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Abstract: This paper investigates decentralized adaptive event-triggered fault-tolerant control for
interconnected nonlinear delay systems with actuator failures. The actuator failures suffered include
loss of effectiveness and bias faults. A control scheme based on the K-filter is proposed, which
effectively compensates for the effects of unknown actuator failures. A hyperbolic tangent function
and neural network are introduced to approximate the unknown interconnection function and
nonlinear delay function. By introducing the dynamic surface control method, the “explosion of
complexity” issue is addressed. Furthermore, our proposed controller can ensure that all states of
the corresponding closed-loop system are semi-globally uniformly ultimately bounded and that
the tracking error can converge to a small neighborhood of zero. Meanwhile, Zeno behavior can
be effectively avoided. Finally, the validity of the proposed control scheme is verified using a
simulation example.

Keywords: decentralized adaptive control; backstepping technique; fault-tolerant control; event-
triggered control; nonlinear delay system

1. Introduction

In recent years, adaptive control for nonlinear systems has been widely studied. Be-
cause neural networks (NNs) and fuzzy logic systems (FLSs) have strong approximation
ability, they are used to approximate unknown nonlinear functions. As typical nonlinear
systems, interconnected nonlinear systems are popular because of their broad application.
Interconnected nonlinear systems have nonlinear and uncertain characteristics, which lead
to difficulties in controller design. To address these problems, a decentralized control
structure has been proposed, which naturally reduces the computational burden associated
with centralized control. Hence, some researchers have proposed some adaptive decen-
tralized control methods for interconnected nonlinear systems [1,2]. In [3], an adaptive
decentralized control method for interconnected nonlinear systems with unmodeled dy-
namics was proposed. The adaptive fuzzy decentralized output-feedback control problem
for switched interconnected nonlinear systems was first investigated in [4]. A decentralized
backstepping control method for interconnected systems with non-triangular structural
uncertainties was investigated in [5]. In practice, time-varying delay characteristics are
common, significantly impacting the stability and performance of the system. The tradi-
tional linear theory cannot describe and deal with these delay characteristics. To address
this issue, an adaptive decentralized control method based on NNs for interconnected
nonlinear systems with time delays was proposed in [6]. The decentralized output-feedback
control problem for interconnected nonlinear systems with input delays and saturation
was studied in [7].

The occurrence of actuator failures is common in modern industrial control systems,
which affects the stability of the system. Consequently, it is of great theoretical and practical
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significance to study fault-tolerant control (FTC) of nonlinear systems [8,9]. In recent years,
many effective FTC methods have been developed to address the above-mentioned prob-
lems. In [10], an adaptive fuzzy fault-tolerant control method was proposed for the cascade
chemical reactor system. In [11,12], adaptive FTC methods were developed for a class of
single-input single-output (SISO) nonlinear systems. In the existing literature [13–16], the
focus has gradually shifted from SISO nonlinear systems to multi-input multiple-output
(MIMO) nonlinear systems with the same actuator failures mentioned in [11,12]. It can be
seen that the above works are based on continuous control methods to address the control
problem of nonlinear systems with actuator failures, including loss of effectiveness and bias
faults. However, few researchers have addressed the control problem of interconnected
nonlinear delay systems with such actuator failures using the discrete control method.

In recent years, event-triggered control has become a research hotspot. Compared with
the continuous control method, event-triggered control can save limited communication
bandwidth while ensuring system performance. As a result, event-triggered control has
been extensively studied. In [17], the adaptive event-triggered control problem for a
class of uncertain nonlinear systems was considered, in which the assumption of the
input-to-state stability is no longer needed. In [18], an adaptive NN event-triggered
control method for switched nonlinear systems was proposed, in which the restrictions
on nonlinear functions no longer need to be considered. In [19], the adaptive event-
triggered control problem for a more general nonlinear system was considered, considering
cases with unmodeled dynamics and nonlinear time delays. Furthermore, the authors
of [20] proposed an encoding–decoding mechanism that further saves communication
resources based on an event-triggered mechanism. As far as we know, event-triggered
control has good flexibility and responsiveness, helping to reduce wear and failure to a
certain extent. Nevertheless, constructing an event-triggered controller for interconnected
nonlinear systems with actuator faults remains a challenge. Therefore, this issue becomes
the second motivation for this study.

Based on the above discussion, this paper investigates the output-feedback adaptive
event-triggered tracking control problem for a class of uncertain nonlinear large-scale
interconnected systems with actuator failures and time-varying delays. Although the
above-mentioned articles have been well studied, addressing the coupling problem be-
tween the interconnection and time-varying delay components becomes important. More-
over, effectively saving communication resources and designing a decentralized adaptive
event-triggered fault-tolerant control scheme under the premise of ensuring system perfor-
mance is particularly important. The main contributions of this paper can be summarized
as follows:

1. Compared with the literature [13,14,21,22], a new fault-tolerant control strategy based
on the K-filter is proposed. The unmeasured states are well estimated, and the
actuator failures are compensated for. The interconnected nonlinear function and
nonlinear delay function are approximated by introducing a hyperbolic tangent
function and NNs.

2. A decentralized adaptive event-triggered controller is developed to ensure that all
closed-loop signals are bounded and that tracking errors can converge to a small neigh-
borhood of zero. Furthermore, by utilizing dynamic surface control and backstepping
technology, the “explosion of complexity” issue is addressed.

3. Compared with the continuous control method [4,5,7], our proposed event-triggered
control method can effectively reduce communication resources. It is proven through
theoretical analysis that the Zeno phenomenon is avoided.

This paper is organized as follows. Problem description and preliminaries are provided
in Section 2. In Section 3, the state observer, and the decentralized event-triggered controller
are designed, and the system stability is analyzed. In Section 4, simulation results are shown.
Conclusions are presented in Section 5.
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Notations: ℜ denotes the set of real numbers; ℜni denotes the ni-dimensional Eu-
clidean space; and ℜni×ni denotes the real ni × ni matrix space. E[·] is usually the symbol
used to denote the expected value or expected absolute value in mathematics.

2. Problem Description and Preliminaries

In this paper, we consider the following interconnected nonlinear delay systems with
actuator failures in the form of:

ẋi =Aixi + Ψi(yi)θi + Biui + hi(y1, . . . , yN , t)
+ fi

(
yi(t), yi(t − mi,1(t)), · · · , yi

(
t − mi,ni (t)

))
,

yi =xi,1, i = 1, . . . , N,

(1)

where Ai =

[
0 Ini−1
0 0

]
∈ ℜni×ni ; Bi = [0, · · · , 0, 1]T ∈ ℜni ; and xi =

[
xi,1, · · · , xi,ni

]T ∈

ℜni ; ui ∈ ℜ; and yi ∈ ℜ are the unmeasurable system states, control input with actuator
failure, and output of the i-th subsystem, respectively. θi ∈ ℜpi is an unknown parameter,
and Ψi(yi) =

[
Ψi,1(yi), · · · , Ψi,ni (yi)

]T ∈ ℜni×pi with Ψi,j(yi) ∈ ℜpi is known as the smooth

function vector. hi =
[
hi,1, · · · , hi,ni

]T ∈ ℜni is the unknown smooth nonlinear intercon-
nected function vector, where hi and hi,j represent hi(y1, · · · , yN , t) and hi,j(y1, · · · , yN , t),

respectively. fi =
[

fi,1, · · · , fi,ni

]T ∈ ℜni is the unknown smooth time-varying nonlin-
ear delay function vector, where fi,j represents fi,j

(
yi(t), yi

(
t − mi,j(t)

))
, and mi,j(t) is the

time-varying delay function. Here, 0 < mi,j < m̄i,j < ∞ and
∣∣ṁi,j

∣∣ < m∗
i,j < 1.

Actuator failures with loss of effectiveness and bias faults can be modeled as

ui = ℵivi + ui,h (2)

where ui is the output of the i-th local actuator; vi is our designed input; ℵi is the unknown
actuator efficiency factor satisfying 0 < ℵi < ℵi ≤ 1; and ui,h is the uncertain bounded
bias function.

Definition 1. Consider the following nonlinear system:

dZ(t) = f (Z(t))dt. (3)

The trajectory Z(t) of system (3) is said to be semi-globally uniformly ultimately bounded (SGUUB)
at the p-th moment if for some compact set Ω ∈ ℜn and any initial state Z0 = Z(t0), there exists a
constant ε > 0, and a time constant T = T(ε, Z0) such that E

[∣∣∣Z(t)P
∣∣∣] < ε for all t > t0 + T.

When p = 2, it is usually called SGUUB in the mean square.

Our control objective is to develop a decentralized adaptive event-triggered output-
feedback controller in the form of (67) for system (1) with actuator faults (2) such that all
states of the resulting closed-loop system are SGUUB and the tracking error can converge
to a small neighborhood of zero.

To achieve the objective, some assumptions and lemmas are given below.

Assumption 1. The desired trajectories yi,r and ẏi,r are available and bounded for i = 1, · · · , ni.

Assumption 2 ([23]). For i = 1, · · · , N, j = 1, · · · , ni, the interconnected nonlinear function hi,j
satisfies

∣∣hi,j
∣∣2 ≤

N

∑
γ=1

(
yγhi,j,γ(yγ)

)2, (4)

where hi,j,γ(yγ) ≥ 0 denotes the unknown smooth function.
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Assumption 3 ([24]). The nonlinear functions fi,j(·) satisfy the following inequalities for j =
1, · · · , ni ∣∣ fi,j

(
yi(t), yi

(
t − mi,j(t)

))∣∣2 ≤ ai,j,1 f̄i,j,1(yi(t)) + ai,j,2 f̄i,j,2
(
yi
(
t − mi,j(t)

))
, (5)

where ai,j,1 and ai,j,2 are positive constants. f̄i,j,p(·) represents the uncertain smooth function, where
f̄i,j,p(0) = 0 for i = 1, · · · , N, j = 1, · · · , ni, p = 1, 2. Additionally, f̄i,j,p(·) satisfies

f̄i,j,p(ỹi(t) + yi,r(t)) ≤ ỹi(t) f ∗i,j,p(ỹi(t)) + ηi,j,p(yi,r(t)), (6)

where ỹi(t) and yi,r(t) are variables, f ∗i,j,p represents the uncertain functions, and ηi,j,p(yi,r(t))
represents the bounded functions for a bounded variable yi,r(t) with ηi,j,p(0) = 0.

Lemma 1 ([25]). There exists a constant ν > 0 and a variable λ ∈ ℜ such that

0 ≤ |λ| − λ tanh
(

λ

ν

)
≤ 0.2785ν. (7)

Lemma 2 ([26]). Define the set Sϖi = {λi||λi| < 0.2554ϖi}, i = 1, · · · , N. For λi /∈ Sϖi , the
inequality 1 − 16tanh2(λi/ϖi) ≤ 0 holds, where ϖi > 0 is a constant.

Lemma 3 ([27]). For the continuous function F(Z) on the compact set ΩZ, a radial basis function
neural network (NN) exists such that

F(Z) = (ϑ∗)TS(Z) + ε∗(Z), ∀Z ∈ ΩZ (8)

where ϑ∗ =
[
ϑ∗

1 , ϑ∗
2 , · · · , ϑ∗

N
]T is the ideal weight vector and S(Z) = [S1(Z), S2(Z), · · · , SN(Z)]

T,
with Si(Z) being the Gaussian function. The number of NN nodes is N > 1, and ε∗ is the bounded
approximation error with |ε∗| ≤ ε̄.

Lemma 4. For any constant χ > 0 and any variable x ∈ ℜ, the following inequality holds

0 ≤ |x| − x2√
x2 + χ2

≤ χ. (9)

3. Main Results

In this section, the main results are presented. First, a K-filter is constructed to estimate
the unmeasured states. Then, the intermediate design steps are given. Subsequently, a de-
centralized event-triggered controller is designed. Finally, the system stability is analyzed.

3.1. State Observer Design

To obtain the unmeasurable states, we design a K-filter utilizing the output signal yi
and control signal ui for the i-th subsystem

Λ̇i =AciΛi + Kiyi, (10)

Ξ̇i =AciΞi + Ψi(yi), (11)

ξ̇i =Aciξi + Bivi, (12)

where Ki =
[
ki,1, · · · , ki,ni

]T ∈ ℜni such that all the eigenvalues of Aci = Ai − KiET
1 are in

the open left-half plane; E1 = [1, 0, · · · , 0]T ∈ ℜni ; and vi is the same as vi in (2). Then, the
state estimate of the i-th subsystem for system (1) can be expressed as

x̂i = Λi + Ξiθi + ℵiξi. (13)
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Remark 1. On the one hand, the K-filter based on actuator failures is constructed to address
the coupling problem of unknown states and actuator effectiveness loss. On the other hand, the
K-filter updates the state estimates recursively, avoiding redundant calculations and improving
computational efficiency.

The observer error is defined as x̃i =
[
x̃i,1, · · · , x̃i,ni

]T
= xi − x̂i. Its derivative is

˙̃xi = Aci x̃i + Biui,h + hi + fi. (14)

For the error system, we consider the following Lyapunov function

Vi,0 = x̃T
i Pi x̃i, (15)

where Pi is a positive definite matrix such that AT
ciPi + Pi Aci = −Qi, with Qi being a

positive definite matrix to be determined in stability analysis.
Then, taking the time derivative of Vi,0 along (14), one has

V̇i,0 =x̃T
i

(
AT

ciPi + Pi Aci

)
x̃i + 2x̃T

i Pi(Biui,h + hi + fi). (16)

Using Young’s inequality, one can obtain the following equalities:

2x̃T
i PiBiui,h ≤∥Pi∥2|x̃i|2 + ū2

i,h, (17)

2x̃T
i Pihi ≤∥Pi∥2|x̃i|2 + ∥hi∥2, (18)

2x̃T
i Pi fi ≤∥Pi∥2|x̃i|2 + ∥ fi∥2. (19)

Substituting (17), (18), and (19) into (16) yields

V̇i,0 ≤− x̃T
i

(
Qi − 3∥Pi∥2

)
x̃i + ū2

i,h + ∥hi∥2 + ∥ fi∥2. (20)

3.2. Intermediate Design Steps

Let Λi,2, Ξi,2, ξi,2, and x̃i,2 denote the second entries of Λi, Ξi, ξi, and x̃i, respectively.
Based on the design procedure similar to [28], we have

ẏi = Λi,2+ΞT
i,2θi + ξi,2 + x̃i,2 + ΨT

i,1(yi)θi + hi,1 + fi,1, (21)

ξ̇i,j =ξi,j − ki,jξi,1, j = 2, · · · , ni − 1, (22)

ξ̇i,ni =vi − ki,ni ξi,1, (23)

where vi is the same as vi in (2).
Then, we formulate the following coordinate changes:

zi,1 =yi − yi,r, (24)

zi,j =ξi,j − ζi,j, j = 2, · · · , ni, (25)

where ζi,j(j = 2, · · · , ni) represents the output of the first-order low-pass filters. These
filters for i = 1, · · · , N, j = 1, · · · , ni − 1 are described as follows:

κi,j+1ζ̇i,j+1 = αi,j − ζi,j+1, ζi,j+1(0) = αi,j(0), (26)

where κi,j+1 is a design parameter.

Remark 2. In the backstepping control approach, the design of the control law involves the uti-
lization of states as virtual control signals. Each step of the design necessitates both the virtual
control signals and their corresponding derivatives. Theoretically, the calculation of the virtual
control signal derivatives is simple. However, it can be quite complicated and tedious in applications
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when n is greater than three because the control signal αi,ni will include the derivative of αi,ni−1,
the second derivative of αi,ni−2, and the third derivative of αi,ni−3, thereby causing the “explosion
of complexity” problem. To address this problem, a dynamic surface control method was proposed
in [29–31].

Define the difference between the virtual controller and the first-order low-pass filter
as follows:

Πi,j = ζi,j − αi,j−1. (27)

Remark 3. According to [32], the boundary layer errors ζi,j − αi,j−1 will converge asymptotically
to zero only if κi,j is very small. Thus, we should set κi,j to a small constant in the simulation
example. Additionally, the boundedness of ζi,j − αi,j−1 is guaranteed by introducing the boundary
layer error.

Concerning the unknown parameters, we introduce

βi,1 =
1
ℵi

, βi,2 = sup
{
ℵ2

i

}
, (28)

where β̂i,1 and β̂i,2 are the estimations of βi,1 and βi,2, respectively. β̃i,1 = βi,1 − β̂i,1 and
β̃i,2 = βi,2 − β̂i,2 are the corresponding estimation errors.

Step i, 1: Based on (21) and (24), one has

żi,1 = Λi,2 + ΞT
i,2θi + ΨT

i,1θi + x̃i,2 + ℵiξi,2 + hi,1 + fi,1 − ẏi,r, (29)

Construct the Lyapunov function Vi,1 as

Vi,1 = Vi,0 +
1
2

z2
i,1 +

1
2

Π2
i,2 +

1
2

θ̃T
i Γ−1

i θ̃i +
1
2

ϑ̃2
i +

ℵi
2

β̃2
i,1 +

1
2

β̃2
i,2, (30)

where θ̃i denotes the estimation of θi, with θ̂i = θi − θ̃i, and Γi > 0 is a design parameter.
The time derivative of Vi,1 can be obtained as follows:

V̇i,1 =V̇i,0 + zi,1(Λi,2 + ΩT
i θi + x̃i,2 + hi,1 + fi,1 + ℵi(zi,2 + Πi,2 + αi,1)− ẏi,r)

+ Πi,2Π̇i,2 − θ̃T
i Γ−1

i
˙̂θi − ϑ̃T

i
˙̂ϑi − ℵi β̃i,1

˙̂βi,1 − β̃i,2
˙̂βi,2

≤− x̃T
i

(
Qi − 3∥Pi∥2

)
x̃i + ū2

i,h + ∥hi∥2 + ∥ fi∥2 + zi,1(Λi,2 + ΩT
i θi + x̃i,2

+ hi,1 + fi,1 + ℵi(zi,2 + Πi,2 + αi,1)− ẏi,r) + Πi,2Π̇i,2 − θ̃T
i Γ−1

i
˙̂θi − ϑ̃T

i
˙̂ϑi

− ℵi β̃i,1
˙̂βi,1 − β̃i,2

˙̂βi,2, (31)

where Ωi = Ξi,2 + Ψi,1.
According to Young’s inequality and Assumption 2, one has

∥hi∥2 ≤
N

∑
γ=1

ni

∑
j=1

(yγhi,j,γ(yγ))
2 ≤ y2

i

N

∑
γ=1

ni

∑
j=1

(h̃i,j,γ(yi))
2, (32)

zi,1hi,1 ≤1
2

z2
i,1 +

1
2
∥hi,1∥2 ≤ 1

2
z2

i,1 +
1
2

N

∑
γ=1

(
yγhi,1,γ(yγ)

)2

≤1
2

z2
i,1 +

1
2

y2
i

N

∑
γ=1

(h̃i,1,γ(yi))
2, (33)

where h̃i,j,γ for j = 1, · · · , ni are smooth nonlinear functions.
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Then, one can have

V̇i,1 ≤− x̃T
i

(
Qi − 3∥Pi∥2

)
x̃i + ū2

i,h + ∥ fi∥2 +
1
2

z2
i,1 + Πi,2Π̇i,2 + zi,1(Λi,2 + ΩT

i θi

+ x̃i,2 + fi,1 + ℵi(zi,2 + Πi,2 + αi,1)− ẏi,r)− θ̃T
i Γ−1

i
˙̂θi + y2

i

N

∑
γ=1

ni

∑
j=1

(
h̃i,j,γ(yi)

)2

+
1
2

y2
i

N

∑
γ=1

(
h̃i,1,γ(yi)

)2 − ϑ̃T
i

˙̂ϑi − ℵi β̃i,1
˙̂βi,1 − β̃i,2

˙̂βi,2. (34)

Choose the Lyapunov candidate function as

Vi,τ =
3ai,1,2eλim̄i,1

2
(

1 − m∗
i,1

) ∫ t

t−mi,1(t)
ci,1(s)ds +

ni

∑
j=2

ai,j,2eλim̄i,j

1 − m∗
i,1

∫ t

t−mi,j(t)
ci,j(s)ds, (35)

where ci,j(s) = e−λi(t−s)zi,1(s) f ∗i,j,2(zi,1(s)) and λi is a design parameter, whose time deriva-
tive is

V̇i,τ ≤− λiVi,τ +
3ai,1,2eλim̄i,1

2
(

1 − m∗
i,1

) zi,1(t) f ∗i,1,2(zi,1(t))−
3
2

ai,1,2zi,1
(
tm
i,1
)

f ∗i,1,2
(
zi,1
(
tm
i,1
))

+
ni

∑
j=2

ai,j,2eλim̄i,j

1 − m∗
i,j

zi,1 f ∗i,j,2(zi,1(t))−
ni

∑
j=2

ai,j,2zi,1

(
tm
i,j

)
f ∗i,j,2

(
zi,1

(
tm
i,j

))
, (36)

where we define tm
i,j = t − mi,j(t).

Let Wi,1 = Vi,1 + V1τ . Then, the derivative of Wi,1 can be obtained as follows:

Ẇi,1 ≤− x̃T
i

(
Qi − 3∥Pi∥2

)
x̃i + ū2

i,h + ∥ fi∥2 +
1
2

z2
i,1 + Πi,2Π̇i,2 + zi,1(Λi,2 + ΩT

i θi

+ x̃i,2 + fi,1 + ℵi(zi,2 + Πi,2 + αi,1) +
16
zi,1

tanh2
(

zi,1

ϖi

)
Gi − ẏi,r)

+

(
1 − 16tanh2

(
zi,1

ϖi

))
Gi − θ̃T

i Γ−1
i

˙̂θi − ϑ̃T
i

˙̂ϑi − ℵi β̃i,1
˙̂βi,1 − β̃i,2

˙̂βi,2 − λiVi,τ

+
3ai,1,2eλim̄i,1

2
(

1 − m∗
i,1

) zi,1(t) f ∗i,1,2(zi,1(t))−
3
2

ai,1,2zi,1
(
tm
i,1
)

f ∗i,1,2
(
zi,1
(
tm
i,1
))

+
ni

∑
j=2

ai,j,2eλim̄i,j

1 − m∗
i,j

zi,1 f ∗i,j,2(zi,1(t))−
ni

∑
j=2

ai,j,2zi,1

(
tm
i,j

)
f ∗i,j,2

(
zi,1

(
tm
i,j

))
. (37)

where Gi =
1
2

N
∑

γ=1

(
yi h̃i,1,γ(yi)

)2
+

N
∑

γ=1

ni
∑

j=1

(
yi h̃i,j,γ(yi)

)2.

Next, the unknown nonlinear delay functions and interconnection terms in the Lya-
punov function Wi,1 are approximated using NNs.

According to Assumption 3 and Young’s inequality, one has
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zi,1 fi,1 ≤1
2

z2
i,1 +

1
2

f 2
i,1

≤1
2

z2
i,1 +

1
2

ai,1,1zi,1(t) f ∗i,1,1(zi,1(t)) +
1
2

ai,1,1ηi,1,1(yi,r(t))

+
1
2

ai,1,2ηi,1,2(yi,r(tm
i,1)) +

1
2

ai,1,2zi,1(tm
i,1) f ∗i,1,2(zi,1(tm

i,1)), (38)

∥ fi∥2 ≤
ni

∑
j=1

(ai,j,1zi,1(t) f ∗i,j,1(zi,1(t)) + ai,j,1ηi,j,1(yi,r(t))

+ ai,j,2zi,1(tm
i,j) f ∗i,j,2(zi,1(tm

i,j)) + ai,j,2ηi,j,2(yi,r(tm
i,j))). (39)

Let F(Zi) = 3
2 ai,1,1 f ∗i,1,1(zi,1(t)) +

3ai,1,2eλi m̄i,1

2(1−m∗
i,1)

f ∗i,1,2(zi,1(t)) + Σni
j=2

ai,j,2eλi m̄i,j

1−m∗
i,j

f ∗i,j,2(zi,1(t)) +

Σni
j=2ai,j,1 f ∗i,j,1(zi,1(t)) + 16

zi,1
tanh2(

zi,1
ϖi

))Gi. According to Lemma 3, we can obtain F(Zi) =

ϑT
i Si(Zi) + εi, where Zi = zi,1.

Remark 4. According to Assumptions 2 and 3, both the interconnected nonlinear function and the
time-vary nonlinear function can be represented by smooth functions about yi. Therefore, in this
paper, we choose to eliminate the influence of the interconnected nonlinear function and time-varying
nonlinear function in the first step related to yi and approximate the nonlinear function using NNs.

Using Young’s inequality, one has

zi,1 x̃i,2 ≤1
2

z2
i,1 +

1
2
∥xi∥2, (40)

ℵizi,1(zi,2 + Πi,2) ≤
3
2

βi,2z2
i,1 +

1
4

z2
i,2 +

1
2

Π2
i,2, (41)

zi,1F(Zi) ≤zi,1ϑT
i Si(Zi) +

1
2

z2
i,1 +

1
2

ε2
i . (42)

Construct the stabilizing function as follows:

αi,1 =−
zi,1 β̂2

i,1ᾱ2
i,1√

z2
i,1 β̂2

i,1ᾱ2
i,1 + χ2

i

, (43)

where χi is a positive design parameter. With the aid of Lemma 4, we obtain

ℵizi,1αi,1 =−
ℵiz2

i,1 β̂2
i,1ᾱ2

i,1√
z2

i,1 β̂2
i,1ᾱ2

i,1 + χ2
i

≤ −ℵizi,1 β̂i,1ᾱi,1 + ℵiχi. (44)

Choose the virtual control signal and adaptive laws as follows:

ᾱi,1 =di,1zi,1 + 2zi,1 + Λi,2 − ẏi,r + ΩT
i θ̂i +

3
2

β̂i,2zi,1 + ϑ̂T
i Si(Zi), (45)

˙̂θi =ΓiΩizi,1 − ςiΓi θ̂i, (46)
˙̂ϑi =− ϑ̂i + zi,1Si(Zi), (47)

˙̂βi,1 =zi,1ᾱi,1 − β̂i,1, (48)

˙̂βi,2 =
3
2

z2
i,1 − β̂i,2, (49)

where ςi > 0 is a design parameter.

Remark 5. The K-filter based on actuator failures is constructed, which draws attention to the
effect of actuator failures when constructing the i, 1-th virtual controller. This makes it difficult for
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us to construct a virtual controller. The stabilizing function and an adaptive law βi,1 are introduced
to address the problem of actuator failures.

The dynamics of the boundary layer error are given as follows:

Π̇i,2 = −Πi,2

κi,2
+ Mi,2, (50)

where Mi,2 is a positive design parameter.
Substituting (38)–(50) into (37), one has

Ẇi,1 ≤− x̃T
i (Qi − 3∥Pi∥2 − 1

2
)x̃i + ū2

i,h −
Π2

i,2

κi,2
+

1
2

Π2
i,2 + Mi,2Πi,2 − di,1z2

i,1 + ℵiχi

+ ςi θ̃
T
i θ̂i + ϑ̃T

i ϑ̂i + ℵi β̃i,1 β̂i,1 + β̃i,2 β̂i,2 − λiVi,τ +
1
2

ε2
i +

1
4

z2
i,2 +

3
2

ai,1,1ηi,1,1(yi,r(t))

+
3
2

ai,1,2ηi,1,2(yi,r(tm
i,1)) +

ni

∑
j=2

(ai,j,1ηi,j,1(yi,r(t)) + ai,j,2ηi,j,2(yi,r(tm
i,j)))

+ (1 − 16tanh2(
zi,1

ϖi
))Gi. (51)

Step i, j: Based on (22) and (25), one has

żi,j = zi,j+1 + Πi,j+1 + αi,j − ki,jξi,1 − ζ̇i,j. (52)

Construct the Lyapunov function Vi,j as follows:

Vi,j =
1
2

z2
i,j +

1
2

Π2
i,j+1, (53)

and in view of (52), differentiating Vi,j yields

V̇i,j =zi,j(zi,j+1 + Πi,j+1 + αi,j − ki,jξi,1 − ζ̇i,j) + Πi,j+1Π̇i,j+1, (54)

Choose the virtual control law and the dynamics of the boundary layer error as follows:

αi,j =− di,jzi,j − ci,jzi,j + ki,jξi,1 + ζ̇i,j, (55)

Π̇i,j+1 =−
Πi,j+1

κi,j+1
+ Mi,j+1. (56)

Substituting (55) and (56) into (54), one has

V̇i,j ≤− di,jz2
i,j − (ci,j − 1)z2

i,j +
1
2

z2
i,j+1 −

Π2
i,j+1

κi,j+1
+

1
2

Π2
i,j+1 + Mi,j+1Πi,j+1. (57)

Step i, ni: Based on (23) and (25), one has

żi,ni = vi − ki,ni ξi,1 − ζ̇i,ni , (58)

where vi is the same as vi in (2).
Construct the Lyapunov function Vi,ni as

Vi,ni =
1
2

z2
i,ni

+
1
2

Φ̃2
i , (59)

where Φ̃i = Φi − Φ̂i, with Φ̂i being the estimation of Φi = supt≥0

∣∣∣ τi,2(t)ϕi
1+τi,1(t)δi

∣∣∣.
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According to (58) and (59), differentiating Vi,ni yields

V̇i,ni = zi,ni (vi − ki,ni ξi,1 − ζ̇i,ni )− Φ̃i
˙̂Φi. (60)

Choose the virtual control law as follows:

αi,ni = −di,ni zi,ni − ci,ni zi,ni + ki,ni ξi,1 + ζ̇i,ni . (61)

Substituting (61) into (60), one has

V̇i,ni ≤− di,ni z
2
i,ni

− ci,ni z
2
i,ni

+ zi,ni (vi − αi,ni )

− Φ̃i
˙̂Φi. (62)

3.3. Event-Triggered Controller

In this section, an event-triggered controller is designed to stabilize interconnected
nonlinear delay systems with actuator failures. On the premise of maintaining system
performance, unnecessary communication resources are reduced.

The local actual control law and event-triggered mechanism are designed as follows:

vi(t) = ωi(ti,k), ∀t ∈ [ti,k, ti,k+1) (63)

ti,k+1 = inf
{

t > ti,k+1||ei(t)| ≥ δi|vi(t)|+ ϕi
}

, (64)

where ωi = ωi(t) is an intermediate continuous control law, which is given later;
ei(t) = ωi(t)− vi(t) denotes the measurement error; and δi(0 < δi < 1) and ϕi > 0 are
design parameters.

According to the above event-triggered mechanism, |ωi(t)− vi(t)| ≤ δi|vi(t)|+ ϕi
holds all the time. When τi,1(t) and τi,2(t) satisfy |τi,1(t)| ≤ 1 and |τi,2(t)| ≤ 1, respectively,
we obtain

vi(t) =
ωi(t)

1 + τi,1(t)δi
− τi,2(t)ϕi

1 + τi,1(t)δi
, (65)

with τi,1(t) and τi,2(t) satisfying{
τi,1(t) = τi,2(t) = τi(t), vi(t) ≥ 0,

τi,1(t) = τi(t), τi,2(t) = τi(t), vi(t) < 0,
(66)

where τi(t) is any number in [−1, 1].
The control protocol and adaptive law are designed as follows:

ωi(t) =− (1 + δi)

(
αi,ni tanh

(
zi,ni αi,ni

νi

)
+ Φ̂i tanh

(
zi,ni Φ̂i

νi

))
, (67)

˙̂Φi =
∣∣zi,ni

∣∣− Φ̂i. (68)

3.4. Stability Analysis and Avoidance of Zeno Behavior

For the stability analysis, we choose the total Lyapunov function V as V = ∑N
i=1(Wi,1 +

∑ni
j=2 Vi,j).

Theorem 1. Consider a closed-loop system consisting of interconnected nonlinear systems (1);
actuator failures (2); the K-filter (10)–(12); the adaptive controller designed in (45), (55), (61), and
(67); and the event-triggered mechanisms (63)–(64). Then, all the signals in the closed-loop system
are SGUUB, and the tracking error can converge to a small neighborhood of zero. Additionally,
Zeno behavior can be effectively avoided.
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Proof of Theorem 1. As |τi,1(t)| ≤ 1, then 1 − δi ≤ 1 + τi,1(t)δi ≤ 1 + δi and 1+δi
1+τi,1(t)δi

≥ 1.

Since zi,ni αi,ni tanh(
zi,ni

αi,ni
νi

) > 0 and zi,ni Φ̂i tanh(
zi,ni

Φ̂i
νi

) > 0, one has

zi,ni ωi(t)
1 + τi,1(t)δi

≤− zi,ni αi,ni tanh(
zi,ni αi,ni

νi
)− zi,ni Φ̂i tanh(

zi,ni Φ̂i

νi
). (69)

According to Lemma 1, the following inequality can be obtained:

zi,ni ωi(t)
1 + τi,1(t)

≤ −
∣∣zi,ni αi,ni

∣∣− ∣∣zi,ni

∣∣Φ̂i + 0.557νi, (70)

Substituting (65) and (70) into (62), we can obtain

V̇i,ni ≤− di,ni z
2
i,ni

− ci,ni z
2
i,ni

−
∣∣zi,ni αi,ni

∣∣− ∣∣zi,ni

∣∣Φ̂i −
zi,ni τi,2(t)ϕi

1 + τi,1(t)δi
− zi,ni αi,ni

− Φ̃i(
∣∣zi,ni

∣∣− Φ̂i) + 0.557νi

≤− di,ni z
2
i,ni

− ci,ni z
2
i,ni

+ Φ̃iΦ̂i + 0.557νi. (71)

According to (51), (57), and (71), differentiating V yields

V̇ ≤
N

∑
i=1

(−x̃T
i (Qi − 3∥Pi∥2 − 1

2
)x̃i + ū2

i,h −
ni

∑
j=2

(
Π2

i,j

κi,j
− 1

2
Π2

i,j − Mi,jΠi,j)−
ni

∑
j=1

di,jz2
i,j

+ ℵiχi + ςi θ̃
T
i θ̂i + ϑ̃T

i ϑ̂i + ℵi β̃i,1 β̂i,1 + β̃i,2 β̂i,2 + Φ̃iΦ̂i − λiVi,τ + 0.557νi +
1
2

ε̄2
i

− (ci,2 −
5
4
)z2

i,2 −
ni−1

∑
j=3

(ci,j −
3
2
)z2

i,j − (ci,ni −
1
2
)z2

i,ni
+

3
2

ai,1,1ηi,1,1(yi,r(t))

+
3
2

ai,1,2ηi,1,2(yi,r(tm
i,1)) +

ni

∑
j=2

(ai,j,1ηi,j,1(yi,r(t)) + ai,j,2ηi,j,2(yi,r(tm
i,j)))

+ (1 − 16tanh2(
zi,1

ϖi
))Gi). (72)

The following inequalities are established by choosing an appropriate positive definite
matrix Qi, κi,j, and ci,j for j = 2, · · · , ni

−x̃T
i (Qi − 3∥Pi∥2 − 1

2
)x̃i ≤− λmin(Qi − 3∥Pi∥2 − 1

2
)∥xi∥2

≤− µ̄i∥xi∥2, (73)

−(
Π2

i,j

κi,j
− 1

2
Π2

i,j − Mi,jΠi,j) ≤− (
1

κi,j
− 1)Π2

i,j +
1
2

M2
i,j

≤− li,jΠ2
i,j +

1
2

M2
i,j, (74)

where µ̄i > 0 and li,j > 0 are parameters, and ci,2 > 5
4 , ci,j >

3
2 , and ci,ni >

1
2 .

According to Lemma 2,
(

1 − 16tanh2
(

zi,1
ϖi

))
Gi ≤ 0 for zi,1 /∈ Sϖi ; For zi,1 ∈ Sϖi ,(

1 − 16tanh2
(

zi,1
ϖi

))
Gi ≤ Ῡ∗

i with Ῡ∗
i > 0 being a constant. In conclusion, for convenience,

(1 − 16tanh2(
zi,1
ϖi

))Gi ≤ Ῡi with Ῡi ≥ Ῡ∗
i ≥ 0 for zi,1 ∈ ℜ.
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Then, adopting Young’s inequalities yields

V̇ ≤
N

∑
i=1

(−µ̄i∥xi∥2 −
ni

∑
j=1

di,jz2
i,j −

ni

∑
j=2

li,jΠ2
i,j −

ςi
2

θ̃T
i θ̃i −

1
2

ϑ̃T
i ϑ̃i −

ℵi
2

β̃2
i,1 −

1
2

β̃2
i,2

− 1
2

Φ̃2
i − λiVi,τ + ∆i)

≤− cV + ∆̄, (75)

where ∆i = ū2
i,h +Σni

j=2M2
i,j +ℵiχi +

ςi
2 θ̂T

i θ̂i +
1
2 ϑ̂T

i ϑ̂i +
ℵi
2 β̂2

i,1 +
1
2 β̂2

i,2 +
1
2 Φ̂2

i +
1
2 ε̄2

i + 0.557νi +
3
2 ai,1,1ηi,1,1(yi,r(t))+ 3

2 ai,1,2ηi,1,2(yi,r(tm
i,1))+Σni

j=2(ai,j,1ηi,j,1(yi,r(t))+ ai,j,2ηi,j,2(yi,r(tm
i,j)))+ Ῡi,

c = min{µ̄i, di,j, li,j,
ςi
Γi

, λi, i = 1, · · · , N, j = 1, · · · , ni}, and ∆̄ = ∑N
i=1 ∆i. Therefore, follow-

ing a similar analysis to [21], all the closed-loop signals are SGUUB.
From (75), we obtain that V(t) ≤ e−ctV(0) + (∆̄/c)×

(
1 − e−ct). As a result, zi,j, θ̂i, ϑ̂i,

β̂i,1, and β̂i,2 are also bounded.
As zi,1 = yi − yi,r, zi,1 and yi,r is bounded, yi is bounded. Since Aci is Hurwitz, Λi and

Ξi are bounded. From the backstepping procedure, αi,j and ui are bounded. By following a
similar analysis to [33], system (1) is rephrased as

ẋi =Acixi + Ψi(yi)θi + Biui + hi(y1, · · · , yN , t) + Kiyi. (76)

Because yi and ui are bounded and Aci is Hurwitz, xi is bounded. As a result, all the
closed-loop signals are bounded.

Now, we show that the proposed controller can avoid Zeno behavior, i.e., for the i-th
subsystem, there exists a positive number t∗i such that {ti,k+1 − ti,k} ≥ t∗i (k ∈ ℜ+). Since
ei(t) = ωi(t)− vi(t), ∀t ∈ [ti,k, ti,k+1), one has

d
dt
|ei| =

d
dt
(ei ∗ ei)

1
2 = sign(ei)ėi ≤ |ωi|. (77)

From (61) and (67), ωi is differentiable, and ω̇i is a function consisting of all the bounded
closed-loop signals. Therefore, there exists a constant ℓi > 0 such that |ωi| ≤ ℓi. Since
ei(ti,k) = 0 and lim

t→ti,k+1
ei(t) = ϕi, it is obtained that the lower bound of t∗i must satisfy

t∗i ≥ ϕi
ℓi

. Therefore, Zeno behavior is avoided.

4. Simulation Example

In this section, a simulation example is provided to verify the theoretical result. We
consider interconnected nonlinear delay systems with actuator failures. The system model
is given by 

ẋ1,1 =x1,2 + Ψ1,1θ1 + h1,1 + f1,1,

ẋ1,2 =u1 + Ψ1,2θ1 + f1,2,

y1 =x1,1,

ẋ2,1 =x2,2 + Ψ2,1θ2 + h2,1 + f2,1,

ẋ2,2 =u2 + Ψ2,2θ2 + f2,2,

y2 =x2,1,

(78)

where θ1 and θ2 are unknown constants, but they are set as θ1 = 1 and θ2 = 1.
The nonlinear functions in (78) are given as Ψ1,1 = 0.2 sin(x2

1,1), Ψ1,2 = 0.15x2
1,1, Ψ2,1 =

0.2 cos(x2
2,1), Ψ2,2 = 0.15x2,1 sin(x2,1), h1,1 = 0.1 sin(x1,1) cos(x2,1), h2,1 = 0.2 sin(x2

1,1x2,1),
f1,1 = 0.3 sin(x2

1,1(t − m1,1(t))), f1,2 = 0.2x1,1(t − m1(t)) sin(x1,1x1,1(t − m1,2(t))), f2,1 =

0.15 cos(x2,1(t − m2,1(t))), and f2,2 = 0.2x2
2,1(t − m2,2(t)), where m1,1(t) = m1,2(t) =

m2,1(t) = m2,2(t) = 0.1(1 + sin(t)) are the time-varying delay functions.
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The initial values of the variables are given as x1,1 = 0.1, x1,2 = 0.2, x2,1 = 0.1, x2,2 =
0.2, θ̂1 = 1.2, θ̂2 = 1.2, [Λ1,1, Λ1,2, Λ2,1, Λ2,2] = [0, 0, 0, 0], [Ξ1,1, Ξ1,2, Ξ2,1, Ξ2,2] = [0, 0, 0, 0],
[ξ1,1, ξ1,2, ξ2,1, ξ2,2] = [0, 0, 0, 0], ϑ̂1 = ϑ̂2 = [0, · · · , 0]T , β̂1,1 = β̂1,2 = β̂2,1 = β̂2,2 = 1,
ζ1,2 = ζ2,2 = 0, and Φ̂1 = Φ̂2 = 0. Then, Si(Zi) = [µFi,1 , · · · , µFi,σ ]

T is the basis function
vector, with µFi,σ being the Gaussian function in the following form:

µFi,σ = e−0.25(Zi−5+σ)2
, σ = 1, · · · , 9, i = 1, 2, (79)

where σ is the center of the neural network. The desired trajectory signal of each subsystem
is chosen as yi,r = 2 sin(0.5t), i = 1, 2.

The design parameters are k1,1 = 20, k1,2 = 10, k2,1 = 17, k2,2 = 10, κ1,1 = 0.1,
κ2,1 = 0.1, d1,1 = 45, d1,2 = 45, d2,1 = 45, d2,2 = 45, ν1 = 1.2, ν2 = 1.5, ς1 = 2, ς2 = 2,
χ1 = 0.01, χ2 = 0.01, M1,2 = 1, and M2,2 = 1.

Actuator 1 with loss of effectiveness is described as u1(t) = 0.6v1(t), t > 7 s, and
actuator 2 with loss of effectiveness and bias faults is described as u2(t) = 0.8v2(t) + 0.5,
t > 12 s. Based on the above analysis, the verification results are given in Figures 1–5. The
output of the two subsystems is given in Figures 1 and 2. Figures 3 and 4 depict the input
and output signals of the two actuators. It is worth noting that the moment when the
actuator failure occurred is marked with ∗. The time intervals of the triggering events are
shown in Figure 5. Obviously, all the closed-loop signals are bounded and Zeno behavior
is avoided.

0 5 10 15 20 25
-4

-2

0

2

4

Figure 1. The output of the first subsystem.

0 5 10 15 20 25
-4

-2

0

2

4

Figure 2. The output of the second subsystem.
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Figure 3. Input and output signals of actuator 1.
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Figure 4. Input and output signals of actuator 2.
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0 5 10 15 20 25

Figure 5. Time intervals of triggering events.

5. Conclusions

In this paper, a decentralized observer-based event-triggered fault-tolerant control
scheme was derived for interconnected nonlinear delay systems. Our proposed event-
triggered controller ensures that all system states are SGUUB. The problem of the “explosion
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of complexity” is addressed by introducing first-order low-pass filters. The property of
hyperbolic tangent functions and the approximation capability of NNs are used to handle
interconnected nonlinear functions and time-varying delays. According to the simulation
example, the Zeno phenomenon is avoided. In the future, it would be interesting to study
dual-channel event-triggered control for interconnected nonlinear systems with actuator
failures and denial-of-service attacks.
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