for both discretization schemes. The results from
these comparisons suggest that, given a consistent horizon size, the choice of spatial dis-
cretization scheme exerts a minimal influence on the crack formation in the disk specimen
under vertical compression loading.

Figure 37. Comparison of the loading curve from the simulations with two spatial discretization schemes.
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mm

(b)(a)

Figure 38. Contours of the vertical displacement (mm) on the deformed configuration at u = 1.25 mm:
(a) Grid 1 and (b) Grid 2.

(b)(a)

mm

Figure 39. Contours of the horizontal displacement (mm) on the deformed configuration at u = 1.25 mm:
(a) Grid 1 and (b) Grid 2.

(b)(a)

kPa

Figure 40. Contours of stress σyy (kPa) on the deformed configuration at u = 1.25 mm: (a) Grid 1 and
(b) Grid 2.

(b)(a)

kPa

Figure 41. Contours of stress σxx (kPa) on the deformed configuration at u = 1.25 mm: (a) Grid 1 and
(b) Grid 2.
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(b)(a)

Figure 42. Contours of the damage parameter on the deformed configuration at u = 1.25 mm:
(a) Grid 1 and (b) Grid 2.

Third, we investigate the effect of temperature variations on the cracking behavior
in unsaturated elastic porous materials, specifically, at ∆θ = 0 ◦C, 25 ◦C, and 50 ◦C.
The other simulation parameters, including loading and spatial discretization, remain
identical to those in the base simulation. The outcomes of this investigation are show-
cased in Figures 43–48. Figure 43 compares the loading curves from the simulations
conducted at the three different temperatures, revealing a decrease in the peak load of
the disk specimen with increasing temperature. The contours of vertical displacement at
a uniform displacement load (u = 1.25 mm) across the three simulations are compared in
Figure 44, while Figure 45 does the same for horizontal displacement. These figures
illustrate that the rise in temperature increases the horizontal displacement, leading to
a longer crack, whereas the vertical displacement is comparatively less influenced by
temperature changes under the same loading conditions. The contours of vertical and
horizontal stresses (σyy and σxx , respectively) at u = 1.25 mm for the three simulations
are presented in Figures 46 and 47. Finally, Figure 48 compares the contours of the dam-
age variable at the same displacement load. Collectively, the results from Figures 46–48
indicate that the combination of temperature increase and mechanical loading signif-
icantly impacts the timing and progression of crack initiation and development in
the specimen.

Figure 43. Comparison of the loading curves from the simulation with ∆θ = 0 ◦C, ∆θ = 25 ◦C, and
∆θ = 50 ◦C.
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(a) (c)(b)

mm

Figure 44. Contours of the vertical displacement (mm) on the deformed configuration at u = 1.25 mm:
(a) ∆θ = 0 ◦C, (b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.

(a) (c)(b)

mm

Figure 45. Contours of the horizontal displacement (mm) on the deformed configuration at u = 1.25 mm:
(a) ∆θ = 0 ◦C, (b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.

(a) (c)(b)

kPa

Figure 46. Contours of stress σyy (kPa) on the deformed configuration at u = 1.25 mm: (a) ∆θ = 0 ◦C,
(b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.

(a) (c)(b)

kPa

Figure 47. Contours of stress σxx (kPa) on the deformed configuration at u = 1.25 mm: (a) ∆θ = 0 ◦C,
(b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.
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(a) (c)(b)

Figure 48. Contours of the damage variable on the deformed configuration at u = 1.25 mm:
(a) ∆θ = 0 ◦C, (b) ∆θ = 25 ◦C, and (c) ∆θ = 50 ◦C.

4.4. Discussions

In this part, we briefly discuss the limitations of the present study and future work.
The present study focused on the impact of temperature on shear banding formation and
mode I cracking in unsaturated soils. In the nonlocal THM framework, the temperature
variation in the specimen is assumed to be uniform, and the temperature change caused by
the plastic deformation is not considered, which should be resolved in a future study. The
numerical simulations in this study should be further validated against physical testing
results on shear banding and cracking in thermal unsaturated soils. The improvement
of the present work includes implementing a fully coupled THM PPM model following
the authors’ previous work on the fully coupled hydro–mechanical PPM model, which is
an ongoing effort. It is worth noting that the proposed THM PPM model can be applied
to modeling failure in frozen soils by implementing a constitutive model for frozen soils
through the stabilized multiphase correspondence principle.

5. Summary

In this article, our investigation centers on shear banding and cracking in unsaturated
porous media under non-isothermal conditions, utilizing a THM framework within PPM.
A significant advancement of this study is the development of a nonlocal THM constitu-
tive model specifically designed for unsaturated porous media in the PPM context. We
have implemented the THM paradigm using an explicit Lagrangian meshfree algorithm,
complemented by a return mapping algorithm for the numerical implementation of the
nonlocal THM constitutive model. We have evaluated the performance and applicability
of our proposed THM meshfree paradigm through a series of numerical examples. The
results from these examples demonstrate the effectiveness and reliability of our THM PPM
approach in accurately modeling the complex behaviors of shear banding and cracking in
unsaturated porous media under varying thermal conditions. Importantly, our findings
provide deep insights into the sophisticated relationship between temperature changes and
the development of shear bands and cracks in such porous media under THM loading,
highlighting the nuanced interdependencies in these phenomena.
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