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Simple Summary: Exploring species’ potential suitable habitats is crucial for endangered species
conservation, in particular under future global climate change conditions. The Wushan salamander
(Liua shihi) is an endangered salamander in China, which is a national protected species (level II).
Based on the distribution records of L. shihi, the main objective of this study was to predict the
distribution of suitable habitats under current and future climate conditions for L. shihi. Our results
showed that precipitation, cloud density, vegetation type, and ultraviolet radiation were the main
environmental factors affecting the distribution of suitable habitat for L. shihi. At present, the suitable
habitats are mainly distributed in the Daba Mountain area. Under the future climate conditions,
the area of suitable habitats increased, which mainly occurred in central Guizhou Province. These
findings provided important information for the conservation of L. shihi.

Abstract: Climate change has been considered to pose critical threats for wildlife. During the
past decade, species distribution models were widely used to assess the effects of climate change
on the distribution of species’ suitable habitats. Among all the vertebrates, amphibians are most
vulnerable to climate change. This is especially true for salamanders, which possess some specific
traits such as cutaneous respiration and low vagility. The Wushan salamander (Liua shihi) is a
threatened and protected salamander in China, with its wild population decreasing continuously.
The main objective of this study was to predict the distribution of suitable habitat for L. shihi using
the ENMeval parameter-optimized MaxEnt model under current and future climate conditions. Our
results showed that precipitation, cloud density, vegetation type, and ultraviolet radiation were the
main environmental factors affecting the distribution of L. shihi. Currently, the suitable habitats
for L. shihi are mainly concentrated in the Daba Mountains, including northeastern Chongqing and
western Hubei Provinces. Under the future climate conditions, the area of suitable habitats increased,
which mainly occurred in central Guizhou Province. This study provided important information for
the conservation of L. shihi. Future studies can incorporate more species distribution models to better
understand the effects of climate change on the distribution of L. shihi.

Keywords: amphibian; maximum entropy; ENMeval; environmental factor; distribution pattern

1. Introduction

Understanding the effects of human-induced perturbations on biological diversity
is one of the central concerns in modern ecology [1]. During the past hundreds of years,
human activities have dramatically changed the environment on Earth, in particular the
climate, which has strongly affected animals in recent decades [2]. Based on previous
studies, over 27% of mammals, 13% of birds, 21% of reptiles, 41% of amphibians, and
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37%of fishes are threatened due to climate change and other human disturbances [3]. For
instance, although the Atlantic Forest network of protected areas (PAs) supports 18% of the
amphibians in South America, the number of amphibian species in PAs is declining under
changing climate conditions [4]. The reduction of precipitation will lead to a decrease in
the reproductive success rate of shovel-nosed frog (Hemisus marmoratus) and natterjack
toad (Bufo calamita), resulting in a decrease in their populations [5]. Climate change can
also cause the alteration of amphibian phylogenetic composition and niche. For instance,
most of the amphibians in PAs contracted their ranges and such responses are clade
specific. Basal amphibian clades (e.g., Gymnophiona and Pipidae) were positively affected
by climate change, whereas late-divergent clades (e.g., Cycloramphidae, Centrolenidae,
Eleutherodactylidae, Microhylidae) were severely impacted [6]. From the wet season to the
dry season, the vertical niche space of amphibians in Sierra Llorona has a clear downward
trend in response to natural levels of climate variability [7]. In recent decades, increasing
studies also indicated that climate change can lead to the shift of animals’ geographical
distribution. For instance, Nottingham et al. showed that the suitable habitats of Del
Norte salamander (Plethodon elongatus) and Siskiyou Mountains salamander (P. stormi)
will shift to the coast and out of the valley with a move north into the mountains under
future climate change conditions in the Pacific Northwest of the United States [8]. Duan
et al. demonstrated that amphibians in China would lose 20% of their original distribution
ranges on average, and over 90% of species’ suitable habitats will shift to the north when
compared with their current distribution range. As a consequence, climate change can lead
to significant changes in the spatial pattern of amphibian diversity in China [9].

Among all the vertebrates, amphibians are particularly sensitive to climate change
as they cannot regulate their body temperature actively [10]. This is especially true for
salamanders, which possess some specific traits such as cutaneous respiration and low
vagility [11]. However, studies focused on the effects of climate change on salamanders are
still limited (but see [12,13]). The Wushan salamander (Liua shihi) is a national protected
(level II) salamander in China, which was classified as Near Threatened in the Red List of
China. Although this species was listed as Least Concern (LC) in the International Union
for Conservation of Nature (IUCN), the wild populations have declined continuously in
recent years [14,15]. Based on the records, this species is widely distributed in montane
streams of eastern Sichuan, Chongqing, western Hubei, and southern Shaanxi Provinces,
with the elevation ranging from 900 to 2350 m [16], and it mainly feeds on aquatic insects
and algae [17]. In recent years, the wild population of L. shihi has been decreasing continu-
ously due to human-induced perturbations [18]. Therefore, it is urgent to understand the
distribution of suitable habitats of this species, as well as how the suitable habitat will shift
under future climate change conditions.

Species distribution models (SDMs) have been proved to be effective to predict the
effects of climate change on species distribution patterns [19]. Based on species distribution
points and environmental data, these models predict where species likely inhabit using
approaches such as statistical and machine learning analyses [20]. Accordingly, SDMs are
involved in several models such as Bioclim, random forest, maximum entropy, regression
tree, and genetic algorithm [21,22]. Although none of the above models can be regarded
as the best one, the maximum entropy model (MaxEnt) was considered to exhibit higher
prediction accuracy, have a stronger ability to integrate multiple environmental variables,
and provide more intuitive results [23,24]. Therefore, MaxEnt is increasingly used in
ecological studies to investigate the responses of species distribution patterns to climate
change. Using this model, Zhao et al. demonstrated that climate change can induce
different effects on the evolutionarily significant units (ESUs) of Chinese giant salamander
(Andrias davidianus) in China, with the northern ESU exhibiting more severe habitat loss [25].
Moreover, Zank et al. used MaxEnt to investigate the potential effects of climate change
on 24 species of red-bellied toads (Melanophryniscus) in South America, and they found
that 40% of the species may lose over 50% of their potential distribution area by 2080 [26].
However, most studies only used the default parameters provided by the MaxEnt model,
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despite the fact that MaxEnt is sensitive to sampling bias and prone to overfitting when
using default parameters [23,27]. Therefore, it is essential to optimize the parameters of the
MaxEnt before conducting the model analyses [27].

The main objective of the present study was to assess the effects of climate change
on the distribution of suitable habitats for L. shihi. Specifically, we (1) investigated the
distribution of suitable habitats for L. shihi under current climate conditions; (2) analyzed
the key environmental factors affecting the distribution patterns of L. shihi; (3) revealed
the shift of suitable habitats (i.e., the distribution patterns and the area) caused by climate
change in the future. Based on previous studies (e.g., [28,29]), we predicted that the
suitable habitats of L. shihi are mainly distributed in southwestern China at present. We
also predicted that climate change will lead to the expansion of suitable habitats from the
current distribution area to the southwest. In addition, the area of suitable habitats would
decrease due to climate change.

2. Materials and Methods
2.1. Study Area

L. shihi is an endemic amphibian species in China. Although its distribution records
were concentrated in the Daba Mountains, its potential suitable habitats could be widely
distributed in China. Therefore, and in order to better protect this endangered species, we
considered the whole of China as the study area.

2.2. Species Occurrence Data

The occurrence data of L. shihi in this study were obtained from published literature
(Table S1), the Global Biodiversity Information Facility website (http://www.gbif.org,
accessed on 28 May 2023) (Table S2), and our original field survey (Table S3). In total,
89 occurrence records of L. shihi were collected. To avoid spatial autocorrelation, redundant
records within 5 × 5 km grids were excluded using SDMToolbox (version 2.4; [30]). Finally,
a total of 53 occurrence records were obtained for further analyses (Figure 1).
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2.3. Environmental Variables

Environmental variables were selected based on previous studies demonstrating that
they may potentially affect the distribution of amphibians (e.g., [13,31,32]). These vari-
ables can be divided into five categories, including bioclimate, meteorology, vegetation,
human disturbance, and topography. In total, we obtained 31 environmental variable
raster layers (Table 1). Specifically, bioclimatic data were composed of 19 climate fac-
tors at a resolution of 2.5 min, which were derived from the WorldClim climate database
(http://www.worldclim.org/, accessed on 26 May 2023) [33]. Meteorological factors were
composed of ultraviolet-B (UV-B) radiation and cloud cover, which were derived from
EarthEnv (https://www.earthenv.org/cloud, accessed on 3 June 2023) and Helmholtz
Centre for Environmental Research (https://www.ufz.de/gluv, accessed on 3 June 2023),
respectively. Vegetation data contained the percentages of tree coverage and vegetation
types, which were from Global Map Data Archives (https://globalmaps.github.io/ptc.
html, accessed on 3 June 2023) and Resources and Environmental Science Data Center
(https://www.resdc.cn/, accessed on 3 June 2023), respectively. Human disturbance data
were represented by the population density, which were downloaded from the Socioeco-
nomic Data and Applications Centre (https://sedac.ciesin.columbia.edu/, accessed on
5 June 2023). Finally, topographic data included elevation, slope, and aspect at a resolution
of 90 m, which were obtained from the Geospatial Data Cloud (https://www.gscloud.cn/,
accessed on 5 June 2023). We unified their coordinate system as GCS_WGS_1984 and
resampled them to obtain a consistent spatial resolution.

Table 1. Contribution and permutation importance of environmental variables in MaxEnt models.

Code Envirnonmental Variable Percentage Contribution (%) Permutation Importance (%)

Bio14 Precipitation of driest month 29.7 6.9
Mseason Cloud cover seasonal concentration 28.6 6.6

Veg Vegetation type 15.8 0.5
UVB4 Mean UV-B of lowest month 5.6 13.2
Slope Slope 5 5
Bio2 Mean diurnal range 3.5 0.6

Mspatial Cloud cover spatial variability 3.5 1.6
Bio9 Mean temperature of driest quarter 3.1 14
Bio15 Precipitation seasonality 1.6 22
Bio4 Temperature seasonality 1.4 2.5

UVB3 Mean UV-B of highest month 1.2 25.6
Pdensity Density of population 0.4 1.5

UVB1 Annual mean UV-B 0.4 0
Asp Aspect 0 0.1

Plantcover Density of trees on the ground 0 0

In order to reduce the influence of spatial correlation, environmental variables with
high correlation but low contribution rate were removed before the model analyses [34].
Correlation analysis was performed using SPSS26.0 software. A Shapiro test was conducted
using R software version 4.3.2 (https://www.r-project.org/, accessed on 7 November 2023)
before the correlation analysis to identify the distribution of each variable [35]. Variables
with a normal distribution were tested by Pearson correlations, and others were tested
using Spearman correlations [36]. For the contribution rate, we performed a pre-simulation
test in MaxEnt 3.4.4 with the distribution data of L. shihi and the 31 environmental variables.
The contribution rate of the variables was tested using the jackknife test [37]. After that,
variables with too high correlations (|PCCs| ≥ 0.8; Figure 2) but a low contribution rate
(<1%) were removed [38], and the rest of the variables were used for secondary simulation.
Based on our results, 15 environmental variables were finally selected for constructing the
final models, including five for bioclimate, five for meteorology, two for vegetation, one for
human disturbance, and three for topography (Table 1).

http://www.worldclim.org/
https://www.earthenv.org/cloud
https://www.ufz.de/gluv
https://globalmaps.github.io/ptc.html
https://globalmaps.github.io/ptc.html
https://www.resdc.cn/
https://sedac.ciesin.columbia.edu/
https://www.gscloud.cn/
https://www.r-project.org/
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Figure 2. Correlation matrix between environmental variables. Bio1–19 are bioclimatic variables
obtained from WorldClim website. Asp: aspect; Ele: elevation; Slope: slope; Pdensity: density of
population; Mmean: mean annual cloud cover; Mseason: cloud cover seasonal concentration; Mspa-
tial: cloud cover spatial variability; UVB1: annual mean UV-B; UVB3: mean UV-B of highest month;
UVB4: mean UV-B of lowest month; Plantcover: density of trees on the ground; Veg: vegetation type.
Positive correlations are displayed in blue and negative correlations in a red color. The color intensity
and the size of the circle are proportional to the correlation coefficients.

The future climate data were obtained from the BCC-CSM2-MR climate system
model [39]. These data contained two shared socioeconomic pathways (SSPs), SSP126
and SSP585, which are scenarios of global economic, demographic, and energy devel-
opment in the future [40]. Specifically, SSP126 represents the combined effects of low
vulnerability, mitigating stress, and radiative forcing. SSP585 represents the future socioe-
conomic path of high-emission, high-carbon (coal, oil, and natural gas) use [41]. In this
study, two future climate scenarios (SSP126, SSP585) of three periods (2021–2040, 2041–2060,
2061–2080) were selected for projecting the future distribution area of L. shihi.

2.4. Parameter Optimization and Model Construction

There are five feature types in MaxEnt models, including linear (L), quadratic (Q),
hinge (H), product (P), and threshold (T). For parameter adjustment, we computed the AICc
values of the modeling parameters’ regularization multiplier (RM) and feature combination
(FC; the combination of the above five feature types) in R software using the ENMeval
package [42]. In this study, we considered the range of RMs from 0.5 to 4.0 and selected
six FC types (i.e., L, LQ, H, LQH, LQHP, and LQHPT). Then, we used the parameters
corresponding to the minimum information criterion AICc value to construct the species
distribution models [27].

The distribution data, environmental variables, and the optimized model parameters
were input into MaxEnt3.4.4 software (New York, NY, USA, https://biodiversityinformatics.
amnh.org/open_source/maxent/, accessed on 17 May 2023). The importance of environ-
mental variables to the distribution of L. shihi was evaluated according to the relative
contributions of environmental variables and the results of the jackknife test [40]. Twenty-

https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
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five percent of the distribution data were randomly selected as the test set, while the rest
were considered as the training set. The maximum number of background points was
10,000. A total of 10 runs were set for model construction, and the replicated run type was
cross-validation.

We used the receiver operating characteristic (ROC) curve and the area under the ROC
curve (AUC) to evaluate the accuracy of the model. The range of the AUC values was
0–1. A larger value indicates higher model accuracy, as well as higher credibility of the
model. Models can be considered as having high prediction accuracy when the AUC value
is greater than 0.8, and then the prediction results can be adopted [43]. An AUC value
greater than 0.9 indicates that the prediction accuracy of the model is extremely high [23].

2.5. Parameter Optimization and Model Construction

We imported the average value of MaxEnt output results into ArcGIS 10.8 software
and used a conversion tool to convert layers from asc format to raster data. The habitat
suitability degree was divided into four levels, including high suitability area, moderate
suitability area, low suitability area, and unsuitable area by natural breaks (Jenks) [44].
Finally, we calculated the area and proportion of suitable areas for each level. Moreover,
we analyzed the change trend from current to future scenarios.

3. Results
3.1. Model Optimization and Accuracy Evaluation

For the current distribution models, the ∆AICc exhibited the lowest value when fea-
ture combination (FC) = LQHP and regulation multiplier (RM) = 2.5, indicating that the
model was optimal with these parameters (Figure 3). This best model showed that the
AUC value of the working curve of the subjects was 0.992 ± 0.004 (mean ± standard devia-
tion), indicating the extremely high accuracy of the model prediction, thus the overfitting
phenomenon could be effectively avoided (Figure 4).
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In terms of the future distribution models, the optimal parameters were FC = LQPH
and RM = 2 for the SSP585 (2021–2040) scenario, while FC = LQ and RM = 0.5 for the rest
of the scenarios. After applying the above parameters in MaxEnt to construct models, the
results showed that the AUC values of the working curve of the subjects were all > 0.9.

3.2. The Importance of Environmental Variables

For the MaxEnt models constructed under the current climate scenario, the top five
environmental variables accounted for 84.7% of the cumulative contribution, including pre-
cipitation of the driest month (Bio14, 29.7%), cloud cover seasonal concentration (Mseason,
28.6%), vegetation type (Veg, 15.8%), mean UV-B of the lowest month (UVB4, 5.6%), and
slope (5%; Table 1). In terms of the permutation importance (the extent to which the model
depends on the variable; [45]), the top five environmental variables were mean UV-B of the
highest month (UVB3, 25.6%), precipitation seasonality (Bio15, 22%), mean temperature
of the driest quarter (Bio9, 14%), mean UV-B of the lowest month (UVB4, 13.2%), and
precipitation of the driest month (Bio14, 6.9%). For the jackknife test (Figure 5), the test
gain value was 3.7 when considering all the environmental variables. When considering
the variables individually, precipitation of the driest month (Bio14), vegetation type (Veg),
precipitation seasonality (Bio15), cloud cover seasonal concentration (Mseason), and mean
UV-B of the lowest month (UVB4) were the top five variables that exhibited the highest test
gain values.
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3.3. Current Potential Suitable Habitats for L. shihi

Based on the results of MaxEnt models (Figure 6, Table 2), the potential suitable
habitat for L. shihi was widely distributed in southwestern China, including Chongqing,
Hubei, Sichuan, Shaanxi, Hunan, and Guizhou Provinces. In total, the suitable distribu-
tion area under current climate conditions for L. shihi was 45.61 × 104 km2. Specifically,
the high-suitability region was mainly concentrated in the Daba Mountains and Shen-
nongjia National Park, which are located at the junction of Chongqing, Hubei, and Shaanxi
Provinces. In addition, there were a small number of high-suitability regions scattered
in central Sichuan Province. The size of the high-suitability area was 6.51 × 104 km2,
accounting for 14.3% of the total suitable habitat. The moderate-suitability region included
the eastern part of Sichuan, southern Shaanxi, western Hubei, and eastern Chongqing
Provinces, showing a ring shape, and the area was 9.77 × 104 km2, accounting for 21.4% of
the total suitable habitats. The low-suitability region was wrapped around the periphery of
the moderate- and high-suitability areas, showing a strip shape. Moreover, the area was
29.31 × 104 km2, accounting for 64.3% of the total suitable habitats.
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3.4. Future Distribution Patterns of the Suitable Habitats for L. shihi

In the 2021–2040 period under SSP126, the high-suitability area increased to 8.89 × 104 km2,
which was mainly contributed by the expansion in central Hubei Province and the junction
of Chongqing and Guizhou Provinces. However, the high-suitability habitats in central
Sichuan Province disappeared. The area of low-suitability habitats also decreased (244 km2),
associated with the loss in central Sichuan Province. In the 2041–2060 period under SSP126,
the total area of suitable habitats increased to 62.31 × 104 km2. Specifically, more high-
suitability habitats occurred in Guizhou Province, despite the concentrated area in the Daba
Mountains decreasing. The moderate-suitability habitats in central Sichuan Province disap-
peared, while there was no obvious change for low-suitability regions. In the 2061–2080
period under SSP126, a continuous decrease in high-suitability region was observed in
the Daba Mountains, with the area being about 8.14 × 104 km2. The moderate-suitability
region in Guizhou Province was lost, while the low-suitability region can be only observed
in central and south China (e.g., Henan, Hubei, and Guizhou Provinces; Figure 7, Table 2).
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In the 2021–2040 period under SSP585, the high-suitability area increased to 8.16 × 104 km2,
which was mainly contributed by the expansion in the middle and north of Hubei Province.
The moderate-suitability area expanded to the south, mainly located in the east of Chongqing
Province and the north of Guizhou Province. The area of low-suitability habitats decreased
(2.5 × 104 km2), associated with the loss in the junction of Chongqing and Guizhou
Provinces. In the 2041–2060 period under SSP585, the total area of suitable habitats in-
creased to 53.50 × 104 km2. Specifically, the high-suitability area expanded to Guizhou
Province. The moderate-suitability area in the south of Henan Province expanded to
16.26 × 104 km2, while the area of low-suitability habitats decreased (0.53 × 104 km2).
In the 2061–2080 period under SSP585, the highly suitable areas in the Daba Mountains
were more concentrated. There was no obvious shift in the distribution pattern of the
low-suitability area (Figure 7, Table 2).
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4. Discussion

In the present study, we used optimized MaxEnt models to predict the distribution
patterns of suitable habitats for L. shihi in China under current and future climate conditions.
Based on the high AUC values, our models can be considered to have high accuracy in
prediction [46]. Many previous studies only used the default parameters when conducting
MaxEnt models (e.g., [47,48]). However, the default parameters will lead to over-fitting and
high omission rates of the model. The “ENMeval” package developed by Muscarella et al.
based on the R language has been widely used for optimizing the regularization multiplier
(RM) and feature combination (FC) in the MaxEnt model to balance the complexity and
avoid those defects [42]. Recently, increasing numbers of researchers have argued that Max-
Ent models should be optimized before conducting predictions, as the default parameters
may cause some bias [27,49]. Our results supported this claim as we found that the types
of FC and the values of RM could change in different models. However, more theoretical
work and field work are still needed to verify the effectiveness of parameter optimization
in MaxEnt models.

As ectothermic animals, amphibians’ growth and distribution are strongly affected by
external environments, in particular the climate conditions [28,29]. This is especially true
for salamanders, which are more sensitive to the change in climatic factors [13]. Among all
the climatic variables, precipitation of the driest month was the most important one that
determined the distribution of potential suitable habitats for L. shihi. Based on previous
studies [17], the breeding period for this species is between March and April, associated
with the dry season in the Daba Mountains. Therefore, sufficient precipitation can provide
suitable spawning sites for L. shihi in montane streams, and permanent streams were
critical for them to complete the life cycle [50]. High concentration of cloud cover, woody
plant coverage, and low UV-B also were the main environmental variables that affect
the distribution of suitable habitats for L. shihi. This is consistent with previous studies
showing that ultraviolet light can cause oxidative stress, DNA damage, and egg death in
salamanders [51,52]. Since an increase in ultraviolet rays may also lead to dramatic habitat
reduction and connectivity fragmentation in other amphibian species that live in montane
streams (e.g., spiny-bellied frog: Quasipaa boulengeri; [31]), low UV-B could be an important
factor driving the survival and distribution of aquatic amphibians. In the present study, it
was found that high cloud density and forest coverage can effectively reduce the damage
of ultraviolet rays to L. shihi [53], supporting the survival and distribution of this species.
In addition, the influence of slope cannot be ignored, which was associated with the water
flow rate and sunshine angle of the habitat, and salamanders usually preferred to select
places with low water flow rate and sufficient light to grow and reproduce [54,55].

Our results showed that the high-suitability habitat for L. shihi was concentrated in
the junction of Chongqing, Shaanxi, and Hebei Provinces, suggesting that this species may
prefer some specific ecological conditions in this area [56]. Therefore, this region should be
paid more attention for the protection of this species. For protected animals, a concentrated
distribution pattern means they may be more easily threatened by climate change, and
regional natural disasters and disease transmission will put the entire population at risk
of extinction [57]. Interestingly, there were no distribution points recorded in some high-
suitability regions (e.g., central Sichuan and central Chongqing Provinces), indicating that
further field investigations can be carried out in these areas. In addition, a small number
of existing distribution points were located in low-suitability or even non-suitable areas,
suggesting that these populations should be paid more attention.

In the future, the total area of the suitable habitats for L. shihi will increase, although
the main spatial distribution patterns did not change dramatically. This may be due to
the unique climatic conditions (cool and humid all year round) in the Daba Mountains
and Shennongjia National Park, which are climate transition regions between subtropical
and northern warm temperate zones [58,59]. In two periods (2021–2040 and 2061–2080),
the area of the suitable habitats under SSP126 was smaller than that of SSP585. This
shows that the high-emission and high-carbon use scenario (SSP585) may cause an increase
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in the area of suitable habitat for L. shihi, which is similar to the finding of Wider et al.
showing that the suitable range of the blue-spotted salamander (Ambystoma laterale) and
the red-backed salamander (P. cinereus) increases with the increase in greenhouse gas
concentration [60]. From the time point of view, the suitable area of L. shihi in the future is
larger than the current results, and the high-suitability area under the SSP585 scenario will
gradually increase with time. This increase may be the cumulative effect of climate change.
This is contrary to previous studies showing that the area of suitable habitats of some
other salamanders (e.g., leprous false brook salamander: Pseudoeurycea leprosa, streamside
salamander: A. barbouri, and Cheat Mountain salamander: P. nettingi) will significantly
decrease in the future [45,61]. We speculated that under this scenario, climate change has
just reached the suitable conditions for L. shihi in some areas. It is worth noting that in the
next three periods, the distribution range will be more concentrated. It indicates that the
concentrated areas may have more important protection significance, as this region should
be the refuge for L. shihi under future climate change.

5. Conclusions

In conclusion, the present study predicted the potential suitable habitats for L. shihi
using a MaxEnt model with optimized parameters under current and future climate change
scenarios for three time periods (SSP126 and SSP585). Our results indicated that precipita-
tion of the driest month (Bio14), cloud cover seasonal concentration (Mseason), vegetation
type (Veg), mean UV-B of the lowest month (UVB4), and slope are important environ-
mental variables that have a great impact on the habitat suitability. The suitable habitats
under the current situation are mainly distributed at the junction of Chongqing, Shaanxi,
and Hubei Provinces. Under future climatic conditions, the total suitable area increased.
The new suitable habitats were concentrated in the central part of Guizhou and Hubei
Provinces. However, suitable habitats located in the central part of Sichuan and Chongqing
Provinces were lost. The results of this study can help us better understand the distribution
of L. shihi and can provide important information for determining the suitable areas of this
species in China. Future studies can incorporate more species distribution models to better
understand the effects of climate change on the distribution of suitable habitats for L. shihi.
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