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Abstract: Handling suspended loads in cluttered environments is critical due to the oscillations
arising while the load is traveling. Exploiting active control algorithms is often unviable in industrial
applications, due to the necessity of installing sensors on the load side, which is expensive and
often impractical due to technological limitations. In this light, this paper proposes a trajectory
planning method for underactuated, non-flat, non-minimum phase spatial gantry crane moving
in structured cluttered environments. The method relies on model inversion. First, the system
dynamics is partitioned into actuated and unactuated coordinates and then the load displacements
are described as a non-linear separable function of these. The unactuated dynamic is unstable; hence,
the displacement, velocity, and acceleration references are modified through the output redefinition
technique. Finally, platform trajectory is computed, and the desired displacements of the load are
obtained. The effectiveness of the proposed method is assessed through numerical and experimental
tests performed on a laboratory testbed composed by an Adept Quattro robot moving a pendulum.
The load is moved in a cluttered environment, and collisions are avoided while simultaneously
tracking the prescribed trajectory effectively.

Keywords: trajectory planning; underactuated systems; non-minimum phase systems; model inver-
sion; crane; cluttered environment; collision avoidance

1. Introduction

Cranes are widely employed devices for handling heavy-weight goods during manu-
facturing processes [1]. These devices consist of a platform moving along a linear, planar,
or spatial trajectory to transport a load which is connected to the platform through wires,
ropes, or chains. This architecture leads to a pendulum-like dynamic that is prone to
the onset of oscillations during the motion. Controlling oscillating loads is not a trivial
task. In particular, in the presence of structured cluttered environments with obstacles,
avoiding collisions is fundamental for safety reasons; moreover, in the meantime, achieving
adequate performances in terms of trajectory tracking and contouring is important to fulfill
the manufacturing requirements. Such a problem is often tackled through the adoption of
advanced motion planning algorithms to avoid the installation of additional sensors on the
load side, which are needed if feedback control is adopted. On the other hand, semi-active
and active control techniques are widely adopted due to their flexibility and robustness,
which is major with respect to open-loop methods (see, e.g., [2] and the references therein).

Motion planning methods for multibody systems, devoted to precise track a reference
trajectory, are often based on the inversion of the system dynamic model [3,4]. The solution
of such problem is not trivial in the case of underactuated systems, where the number
of a system’s degrees of freedom (DOFs) is greater than the number of independent
actuators [5]. In this scenario, the actuated coordinate trajectory should be computed to
achieve the desired displacements, which are reasonably referred to the load to satisfy a
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certain manufacturing task [6]. This problem has been mainly tackled by the researchers
using the servo constraint method [7,8], which introduces rheonomous active constraints
for the desired displacements.

Many underactuated systems are non-minimum phases for certain outputs of inter-
est [6,9]. Motion planning for these kinds of systems is even more challenging; indeed, the
system internal dynamics is unstable [10]. Hence, the model inversion yields a set of ODEs
that diverge during their numerical integrations [6,11]. This problem has been tackled in [11]
for flexible robotic arms. Lately, the servo constraint method has been applied in [12,13]
through the output redefinition technique, which refines the desired output to stabilize the
ODEs describing the system internal dynamics enabling their integration. It should be noted
that this method relies on a linearized combination of the output with respect to the actuated
and unactuated generalized coordinates. Output redefinition, integrated mechanical design
through a counter-weight mass and state control, has been used and compared in [14] to
control a parallel robot with flexible links. Recently, funnel control has been proposed in [15]
for non-minimum phase manipulators, and then it has been used in [16] together with the
servo-constraint method. A direct multiple shooting method has been proposed in [17] for
underactuated manipulators. Robustness requirements have been included in the literature
when dealing with the problem of trajectory tracking by relaxing some conditions related to
the exact attainment of the desired load trajectory (see, e.g., [18]).

Besides proposing methods for the trajectory tracking of underactuated systems, some
papers considered the issues related to handling loads by means of cranes in cluttered
environments. In particular, in [19], a method for the simultaneous path-tracking and load
swing damping in cranes moving in a workspace with obstacles has been proposed. A
hybrid approach [20] with both feedforward and feedback controllers has been proposed
for a cluttered work environment. A flatness-based method, for a crane moving in the
presence of obstacles, has been developed in [21]. The adoption of a cascade tracking
controller together with trajectory planning has been proposed in [22] for an environment
with obstacles. Recently, non-linear model predictive control has also been applied in [23]
to a gantry crane to avoid obstacles. The collision avoidance problem has also been tackled
in [24] for a double-pendulum moved through a linear platform.

The literature review highlights that the control of non-minimum phase underactuated
systems, in particular cranes, is an actual topic of both industrial and academic research
interest. In this light, this paper proposes a model inversion method to precisely track
the desired trajectory in an underactuated, non-flat, non-minimum phase gantry crane.
It should be noted that a remarkable feature of the proposed method is being capable of
handling position references of just differentiability class C2 in contrast to flatness-based
approaches, such as in [5,21]. Indeed, if the system is flat, these methods require high-order
polynomials that impose high actuation forces and speeds. Moreover, another important
feature of the proposed method is that it ensures finding a causal solution; hence, no
pre-actuation is required.

The proposed method relies on the partitioning of the system model into actuated
and unactuated coordinates; then, by exploiting the representation of the desired output
as a non-linear separable function of these coordinates, it can provide the system internal
dynamics. Since the system comprises a non-minimum phase, the internal dynamics
are stabilized through the output redefinition technique. Then, the trajectories of the
three actuated coordinates of the spatial crane are computed by defining a non-linear map
between the actuated and unactuated coordinates, which is again a strength of the proposed
method with respect to those proposed in the literature, which often rely on linearization.

The effectiveness of the method, together with its ease of implementation and its
low computational effort, is assessed through numerical simulations on the model of a
spatial gantry crane moving a suspended load. Then, experiments are carried out on
a laboratory testbed composed by an Adept Quattro robot, which mimics the actuated
platform, and a pendulum representing the suspended load. The system displacements
are collected through Vicon high-speed infrared cameras. The capability of achieving high
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performances with negligible tracking and contouring errors, also avoiding collisions in a
cluttered environment with obstacles, is demonstrated.

Besides providing a motion planning method which is effective and precise in trajec-
tory tracking, the main contributions of the proposed work are the following:

• A complex system, which is not common in the literature, is considered here. The
system features an additional degree of freedom with respect to the previous work of
the authors [9], and it allows us to impose an additional controlled output and hence
perform a spatial task.

• A comprehensive approach is proposed to handle the problem of tip control in the
presence of structured obstacles. The resulting method therefore covers the issue of
designing smooth reference trajectories and translates them into suitable commanded
trajectories for the actuated coordinates.

• The experimental application to some complex test cases—by exploiting an indus-
trial setup—is proposed, and experimental benchmarking against other methods is
carried out.

This paper is structured as follows: Section 2 proposes the mathematical model of the
system; Section 3 illustrates the proposed method; the numerical and experimental results
are provided in Section 4; and Section 5 outlines the conclusions.

2. Model of the System

Let us consider a spatial gantry crane moving a suspended load. The system is sketched
in Figure 1. The platform coordinates are denoted through vector rp =

[
xp yp zp

]T.
Two unactuated independent coordinates are adopted to represent the relative motion be-
tween the platform and the suspended load, and they are collected in vector θ =

[
θx θy

]T .
θx is the angle between the pendulum projection on the xz plane and the vertical z axis,
and θy is the angle measured from the xz plane, leading to the suspended load coordinate

vector rm =
[
xm ym zm

]T [25]:

rm =

xm
ym
zm

 =

xp
yp
zp

+ l

 sin(θx) cos
(
θy
)

sin
(
θy
)

− cos(θx) cos
(
θy
)
. (1)Actuators 2024, 13, x FOR PEER REVIEW 4 of 21 

 

 

 
Figure 1. Sketch of the spatial overhead crane with the suspended load. 

The system has 5 degrees of freedom (DOFs) that are collected into the vector with 

independent coordinates ( ) ( ) ( ) ( ) ( ) ( ) 5T

p p p x yt x t y t z t t tθ θ  ∈ q =  . 
Exploiting the Lagrange formalism and minimal coordinates representation, the non-

linear model of the system is obtained through Ordinary Differential Equations, which 
can be written in the following concise form: 

( ) ( ) ( ), ,= + +M Bq q h q q g q q u   . (2)

The mass matrix M(q) is 

( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2

2

0 0 c c s s

0 0 0 c

0 0 s s c s

c c 0 s s c 0

s s c c s 0

x x y x y

y y

z x y x y

x y x y y

x y y x y

M m ml ml

M m ml

M m ml ml

ml ml ml

ml ml ml ml

θ θ θ θ

θ

θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

 + −
 
 +
 
 = +
 
 
 
 − 

M q , (3)

where s( ) and c( ), respectively, denote the sine and cosine trigonometric functions. The 
crane platform masses are, respectively, Mx, My, and Mz; m is the suspended load mass. 
Vector h collects the centripetal terms, as follows: 

( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

2 2

2

2 2

2

2 2

s c 2 c s

s

, c c 2 s s

2 s c

s c

x y x y x y x y

y y

x y x y x y x y

x y y y

x y y

ml ml

ml

ml ml

ml

ml

θ θ θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ

θ θ θ

 + +
 
 
 
 = − + +
 
 
 
 − 

h q q

   



   

 



. (4)

The gravitational and damping forces are gathered in vector g, which is defined as 
follows: 

Figure 1. Sketch of the spatial overhead crane with the suspended load.
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The system has 5 degrees of freedom (DOFs) that are collected into the vector with
independent coordinates q(t) =

[
xp(t) yp(t) zp(t) θx(t) θy(t)

]T ∈ R5.
Exploiting the Lagrange formalism and minimal coordinates representation, the non-

linear model of the system is obtained through Ordinary Differential Equations, which can
be written in the following concise form:

M(q)
..
q = h

( .
q, q

)
+ g

( .
q, q

)
+ Bu. (2)

The mass matrix M(q) is

M(q) =



Mx + m 0 0 mlc(θx)c
(
θy
)

−mls(θx)s
(
θy
)

0 My + m 0 0 mlc
(
θy
)

0 0 Mz + m mls(θx)s
(
θy
)

mlc(θx)s
(
θy
)

mlc(θx)c
(
θy
)

0 mls(θx)s
(
θy
)

ml2c2(θy
)

0

−mls(θx)s
(
θy
)

mlc
(
θy
)

mlc(θx)s
(
θy
)

0 ml2

, (3)

where s( ) and c( ), respectively, denote the sine and cosine trigonometric functions. The
crane platform masses are, respectively, Mx, My, and Mz; m is the suspended load mass.
Vector h collects the centripetal terms, as follows:

h
( .
q, q

)
=



ml
(

.
θ

2
x +

.
θ

2
y

)
s(θx)c

(
θy
)
+ 2ml

.
θx

.
θyc(θx)s

(
θy
)

ml
.
θ

2
ys
(
θy
)

−ml
(

.
θ

2
x +

.
θ

2
y

)
c(θx)c

(
θy
)
+ 2ml

.
θx

.
θys(θx)s

(
θy
)

2ml2
.
θx

.
θys

(
θy
)
c
(
θy
)

−ml2
.
θ

2
xs
(
θy
)
c
(
θy
)


. (4)

The gravitational and damping forces are gathered in vector g, which is defined
as follows:

g
( .
q, q

)
=



−cx
.
xm

−cy
.
ym

(Mz + m)g − cz
.
zm

−mgls(θx)c
(
θy
)
− cθx

.
θx

−mglc(θx)s
(
θy
)
− cθy

.
θy


, (5)

where g represents gravity acceleration. Damping is modeled through the viscous
friction terms related to the crane platform (cx, cy, cz) and to the load (cθx, cθy).
Finally, three independent actuation forces are assumed, which are collected in vector
u(t) =

[
Fx(t) Fy(t) Fz(t)

]T .

The constant actuation matrix is B =

[
I3×3
03×2

]
with I3×3 being the 3 × 3 identity matrix

and 03×2 being the 3 × 2 null matrix. Then, rank(B) = 3, i.e., the system is underactuated
since the number of independent actuators is lower with respect to the number of DOFs [9].

3. The Proposed Trajectory Planning Method
3.1. Method Formulation

The goal of the proposed paper is to make the coordinates rm of the suspended load
track the desired position reference defined through the reference trajectory ηdes(t), thus
leading for the following trajectory design problem: compute rp(t) such that

rm(t)− ηdes(t) ≡ 0. (6)
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Equation (6) is often denoted as the servo-constraint [7,8,26].
Additionally, it is required that rp has no pre-actuation; therefore, just causal solutions

are wanted.
It should be noted that the task consists of precisely tracking both the spatial path and

the trajectory in time while avoiding uncontrolled oscillations of the suspended load.
The non-linear model in Equation (2) can be conveniently written in the following

concise, partitioned form:

[
MAA MAU(θ)

MT
AU(θ) MUU(θ)

][..
rp
..
θ

]
=

hA

( .
θ, θ

)
hU

( .
θ, θ

)
+

gA

( .
rp,

.
θ, θ

)
gU

( .
rp,

.
θ, θ

)
+

[
BA

0

]
u. (7)

Let us now consider just the second row of matrix Equation (7):

MT
AU(θ)

..
rp + MUU(θ)

..
θ = hU

( .
θ, θ

)
+ gU

( .
rp,

.
θ, θ

)
. (8)

Such ODEs represent the relative motion between the platform and the suspended
load, described through the angular coordinates θ; hence, it represents the dynamics
of the unactuated coordinates when excited by gravity forces and by the motion of the
actuated ones, rp. These equations are usually denoted as the second-order nonholonomic
constraint [27], which defines the feasible trajectories. Additionally, it is not integrable [27]
and hence cannot be brought back to an algebraic one.

Equation (8) can be transformed into the so-called internal dynamics by writing it as a
function of the unactuated coordinates θ and of the related reference ηdes (and their time
derivatives) by removing the dependence on the actuated coordinates. To this end, the
internal dynamics can be obtained by exploiting the formulation of the controlled output
as a separable function of rp and θ:

rm = rp + lf(θ), (9)

with

f(θ) =

 sin(θx) cos
(
θy
)

sin
(
θy
)

− cos(θx) cos
(
θy
)
 (10)

The servo-constraint in Equation (6) is therefore written as follows:

ηdes − rp − lf(θ) = 0. (11)

The derivatives of Equation (11) with respect to time yields the servo-constraints at a
velocity level of

.
η

des − .
rp − lJ

.
θ = 0 (12)

and at acceleration level of
..
η

des − ..
rp − lJ

..
θ− lα = 0 (13)

Matrix J is the Jacobian matrix:

J =

c(θx)c
(
θy
)

−s(θx)s
(
θy
)

0 c
(
θy
)

s(θx)c
(
θy
)

c(θx)s
(
θy
)
, (14)

while vector α collects the centripetal acceleration terms:
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α =


−s(θx)c

(
θy
)( .

θ
2
x +

.
θ

2
y

)
− 2c(θx)s

(
θy
) .
θx

.
θy

−s
(
θy
) .
θ

2
y

c(θx)c
(
θy
)( .

θ
2
x +

.
θ

2
y

)
− 2s(θx)s

(
θy
) .
θx

.
θy

. (15)

The substitution of Equation (13) in Equation (8) yields the exact formulation of the
internal dynamics, i.e., no linearization is required despite the non-linear relationship
between rp and θ:(

MUU − lMT
AUJ

) ..
θ− lMT

AUα − hU − gU = −MT
AU

..
η

des. (16)

The ODEs in Equation (16) can be solved through a numerical integration to com-
pute the trajectory of θ required for making load tracking the imposed reference while
satisfying the second-order nonholonomic constraints (i.e., those that are allowed by the
system dynamics).

Let θ̂,
.
θ̂, and

..
θ̂ denote such position, speed, and acceleration vectors solving Equation (16),

respectively. Then, the consistent trajectory of the actuated coordinates can be obtained by
inverting the servo-constraints in Equations (11)–(13) as follows:

r̂p = ηdes − f
(
θ̂
)

.
r̂p =

.
η

des − lJ
(
θ̂
) .
θ̂

..
r̂p =

..
η

des − lJ
(
θ̂
) ..
θ̂− lα

(
θ̂,

.
θ̂

) . (17)

As long as Equation (17) is solvable, these values are, in principle, the optimal trajectory
to be commanded to the crane platform to make the load track the desired output.

3.2. Analysis of the Internal Dynamics

For certain choices of the desired output, the system becomes a “non-minimum
phase” [9,14,16]. Controlling non-minimum phase systems is cumbersome since their
internal dynamics are unstable [28]; hence, they cannot be integrated since diverging
outputs are obtained.

A common approach to assess if the internal dynamics are unstable consists of the
analysis of zero dynamics [11], which are the internal dynamics where the output is
constrained to be zero for all the time. Hence, zero dynamics are obtained by setting
..
η

des
= 0 in Equation (17), i.e.,(

MUU − lMT
AUJ

) ..
θ− lMT

AUα − hU − gU = 0. (18)

Equation (18) is now independent from the reference trajectory; further, it can be lin-
earized with respect to a stable equilibrium point, such as θ =

.
θ = 0. Now, if the linearized

counterpart of Equation (18) has some eigenvalues lying on the right half of the complex
plane (i.e., their real part is positive), then the numerical integration of Equation (16) will
be unstable.

3.3. Redefinition of the Output

The internal dynamics’ stabilization goal is pursued in this paper through the “output
redefinition” strategy, as proposed by the authors in [9]. Output redefinition is performed
by modifying the original output into a fictious one to stabilize internal dynamics and
enable the numerical integration of Equation (16).
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In this light, in this paper, the length of the cable is redefined by imposing a different
length of the cable lr, where 0 < lr < l, in such a way that

γ =
lr

l
, with 0 < γ < 1. (19)

In turn, the redefined desired output η̃des and its time derivatives
.̃
η

des
and

.̃.
η

des
become

η̃des = rp + lrf(θ)
.̃
η

des
=

.
rp + lrJ

.
θ

.̃.
η

des
=

..
rp + lrJ

..
θ+ lrα

. (20)

The internal dynamics with the redefined output is simply inferred from Equation (18),
i.e., (

MUU − lrMT
AUJ

) ..
θ− lrMT

AUα − hU − gU = −MT
AU

.̃.
η

des
. (21)

Then, the stable ODE in Equation (21) can be numerically integrated with the numerical
methods proposed in the literature for multibody systems (see, e.g., [29]), providing θ̂,
.
θ̂,

..
θ̂, which can be substituted in Equation (17) with the redefined length lr to obtain the

command trajectory for the actuated coordinates.
In this paper, by linearizing Equation (21) and setting

..
η

des
= 0, the redefined zero

dynamics becomes[
ml(l − lr) 0

0 ml(l − lr)

]
..
θ+

[
cθx 0
0 cθy

]
.
θ+

[
mgl 0

0 mgl

]
θ = 0. (22)

Equation (22) highlights that with the original output, i.e., lr = l, zero dynamics’ mass
matrix is null, leading to two infinite value positive eigenvalues. Then, the system’s zero
dynamics are stabilized by redefining the output.

4. Method Assessment
4.1. Simulations and Experiments

The proposed method effectiveness is assessed through numerical simulations per-
formed in MATLAB-Simulink to track two spatial trajectories with the load, i.e., by setting
ηdes = rm. The values of the system parameters, employed in the proposed model-based
method to design the trajectories, are summarized in Table 1.

Table 1. System parameter values.

Parameter Unit Value

Mx, My, Mz [kg] 30, 30, 30
m [kg] 0.2235
l [m] 0.7354

cx, cy, cz [Ns/m] 0.5, 0.5, 0.5
cθx, cθy [Nms/rad] 0.5 × 10−3, 0.5 × 10−3

g [m/s2] 9.80665

The trajectories that will be considered are

• A spatial Archimedean spiral (Section 4.2).
• A complex path with obstacles (Section 4.3).

For all the tests that are proposed hereafter, the numerical integration is performed
using a Runge–Kutta ODE4 integration scheme with a step size equal to 1 ms.
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Moreover, the obtained trajectories are tested on a laboratory testbed composed by
an Adept Quattro parallel robot (Livermore, CA, USA) mimicking the platform and a
pendulum, which is the suspended load. The displacements of the robot and of the load
are recorded through Vicon Vantage V5 motion capture cameras (Yarnton, Oxford, UK)
with sample frequency set to 400 Hz. The experimental setup is shown in Figure 2.
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4.2. Archimedean Spiral: Results

In this test, the desired displacements for the suspended load are defined according to
an Archimedean spiral. The trajectory is defined through r(φ) = a + bφ, where the number
of revolutions is N = 5, a = 0.15 m is the initial radius, and b = a/N. The angle is φ ∈ [0; 2πN],
which varies according to a rest-to-rest 5th degree polynomial law of motion with a motion
time equal to 15 s and a 2 s rest time after the motion. The following equations hold for the
motion of the load mass in the x and y directions:{

xm(φ) = r(φ) cos(φ)

ym(φ) = r(φ) sin(φ)
. (23)

A rest-to-rest 5th degree polynomial law is also adopted to define the desired motion
in the z direction with ∆z = 0.3 m. The reference trajectory in the time domain for all the
coordinates is shown in Figure 3a; in the cartesian space, it is shown in Figure 3b.
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A rest-to-rest 5th degree polynomial law is also adopted to define the desired motion 
in the z direction with zΔ  = 0.3 m. The reference trajectory in the time domain for all the 
coordinates is shown in Figure 3a; in the cartesian space, it is shown in Figure 3b. 
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Figure 3. Archimedean spiral: (a) desired load displacements in the time domain; (b) desired load
trajectory in the space.

The proposed algorithm is applied to compute the trajectory of the actuated platform co-
ordinates, which are shown in Figure 4. As expected, the evolution of the actuated coordinates
is remarkably different with respect to the reference trajectory. Indeed, the motion planning
aims at compensating for the unactuated pendulum dynamics. Then, the obtained actuated
coordinate trajectory is applied to the model of the system, and the obtained load trajectory is
shown in Figure 4. It highlights that the load trajectory matches the desired reference. Hence,
the proposed algorithm is valid for tracking the desired spatial trajectory.
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The Adept Quattro robot platform is also commanded (in the experimental setup in
Figure 2) with the platform coordinates previously computed. The spatial displacements
of the robot, pendulum, and the desired trajectory are shown in Figure 5. Once again,
the results provide evidence that the desired motion is correctly achieved, corroborating
the effectiveness of the proposed method. Figure 6 shows a comparison of the simulated
and experimental results for both the platform and for the suspended load. Figure 6a
compares the actual platform trajectory and the planned one: differences are due to the robot
controller bandwidth and to the motion interpolation algorithm (which are implemented
in the native Adept controller). In addition, Figure 6b compares the trajectories of the
pendulum’s tip, whose motion is slightly perturbated by the mentioned uncertainty sources.
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An evaluation of the impact of model parameter’s uncertainty is performed through
numerical robustness. The effects of a variation of the model parameters with respect to
those adopted in the motion planning stage were considered by varying both the load mass
m and the load damping coefficients cθx, cθy (denoted for brevity cθ). In detail, the mass
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varied in the range of ±50% with respect to the nominal value and the damping of ±30%.
Then, the obtained load trajectory was computed in the system’s simulator while using the
nominal platform trajectory (i.e., the one planned by assuming nominal model parameters),
which was compared with the one obtained by assuming nominal model parameters. The
effect of such perturbation on the load tracking capability was computed by considering

∆s =
√

∆x2
m + ∆y2

m + ∆z2
m, (24)

with
∆xm = xpert

m − xnom
m

∆ym = ypert
m − ynom

m

∆zm = zpert
m − znom

m

(25)

Superscript “pert” denotes the load trajectory obtained by perturbing the load mass and
damping, while “nom” denotes the trajectory obtained by simulating the system with its
nominal parameters. Figure 7 shows the RMS value ∆sRMS, where it is possible to note
that ∆sRMS < 1.1 mm for all the perturbation sets, and this value is obtained for the largest
parameter variations (i.e., when the load mass increases by +50% and the load damping is
reduced to −30%).
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4.3. Path with Obstacles: Results

A sample trajectory, with motion time equal to 30 s, is partitioned as follows:

• 1st part: Rest-to-motion 5th degree polynomial.
• 2nd part: Constant speed along two axes (null on the third).
• 3rd part: Spline 4-3-4 trajectory.
• 4th part: Constant speed along an axis (null on the other two axes).
• 5th part: Motion-to-rest 5th degree polynomial.

A rest phase of 5 s is imposed after the motion phase to evaluate the residual oscillations.
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The trajectory, which is composed of 24 points (summarized in Table 2), is designed to
overcome the 5 obstacles sketched in Figure 8, and the motion is executed starting from a
vertex of the workspace and ending on the laterally opposed vertex. The overall motion
path in the workspace with obstacles is shown in Figure 8, while the trajectory of the
desired load position, velocity, and acceleration is provided in Figure 9.

Table 2. Points used to generate the trajectory in the path with obstacles.

Part Point Number
Coordinates

Time [s]x [mm] y [mm] z [mm]

1 1 −300 300 0 0
2 −290 200 200 2

2 3 −290 −250 50 5
3 4 −150 −300 20 6

5 −20 −150 20 7
6 0 −100 120 8
7 0 100 120 9
8 20 140 20 10
9 10 240 10 11

10 −80 300 10 12
11 −160 220 10 13
12 −80 140 10 14
13 0 220 20 15
14 −80 300 10 16
15 −200 200 10 17
16 −200 30 20 18
17 −100 0 120 19
18 100 0 120 20
19 200 −50 10 21
20 50 −150 40 22
21 160 −300 150 23

4 22 290 −220 200 24
5 23 290 100 200 27

24 300 300 0 30
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Figure 9. Path with obstacles: reference trajectory.

The motion planning algorithm proposed in this paper is applied to compute the
platform displacements, and then the obtained load trajectory is simulated in MAT-
LAB/Simulink (version R2022a), allowing us to obtain the results that are shown in
Figure 10. It is evident that the load properly tracks the desired reference; hence, the
method also handles tight maneuver spaces. Therefore, it is capable of avoiding obstacles
in cluttered environments. Further, it simultaneously ensures remarkable performances in
terms of trajectory and path tracking.

The platform’s trajectory obtained with the proposed method is applied to the experi-
mental setup shown in Figure 2. Moreover, it was compared to the results obtained with the
application of the input shaping technique [30,31] (also denoted as “IS”) and by applying
the desired trajectory directly to the platform (hereafter denoted as “Rigid” planning), thus
neglecting the flexible dynamics of the load.

The displacements of the load in the experimental tests with the application of dif-
ferent platform trajectories are shown in Figure 11, while the top and side views of the
same tests are shown, respectively, in Figure 12a,b for ease of understanding. It is worth
noting that the experimental tests were conducted to obtain the results that are shown in
Figures 9 and 10, without the presence of obstacles in the workspace, which were excluded
to obtain a fair comparison between the methods and to avoid unwanted oscillations caused
by impacts.

The experimental results highlight that the desired trajectory is correctly tracked
with the proposed method. Conversely, the IS smooths the trajectory in case of spatial
references, and the load tracks a different path with respect to the desired one. The results
are even worse in the case of rigid planning; indeed, the load oscillates, and the obtained
displacements are completely different with respect to the target ones. In addition, the
abovementioned tests suggest that, once the obstacles are installed, the proposed method
can avoid collisions with the obstacles, while IS and rigid planning cannot.
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Figure 10. Path with obstacles. Numerical results: reference trajectory, platform, and load displacements.
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The obstacles were manufactured with polystyrene and installed in the system, and
the same tests with different methods, which are discussed in Figures 11 and 12, were
performed once again. In particular, Figures 13–15 provide some meaningful snapshots
that were taken during the experimental tests. The frames in Figure 13, together with
the previously mentioned results, provide evidence that no collisions were experienced
through the proposed method. Indeed, the obstacles were not touched by the load, which
correctly tracked the prescribed reference. Conversely, in the case of application of the
trajectory computed through the IS technique, Figure 14c reports the first impact expe-
rienced against the top level of the middle two-level obstacle and another impact with
the same obstacle, which is shown in Figure 14f. Moreover, Figure 14d,e show the col-
lisions with the octagonal base prism. Additionally, in Figure 14g, the impact with the
square base prism is provided; in the subsequent Figure 14h,i, such obstacle collapsed on
the floor.

The difficulties are exacerbated in the case of “Rigid” motion planning; indeed,
Figure 15d–h show a sequence of impacts leading to undesired motion or, even worse,
to a collapse of the obstacles in the workspace.
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5. Conclusions

This paper proposes the application of a trajectory tracking method developed by the
authors to the challenging problem of a spatial gantry crane moving a suspended load in
a structured, cluttered environment. The method is capable of handling underactuated,
non-flat, non-minimum phase systems, and it aims to plan the motion of an actuated
platform through model inversion. The proposed technique relies on the partitioning of
the coordinates into actuated and unactuated ones, and then the load displacements are
described as a non-linear separable function of these coordinates. Since the load unactuated
dynamics is non-minimum phase, its inversion is non-trivial. Indeed, it is unstable and
then its numerical integration is unviable. Then, the desired output, i.e., the suspended
load trajectory, is redefined through the output redefinition technique, which stabilizes
the unactuated internal dynamics. Once the unactuated coordinates are obtained through
numerical integration, the platform trajectory is finally computed through the non-linear
map defined between the actuated and unactuated coordinates.

The effectiveness of the proposed method is tested in two challenging scenarios: the
execution of a spatial Archimedean spiral with motion time equal to 15 s and in the tracking
of a spatial path in a structured cluttered environment in the presence of five obstacles.
First, numerical results are carried out, highlighting the effectiveness of the method. In
particular, the effectiveness of the proposed method is confirmed by the low tracking error
obtained, whose maximum value is 0.8 mm along the x-axis for the spiral and 0.25 mm
on the y-axis for the path with obstacles. Secondly, experimental tests are performed on
a laboratory testbed composed by an Adept Quattro parallel robot, which mimics the
actuated platform, and a suspended load. The experimental results, again, confirm the
benefits of the proposed method and support its efficacy in executing challenging paths in
the presence of obstacles. In our future works, the proposed method will be improved and
extended to be applied to systems with more degrees of underactuation.
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