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Abstract: The permanent magnet synchronous motor (PMSM) has been of interest to eco-friendly
industries on account of its advantages such as high performance, efficiency, and precision control.
However, perturbations due to PMSM parameter uncertainty, load torque, and external disturbance
interfere with the construction of PMSM precision control systems. Therefore, a robust control
system is needed to avoid unnecessary system movement caused by perturbations. In this paper,
sliding mode control (SMC) is adopted to implement a robust control system for the PMSM. In order
to reduce the reaching time from the initial system state to the sliding surface and the chattering
phenomenon that can cause the system to malfunction, the adaptive quick sliding mode reaching
law based on an exponential function and power equation is proposed. Although the SMC is robust
to disturbance and parameter uncertainty, unexpected disturbances can destabilize the system. To
estimate the unmatched disturbance in a short time, the second-order fast terminal sliding mode
observer (SFTSMO) is proposed. The results show that the motor control system based on the
proposed method has a fast convergence speed to an objective value, position tracking performance,
and robustness.

Keywords: permanent magnet synchronous motor; sliding mode control; sliding mode observer;
quick reaching law; chattering suppression

1. Introduction

Recently, many countries and companies have begun to establish policies for eco-
friendly industries to protect the environment and convert energy systems. The permanent
magnet synchronous motor (PMSM) is an important motor and power device for generating
electric fields. Since PMSM is advantageous in low- and mid-power applications and has
high performance, various industries, i.e., electric vehicles, aerospace works, and robotics,
have adopted PMSM-based systems [1–3]. The strengths of PMSM systems compared to
other motor systems, such as brushless motor or direct current motor systems, include high
air-gap flux density, high torque-to-inertia ratio, and high efficiency. However, the PMSM
is associated with the nonlinear and time-varying parameters from unshaped dynamics,
uncertainty, and internal or external perturbations. Therefore, the proportional-integral
(PI) control method is limited regarding high performance since there are no mathematical
components to counteract external and internal errors. In addition, the cascade control
system is not able to satisfy or handle precisely the specific requirements of the motor,
which contains nonlinear parameter variations and coupling [4,5].

To overcome the limited performance of PI control systems, many researchers have
studied nonlinear control systems for PMSM speed regularization, e.g., predictive [6,7],
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neural network control [8,9], fuzzy control [10], stepping control [11], and sliding mode
control (SMC) [12–14]. Among various nonlinear control methods, SMC, which has the
advantages of robustness to external disturbance and low sensitivity about parameter
uncertainty, is frequently used. Liu [15] proposed an SMC method based on a second-order
nonsingular terminal sliding surface for the combined controller that can handle current
and speed together. Leu [16] proposed a fuzzy-based sliding mode controller for PMSM
control by combining the fuzzy control method and the SMC method. Using the fuzzy-
based sliding mode controller, the system’s nonlinearity and unmolded uncertainty can be
mitigated. Qian [17] designed a nonlinear sliding surface improved by the damping ratio
of a variable system. Based on the nonlinear sliding surface, the PMSM control system
mitigates the unmatched uncertainties and alleviates the system chattering caused by the
signum function. Merabet [18] established a cascade second-order sliding mode control
system. To improve the robustness of the system, the control system consists of inner and
outer loops, which are the q-current controller and speed controller, respectively.

However, robustness is related to the switching gain that is represented by the signum
function. To ensure the robustness of the SMC system, a large switching gain is required.
The large switching gain can derive the time delay in the switching control law and high-
frequency dynamics known as the chattering phenomenon. Therefore, an adaptive system
that changes with time is required to improve the performance of the controller [19,20].
Many methods have been designed to suppress the chattering phenomenon such as the
high-order sliding mode control [21], nonsingular sliding mode control [22], and fuzzy logic
combined sliding mode control method [23]. Nevertheless, for the sliding mode controller
with an improved sliding surface, the reaching speed to the sliding surface is increased
by a functional sliding surface. Moreover, it is difficult to determine the upper and lower
bounds of the disturbance caused by the signum function using a constant switching gain.

The main contributions of the proposed control system are as follows:

• To reduce the strength of the trade-off between large constant switching gains and
improve the reaching time, in this paper, a novel reaching law termed the adaptive
quick reaching law (AQRL) is proposed. The AQRL is based on second-order sliding
mode characteristics and switching function. In addition, the switching function is
based on an exponential term and system state.

• By utilizing a sliding mode disturbance observer (SMDO), we obtain robustness
against a sudden disturbance and parameter uncertainty. SMDO methods have
been studied to estimate disturbance and mismatched parameter uncertainty [24,25].
Moreover, to respond to disturbance more accurately and avoid the immoderate
switching gain for SMDO, a high-order terminal sliding mode observer (HOTSMO) is
also used in this paper.

• The proposed AQRL is verified by the Lyapunov second method, and it is also mathe-
matically demonstrated that this reaching time is faster than that of the conventional
reaching law.

The rest of this paper is organized as follows: In Section 2, the AQRL is introduced, and
the reduced reaching time and chattering are verified. In addition, the results of simulations
using a second-order single-input single-output (SISO) system are presented to demonstrate
the improved performance compared with the conventional sliding mode reaching law.
Section 3 presents a PMSM mathematical model. To establish a robust PMSM speed
controller, the sliding surface is designed and the AQRL is applied. Furthermore, SFTSMO
is introduced to estimate the disturbance that can interrupt PMSM speed regulation. In
Section 4, the simulation is presented to demonstrate the effectiveness of the proposed
method for PMSM control. Finally, Section 5 concludes the study.

2. Adaptive Quick Reaching Law Design and Analysis
2.1. Adaptive Quick Reaching Law-Based Sliding Mode Control Design

SMC is a nonlinear control method with less sensitivity to parameter fluctuations
and disturbances when the system trajectory reaches a sliding surface (s(t)) established
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by the error between the desired value and measured value. To design controller input
for manipulating the controlled object, the switching term enables the state to be reached
and maintained at the sliding surface. In order to achieve stability of the sliding mode
controller, the Lyapunov function is used to process the controller input. The Lyapunov
stability criterion [26] is expressed as follows:

V(s) =
1
2

s2,

V̇(s) = sṡ ≤ 0. (1)

To satisfy the condition of the derivative of the Lyapunov function being less than or equal
to zero, the conventional sliding mode reaching law denotes ṡ = −ηsgn(s), where the
switching gain (η) is a positive constant. Equation (2) represents the reaching time (t)
based on the conventional reaching law (CRL). From the initial state (s(0) ̸= 0) to the
sliding surface (s(t) = 0), the reaching time t, derived according to the conventional sliding
mode reaching law, is as follows:

t =
|s(0)|

η
. (2)

Equation (2) indicates that the reaching time is influenced by the initial state and
switching gain η. A large value of η reduces the reaching time for faster responses by the
system. However, with a large η, the chattering phenomenon that adversely affects system
performance occurs due to the sgn(·). Therefore, a suitable value of η needs to be chosen to
suppress chattering while maintaining a fast reaching time on the sliding surface [27,28].
In this paper, an AQRL is proposed to overcome the vulnerability of SMC.

ṡ = −g(x1, s)sgn(s),

g(x1, s) = k1(ea|s| − 1) + k2
x1

2

1 + |x1|
e−b|s|, (3)

where x1 denotes the system state and the final value of x1(∞) is supposed to be 0. The pa-
rameters a, b, k1, and k2 represent positive tuning parameters with the boundary conditions
0 < a < 1, 0 < b < ln 2, k1 > 0, and k2 > 0 , respectively.

Assumption 1. The first interval is assumed as t1, which is from s(0) > 1 to s(t) = 1, and the
second interval is assumed as t2, which is from s(t) = 1 to s(t) = 0.

To verify the stability of the proposed reaching law, which establishes a sliding surface
with an exponential function, the constraint in Equation (1) is used.

sṡ = s
[
−k1(ea|s| − 1)sgn(s)− k2

x1
2

1 + |x1|
e−b|s|sgn(s)

]
= −k1(ea|s| − 1) · |s| − k2

x1
2

1 + |x1|
e−b|s||s| < 0. (4)

In Equation (4), (ea|s| − 1) is a positive value regardless of s and a. Similarly, e−b|s| also
produces a positive value. Therefore, the proposed method satisfies the inequality for the
Lyapunov stability criteria. The inequality shows that the system induced in Equation (3)
achieves stabilization within a finite time.

The proposed switching gain g(x1, s) has been designed based on an exponential
function and a nonlinear sliding surface. In addition, the initial sliding surface is affected
by the switching gain g(x1, s). The reaching process can be divided into two intervals when
the initial condition s(0) is greater than one: the first interval means the time consumed
to reach from the initial condition s(0) to s(t) = 1, and the second interval is the time
consumed to reach from s(t) = 1 to the sliding surface s(t) = 0 [29]. For the first interval,
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the term ea|s| − 1 in Equation (3) becomes much larger than the second term e−b|s| with the
positive parameters k1 and k2. In the first interval, the impact of the first term in Equation (3)
is much greater, which means that the second term can be treated as trivial. Therefore,
Equation (3) is transformed as follows:

ṡ ≃ −k1(ea|s| − 1)sgn(s)

= −k1(ea·s − 1). (5)

When the system is in the first interval, the reaching time is obtained by integrating
Equation (5) as follows:

t1 =
∫ 1

s(0)

1
k1(1 − eas)

ds, (6)

where t1 denotes the reaching time required in the first interval. From Equation (6), t1 is

t1 =
1 − s(0)

k1
− ln(1 − ea)− ln(1 − eas(0))

ak1
. (7)

In calculating the reaching time of the second interval, the second term in Equation (3) has
a greater effect since the second term is larger than the first term. Therefore, the switching
gain can be changed as

ṡ ≃ −k2
x1

2

1 + |x1|
e−b|s|sgn(s)

= −k2
x1

2

1 + |x1|
e−bs. (8)

The process of calculating the time taken for the system state to move from s(t) = 1
to s(t) = 0 is the same as derived in Equations (6) and (7). The reaching time (t2) in the
second interval is as follows:

t2 =
|x1|+ 1
bk2x2

1

(
eb − 1

)
. (9)

By combining Equations (7) and (9), the time (tr1) required for the system to reach the
sliding surface in the initial system state is obtained. Since the value of eb − 1 is between 0
and 1 according to 0 < b < ln 2 with optimally chosen k1 and k2, tr1 is represented by the
inequality condition as

tr1 = t1 + t2

<
1 − s(0)

k1
− ln(1 − ea)− ln(1 − eas(0))

ak1
+

|x1|+ 1
bk2x2

1

≈ 1 − s(0)
k1

. (10)

To prove the effectiveness of the proposed method, tr1 is compared with t by subtracting
Equation (2) from Equation (10),

tr1 − t <
1 − s(0)

k1
− s(0)

η
< 0. (11)

Therefore, with k1 that satisfies the condition k1 ≥ η, we can prove that the proposed
reaching law attenuates the reaching time to the sliding surface in comparison with the
conventional sliding mode reaching law. The reaching time tr2 from s(0) < −1 to s(t) = 0
is the same with the time required for s(0) > 1 to become s(t) = 0. The process from
s(0) < −1 to s(t) = 0 is divided into two intervals: the first interval is between s(0) < −1
and s(t) = −1, and the second interval is between s(t) = −1 and s(t) = 0. tr2 obtained
under the similar process from Equation (5) through (9) is shown as,
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tr2 =
1 + s(0)

k1
− ln(1 − ea)− ln(1 − e−as(0))

ak1
+

|x1|+ 1
bk2x2

1

(
eb − 1

)
. (12)

Through the inequality condition similar to Equation (10), tr2, i.e., the time spent on the
process to reach s(t) = 0 from s(0) < −1 is also reduced compared to the conventional
sliding mode reaching law.

According to the proposed reaching law, when the system state approaches to a sliding
surface, the switching gain k2x1

2/(1 + |x1|) since the AQRL is based on an exponential
function. The discrete expression is shown as

s(n + 1)− s(n) ≈ −
k2x2

1T
1 + |x1|

sgn(s[n]), (13)

where T denotes the sampling period. Assuming that the system trajectory is traced by
the sliding surface in a finite time, the sliding surface at the n-th step represents s[n] = 0+

or s[n] = 0−. When the system moves into the next (n + 1)-th step, the sliding surface is
expressed as follows:

s[n + 1] ≈ −
k2x2

1T
1 + |x1|

, for s[n] = 0+,

s[n + 1] ≈ +
k2x2

1T
1 + |x1|

, for s[n] = 0−. (14)

Therefore, the discrete sliding mode boundary (∆r) obtained through Equation (14)
is denoted by ∆r ≈ k2x2

1T/(1 + |x1|). On the other hand, using the conventional sliding
mode boundary, which is expressed as ∆ = kT, the chattering phenomenon is not reduced
when the system approaches the equilibrium point (0, 0) since k is a constant. However, in
the proposed reaching law, ∆r approaches zero as the sliding mode is reached. The system
state (x1) converges to zero in finite time as the system state is close to the equilibrium
point. With the convergence of ∆r to zero, the chattering phenomenon of the sliding mode
control system driven by the proposed reaching law efficiently decreases while overcoming
the disadvantage caused by the constant switching gain of a conventional sliding mode
control system. When the initial states approach the vicinity of the sliding surface, they
do not remain on it; instead, they perpetually oscillate across the sliding surface resulting
in chattering. Consequently, an adaptive reaching law has been formulated, as illustrated
in Figure 1, to mitigate chattering and enhance controller efficiency. Figure 1 shows the
chattering phenomena for the conventional sliding mode reaching law and the proposed
reaching law, respectively.

(a) (b)

Figure 1. System trajectory of the conventional and adaptive sliding mode reaching laws. (a) Conven-
tional reaching law; (b) adaptive reaching law.



Actuators 2024, 13, 136 6 of 14

2.2. Numerical Simulation

In the discussion above, the proposed quick reaching law can cause the system to
converge to the sliding mode surface at a fast speed. In addition, the system state follows
the sliding surface to converge to the equilibrium point quickly after the system reaches
the sliding surface. Although the sliding surface is designed based on a linear function, the
proposed reaching law induces the system to maintain the sliding mode and reduce the
chattering phenomenon. Therefore, a sliding mode controller based on the proposed quick
reaching law can be designed to improve control performance. To verify the performance
of the proposed reaching law, a second-order SISO system is established as follows:

ẋ = Ax + Bu,
y = Cx,

(15)

where x represents [ xa xb ]T with the initial state of the system as [ xa(0) xb(0) ] =

[ 3 0 ]. The matrices A, B, and C are represented by [ 1 0 ; 1 0 ], [ 1 0 ]T , and
[ 0 1 ], respectively. The sliding surface is designed as follows:

s1 = (xa − xad) + ζ(xb − xbd), (16)

where xad and xbd are the desired values of x and represent zero, while ζ denotes one.
Combining the proposed reaching law based on Equations (15) and (16), the control input
is set as

u = −2xa − g(x1, s1)sgn(s1), (17)

for the SISO numerical simulation. The system state (x1), which consists of Equation (3),
represents xb in the numerical simulation. Figures 2 and 3 show the system trajectory of each
conventional and proposed sliding mode reaching law on the closed-loop system and reaching
phase from the initial system state and sliding surface, respectively. In this simulation, the
switching gain (η) of SMC is set as 3. a, b, k1, and k2, which are parameters of the proposed
reaching law, are set to 0.5, 0.3, 5, and 2.5, respectively. In Figure 2, the thin bold and dashed
lines show xa and xb, which are controlled by the conventional sliding reaching law-based
SMC. The thick dash–dotted and dotted lines denote xa and xb, which are controlled by the
AQRL-based SMC. Figure 2 shows that a smaller overshoot and fast settling time are obtained
by the AQRL-based SMC. Figure 3 represents the controller inputs, which are designed using
the conventional sliding mode reaching law and AQRL. Since the sliding mode reaching law
has a constant value, the controller input (u) of the conventional SMC exhibits the chattering
phenomenon. In contrast, the AQRL-based SMC shows a smooth control input after the system
arrives at the sliding surface. Figure 4 represents a sliding trajectory in which the proposed
sliding reaching law approaches the sliding surface in a faster time than a CRL. The dashed line
shows the AQRL-based SMC, and the solid line denotes the CRL-based SMC.

Figure 2. Closed−loop state response of the conventional and adaptive quick reaching laws.
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Figure 3. Control input comparison between the conventional and adaptive quick reaching laws.

Figure 4. The phase trajectory using the conventional reaching law and the adaptive quick reach-
ing law.

3. Mathematical Model of PMSM and Control Schemes
3.1. PMSM Electrical Model

The PMSM’s high-performance motor control features smooth rotation over the entire
motor speed range, maximum torque control at zero speed, and fast acceleration and
deceleration. Field-oriented control (FOC) techniques are used for PMSM to achieve control,
which derives PMSM’s high accuracy and efficiency. Based on the FOC technique, the three-
phase current, which refers to the abc coordinates of the PMSM, can be transformed into a
two-phase current on dq rotating coordinates using the Clark/Park transformation. Figure 2
shows the block diagram of FOC based-PMSM speed control [12]. The stator voltage (ud, uq)
equations of the PMSM control system in dq coordinates are written as Equation (18). In this
paper, the model equations are based on a surface-mounted PMSM (SPMSM). The SPMSM
has the same value for d- and q-axis inductance (Ld = Lq = Ls) according to a permanent
magnet that is placed around the rotor and has a constant thickness [30].

ud = rid − ωLsiq + Ls
did
dt

,

uq = riq + ωLsid + ωφ + Ls
diq
dt

, (18)

where id, iq represent the d- and q-axis stator currents, respectively. r is the resistance, and
φ is the flux linkage of the permanent magnet. The measurement speed of the PMSM is
expressed as ω. The electromagnetic torque (Te) generated by the SPMSM depends on
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the flux linkage, the number of pole pairs (np), and inductances. Based on the uniform
inductance values of the SPMSM, the equation that expresses Te of the PMSM can be briefly
represented as follows [31]:

Te =
3
2

np
[
φiq + (Ld − Lq)idiq

]
=

3
2

np φiq. (19)

A general PMSM control system is established based on the principle of FOC control,
as shown in Figure 5. Under the vector control strategy, i∗d is set to zero to decouple the
speed and current. Equation (20) shows the mechanical dynamics of the PMSM system [32]

θ̇ = ω,

Jω̇ + Bω + TL = Te, (20)

where θ represents the rotor angle of the PMSM. J, B, and TL denote the rotational inertia,
viscous friction coefficient, and load torque, respectively.

Figure 5. Block diagram of PMSM speed control.

3.2. Design of the PMSM Sliding Mode Controller Using the Adaptive Quick Reaching Law

Under the occurrence of disturbance and parametric uncertainty, the mechanical
modeling of the PMSM can be converted by combining Equations (19) and (20) as follows:

ω̇ = (χ + ∆χ)iq − (η + ∆η)ω − (ε + ∆ε)TL

= χniq − ηnω + d, (21)

where χ, η, and ε represent 3n2
p φ/2J, B/J, and np/J, respectively. ∆χ, ∆η, and ∆ε represent

the parameter uncertainties. To represent parameter uncertainty and load torque, the
perturbation (d) denotes ∆χiq − ∆ηω − (ε + ∆ε)TL. To trace the reference angular velocity
(ωr) on PMSM speed modulation, the tracking error (e) is defined as the difference between
ωr and the measured angular velocity (ω) obtained by an encoder. Based on the tracking
error, the integral sliding surface (si) is designed as follows:

si = e + c
∫ t

0
e(τ)dτ, (22)

where c is a positive constant. Under the designed sliding surface with Equation (22), the
AQRL-based sliding mode controller input (i∗q ) is set up to reach ωr,
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i∗q =
1
χ

[
ω̇r − d + ce +

(
k1(ea|s| − 1) + k2

x1
2

1 + |x1|
e−b|s|

)
sgn(s)

]
. (23)

The control input of Equation (23) is not completely achieved since the unknown lumped
perturbation d is included. Therefore, the controller is not a fully stable input [33]. To
overcome the system weakness caused by disturbance, the SFTSMO in section III.C is
proposed to increase the robustness of the APRL-based SMC.

3.3. Design of a Second-Order Fast Terminal Sliding Mode Observer for PMSM

To predict and identify the perturbation accurately under the parameter uncertainty
and load torque, a second-order fast terminal sliding mode observer (SFTSMO) is designed
as a state equation under Equation (21),

ω̇ = χniq − ηnω + d,

ḋ = l, (24)

where l represents the derivative of the lumped perturbation. Then, the SFTSMO is designed
based on the terminal sliding mode,

˙̂ω = χniq − ηnω̂ + d̂ + ut1,
˙̂d = ut2, (25)

where ω̂ and d̂ denote the estimated angular velocity of the PMSM and the estimated
perturbation, respectively. ut1 and ut2 represent the designed control law and lumped
disturbance derivative, respectively. The estimated angular velocity error (ω̃) and estimated
disturbance error (d̃) are derived by subtracting Equation (24) from (25). To reduce the
estimation time and achieve better tracking accuracy, the second-order fast terminal sliding
surface (s f t) is designed for SFTSMO as follows: [34]

s f t = ˙̃ω + ω̃ + ω̃
n
m , (26)

where n/m is the rational number under the condition 0 < n/m < 1. n and m are positive
odd numbers. By substituting s f t for Equation (25), the ut1 is derived as,

ut1 = (1 − ηn)ω̃ + ω̃
n
m + d̃ − s f t. (27)

According to the terminal sliding mode control law [35], the ut2 is obtained as,

v + qv̇ = h1sgn(s f t),

ut2 = h2sgn(s f t), (28)

where v represents d̃ − s f t and q, h1, and h2 denote the designed positive constants. To
prove the stability of the proposed observer, the Lyapunov function shown in Equation (1)
is used as follows:

s f t ṡ f t = s f t

[
(d − h2sgn(s f t))− (h1sgn(s f t)− qv)

]
,

= (ds f t − h2

∣∣∣s f t

∣∣∣)− (h1

∣∣∣s f t

∣∣∣− qv) < 0. (29)

Here, h1 and h2 satisfy the conditions of h1 > |qv| and h2 > |dmax|, respectively. Therefore,
the stability of the proposed observer is obtained in a finite time. Under the designed
sliding surface as shown in Equation (26), the reaching time t f t taken to reach s f t(t) = 0
from initial state s f t(0) ̸= 0 is reduced compared to the conventional high-order terminal
sliding surface-based observer. The reaching time to obtained by the high-order terminal
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sliding surface (sh = ω̃ + βω̃n/m) from sh(0) ̸= 0 to sh(t) = 0 is derived in a similar way as
in Equation (2) [36]. The difference between t f t and to is represented as follows:

t f t − to =
m ln

[
ω̃(0)

m−n
m + 1

]
m − n

− m|ω̃(0)|m−n
m

m − n
. (30)

To prove the reduced reaching time of the designed terminal sliding surface, by
applying the exponential function to t f t and to, Equation (30) is derived as,

et f t − et0 = |ω̃(0)|
m−n

m + 1 − e|ω̃(0)| m−n
m ≤ 0. (31)

The reaching time reduction is proved as in Equation (31). Under the terminal sliding mode
control law, estimated disturbance (d̂) is obtained by integrating the ut2 value. Therefore, the
proposed SFTSMO ensures a smooth disturbance observation since ut2 equals to h2sgn(s f t).
From the obtained d̂, the controller input is converted as,

i∗q =
1
χ

[
ω̇r − d̂ + k1(ea|s| − 1) + k2

x1
2

1 + |x1|
e−b|s| + ce

]
. (32)

Therefore, the robustness of the controller input is obtained from the estimated disturbance
for the PMSM control system.

4. Simulation

This section describes the simulations carried out using the conventional SMC and the
AQRL-based SMC (AQSMC) with SFTSMO in the PMSM speed regulation system to verify
the effectiveness of the proposed PMSM speed controller design method. The PMSM system
was established based on a block diagram, as shown in Figure 2, using MATLAB/Simulink.
The numerical SPMSM parameters used for the simulation are denoted in Table 1. Moreover,
we set the control parameters of a, b, c, k1, k2, h1, h2, n, m, and Q in the simulations as 0.1, 0.5,
100, 5, 2.4, 1, 10, 11, 13, and 100, respectively. Three types of simulations were performed to
confirm the advantage of the SMC: position tracking, sudden speed shift, and sudden load
disturbance of the SPMSM.

Table 1. Numerical parameters of the SPMSM model [37].

Parameter Value Unit

Rs 2.4 [Ω]
Ls 0.65 [mH]
φ 0.003 [Wb]
J 0.004 × 10−4 [kg· m2]
B 0.004 × 10−4 [N· m· s/rad]
np 4

Figure 6 shows the position error between the measured rotor position signal of the
PMSM and the reference position signal represented by a sine function with respect to time.
The bold line represents the reference position signal. In this position tracking simulation,
we conducted the simulation using a different sliding surface, sp = ė1 + c1e1, where e1
denotes the positional error between the ideal position signal (θd) and measured position
signal (θ) with c1 = 15. The position controlled system is θ̈(t) = − f (θ, t) + εu(t) + δ(t)
in which f (θ, t) = 25θ, ε = 133, and δ(t) = 10 sin(πt) with an assumption that the ideal
position signal is θd = sin(t). The initial position is set up as −2. To follow the reference
position signal, we induced u(t) =

[
c1(θ̇d − θ̇) + θ̈ + f (θ, t) + g(θ, s1) · sgn(s1)

]/
ε as the

AQSMC-based control input. The AQSMC indicated by the thick dotted line has a faster
tracking time than the conventional SMC.
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Figure 6. Tracking performance comparison between the SMC and the AQRL−based SMC.

Figure 7 shows the tracking angular speed when the reference speed changes suddenly.
The reference speed changes for three intervals to compare the speed tracking performance
between the conventional SMC and QSMC. The thin black dashed line and thick dotted line
indicate the speed responses based on the SMC and the AQSMC, respectively. The initial
speed of the PMSM, which is represented as a thin solid line, started at zero and reached
the target value of 700 rad/s. At t = 0.2 s and t = 0.45 s, the desired speeds were converted
to 400 and 800 rad/s, respectively. The conventional SMC and QSMC have no overshoot
on the system, while the controller works to reach the desired speed; however, the error of
the QSMC-based PMSM speed controller, which occurred between the reference angular
speed and measured angular speed of the SPMSM, decreases faster than the conventional
SMC. Moreover, the settling time and rising time are smaller than the conventional SMC
for all changes in the reference angular speed. We can therefore verify that the AQSMC has
better performance than the conventional SMC.
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Figure 7. Speed tracking performance between the SMC and the AQRL-based SMC.

Figure 8a–d show the speed tracking performances when a sudden load disturbance
occurs. To prove the performance of the proposed reaching law and SMDO, the simulation
was proceeded by the SFTSMO-based SMC and the SFTSMO-based AQSMC for equitable
comparison. The reference speed was fixed at 700 rad/s. In Figure 8, the thin dashed
and thick dotted lines denote the angular speed of the SFTSMO-based SMC and the
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SFTSMO-based AQSMC, respectively. Figure 8a shows that the SFTSMO-based QSMC has
a reduced settling and rising time and less overshoot compared with the SFTSMO-based
SMC. Figure 8c shows the SFTSMO performance in the presence of the external disturbance
and load torque. In the simulation, the sudden load disturbances TL = 2 N· m and TL =
−4 N· m were added at t = 0.8 s and t = 1.4 s until the simulation ended, respectively.
The SFTSMO-based AQSMC proved to be more robust against sudden disturbance and
quickly recovered to the desired speed compared to the conventional SMC. Therefore, we
can confirm that the performance of the SFTSMO-based AQSMC is better than that of the
SFTSMO-based SMC for handling disturbance in the PMSM speed regulation system.

Figure 8. Control performance comparison between the SMC and the QSMC with SFTSMO.

5. Conclusions

In this paper, we proposed an AQRL-based PMSM speed controller for a robust speed
control PMSM system and SFTSMO to estimate the disturbance and parameter uncertainty.
We set up a model according to an FOC-based SPMSM system. To improve the robustness
of the PMSM control system, we designed an AQRL based on an exponential function
and power equation to overcome the trade-off between the reaching time and chattering
phenomenon. Moreover, to deal with perturbations such as load torque and parameter
uncertainty, the SMDO was proposed. To enhance the estimation performance and reduce
the estimation time, we suggested SFTSMO, which is based on a second-order terminal
sliding surface. We derived the adaptive control input i∗q using QSMC and SFTSMO. We
confirmed and proved the increased performance of a speed control system driven by
QSMC with SFTSMO.
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Abbreviations
Abbreviations represented in this paper:

PMSM permanent magnet synchronous motor
PI proportional-integral
SMC sliding mode control
AQRL adaptive quick reaching law
SMDO sliding mode disturbance observer
HOTSMO high-order terminal sliding mode observer
SFTSMO second-order fast terminal sliding mode observer
SISO single-input single-output
CRL conventional reaching law
FOC field-oriented control
SPMSM surface-mounted PMSM
AQSMC AQRL- based SMC
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