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Abstract: Bridges are essential to infrastructure and transportation networks, but face challenges
from heavier traffic, higher speeds, and modifications like busway integration, leading to potential
overloading and costly maintenance. Structural Health Monitoring (SHM) plays a crucial role in
assessing bridge conditions and predicting failures to maintain structural integrity. Vibration-based
condition monitoring employs non-destructive, in situ sensing and analysis of system dynamics
across time, frequency, or modal domains. This method detects changes indicative of damage or
deterioration, offering a proactive approach to maintenance in civil engineering. Such monitoring sys-
tems hold promise for optimizing the management and upkeep of modern infrastructure, potentially
reducing operational costs. This paper aims to assist newcomers, practitioners, and researchers in
navigating various methodologies for damage identification using sensor data from real structures. It
offers a comprehensive review of prevalent anomaly detection approaches, spanning from traditional
techniques to cutting-edge methods. Additionally, it addresses challenges inherent in Vibration-Based
Damage (VBD) SHM applications, including establishing damage thresholds, corrosion detection,
and sensor drift.

Keywords: vibration-based SHM; sensors; challenges; damage thresholds

1. Introduction

In recent years, there has been a remarkable advancement in sensor technology, nu-
merical simulation methods, and damage diagnosis techniques. What was until recently
limited to conventional inspection methods carried out by experts has evolved towards
smart sensors and decisions guided by artificial intelligence. These advancements have
led to the widespread adoption of Structural Health Monitoring (SHM) in bridge infras-
tructures [1]. SHM has proven to be an invaluable tool, providing continuous and reliable
information about the state and response of bridge structures.

SHM technology plays a critical role in providing essential information for making
informed decisions regarding the operation and maintenance of bridge structures. This
includes issuing warnings about potential overloads and damage, thus facilitating timely
countermeasures and maintenance actions. On the other hand, Structural Health Moni-
toring (SHM) systems have seen a growing adoption in tall structures, aimed at ensuring
their safety and functionality. For instance, Brownjohn et al. [2] undertook an extensive
monitoring study focusing on the evolution of dynamic responses and structural prop-
erties of a 280-meter-high, 65-story office tower. Meanwhile, Zhang et al. [3] conducted
comprehensive measurements on several super-tall buildings to discern their responses to
wind-induced stresses during severe weather conditions. The Burj Khalifa, for instance,
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features an integrated real-time SHM and structural identification system, serving to con-
tinuously monitor and evaluate its structural integrity and performance.

Thanks to its effectiveness and practicality, SHM technology has emerged as an efficient
means of evaluating the health of a bridge structure. Over the past few decades, there has been
a notable increase in confidence in vibration-based SHM systems, particularly when used on
highway or railway bridges. This technology holds great potential for enhancing the safety,
performance, and longevity of bridges, ensuring their reliability under varying conditions and
loads, ultimately contributing to the improvement of overall transportation infrastructures.

This has been furthered by the rapid development and integration of sensor technology,
numerical simulation methods, and damage diagnosis techniques, which have driven
the widespread use of SHM in bridge infrastructures. Also, advancements in electrical
infrastructures made the implementation of SHM systems more feasible and cost effective,
easily applicable in real-world scenarios without requiring excessive labor.

Vibrations on bridge structures can originate from a variety of dynamic loads, such as
human and traffic activities, wind action, and more. Vibration analysis of a bridge structure
can help assess its health state, facilitating efficient maintenance activities, and ensuring
its reliability, durability, and operational functionality. This requires the utilization of
cutting-edge diagnostic tools and techniques capable of performing damage detection and
characterization, that is, identifying, quantifying, and locating any potential damage [4].
One essential aspect of SHM for civil infrastructure lies in its emphasis on long-term
evaluation, where the system identifies a ‘normal’ structural performance or an ‘initial
health state condition’ of the bridge and then follows its evolution in time towards different
states [5].

In that respect, within SHM techniques, vibration-based approaches have emerged
as the most widely adopted [6–13]. Their primary objectives include detecting structural
damage, assessing its severity, and precisely locating it along the bridge. Additional
tasks encompass evaluating the overall safety of the structure, predicting the remaining
service life, establishing reliable thresholds, and facilitating maintenance decision making,
whenever possible (Figure 1).

Buildings 2024, 14, x FOR PEER REVIEW 2 of 22 
 

features an integrated real-time SHM and structural identification system, serving to con-
tinuously monitor and evaluate its structural integrity and performance. 

Thanks to its effectiveness and practicality, SHM technology has emerged as an effi-
cient means of evaluating the health of a bridge structure. Over the past few decades, there 
has been a notable increase in confidence in vibration-based SHM systems, particularly 
when used on highway or railway bridges. This technology holds great potential for en-
hancing the safety, performance, and longevity of bridges, ensuring their reliability under 
varying conditions and loads, ultimately contributing to the improvement of overall trans-
portation infrastructures. 

This has been furthered by the rapid development and integration of sensor technol-
ogy, numerical simulation methods, and damage diagnosis techniques, which have 
driven the widespread use of SHM in bridge infrastructures. Also, advancements in elec-
trical infrastructures made the implementation of SHM systems more feasible and cost 
effective, easily applicable in real-world scenarios without requiring excessive labor. 

Vibrations on bridge structures can originate from a variety of dynamic loads, such 
as human and traffic activities, wind action, and more. Vibration analysis of a bridge struc-
ture can help assess its health state, facilitating efficient maintenance activities, and ensur-
ing its reliability, durability, and operational functionality. This requires the utilization of 
cutting-edge diagnostic tools and techniques capable of performing damage detection and 
characterization, that is, identifying, quantifying, and locating any potential damage [4]. 
One essential aspect of SHM for civil infrastructure lies in its emphasis on long-term eval-
uation, where the system identifies a ‘normal’ structural performance or an ‘initial health 
state condition’ of the bridge and then follows its evolution in time towards different states 
[5]. 

In that respect, within SHM techniques, vibration-based approaches have emerged 
as the most widely adopted [6–13]. Their primary objectives include detecting structural 
damage, assessing its severity, and precisely locating it along the bridge. Additional tasks 
encompass evaluating the overall safety of the structure, predicting the remaining service 
life, establishing reliable thresholds, and facilitating maintenance decision making, when-
ever possible (Figure 1). 

 
Figure 1. Vibration-based structural health monitoring systems. 

More specifically, Rytter [14] proposed a damage identification-based scale on four 
levels. Recently [15,16], the scientific community extended the classification to five levels, 
as follows: level 1, damage detection; level 2, damage localization; level 3, damage quan-
tification; level 4, damage typification; level 5, evaluation of structural integrity and resid-
ual lifetime. 

Vibration characteristics are inherently linked to a structural parameter. Any damage 
to the structure causes alterations in some of these parameters, making them valuable in-
dicators in predicting the structural health condition. By monitoring the signals captured 
through sensors installed on the structure, vibrational features can be extracted, and cor-
responding changes can be detected and interpreted. 

Advancements in modern computer technology, sensor technology, and signal pro-
cessing have significantly enhanced the ability to accurately and rapidly analyze and 

Figure 1. Vibration-based structural health monitoring systems.

More specifically, Rytter [14] proposed a damage identification-based scale on four levels.
Recently [15,16], the scientific community extended the classification to five levels, as follows:
level 1, damage detection; level 2, damage localization; level 3, damage quantification; level 4,
damage typification; level 5, evaluation of structural integrity and residual lifetime.

Vibration characteristics are inherently linked to a structural parameter. Any damage
to the structure causes alterations in some of these parameters, making them valuable
indicators in predicting the structural health condition. By monitoring the signals captured
through sensors installed on the structure, vibrational features can be extracted, and
corresponding changes can be detected and interpreted.

Advancements in modern computer technology, sensor technology, and signal process-
ing have significantly enhanced the ability to accurately and rapidly analyze and process
test signals. However, there is a lack of comprehensive technical standards and specifica-
tions for vibration-based SHM. The absence of explicit guidelines regarding the choice of
sensors, their optimal installation locations, and how to effectively evaluate the structural
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health condition using monitored data, makes it difficult for engineers to implement SHM
effectively. This work aims at addressing this issue by providing a comprehensive review
of vibration-based techniques and technical codes. The goal is to offer a useful reference for
the application of technical methods and standard specifications in vibration-based SHM.

More specifically, the goals of this literature review can be summarized as follows:

1. To comprehensively review the applicability of various vibration-based techniques
utilized in the structural health monitoring of bridges.

2. Furthermore, the review seeks to identify and analyze the challenges associated with
detecting and characterizing damage using vibration-based techniques, considering
factors such as noise interference, environmental conditions, and structural complexities.

3. In addition to evaluating current methodologies, this paper aims to discuss emerging
approaches and technologies to enhance the accuracy and efficiency and especially to
identify appropriate alarm thresholds.

4. Moreover, the review endeavors to explore strategies for lifetime prediction and
prognosis in bridge structures based on vibration-based data analysis, addressing
issues such as fatigue, sensor drift, corrosion, and degradation.

5. By synthesizing the existing literature and research findings, this review aims to
provide readers with insights into the advancements, limitations, and future directions
in the field of vibration-based damage identification for structural health monitoring
of bridges.

Section 2 of the paper focuses on reviewing various vibration-based SHM approaches,
with special attention to the more recently developed approaches (Table 1). Their advan-
tages and drawbacks are discussed, offering insights into their suitability and effectiveness
in practical applications.

Table 1. Vibration-based damage detection methods.

Method Section

Modal frequencies and shapes Section 2.1

Damping Section 2.2

Modal Strain Energy (MSE) Section 2.3

Residual Force Vector (RFV) Section 2.4

Artificial Neural Network (ANNs) Section 2.5

Statistics-based Section 2.6

Section 3 delves into the challenges currently faced in the SHM field and discusses
potential future developments (Table 2). Addressing these challenges and embracing
advancements is crucial to further enhancing the effectiveness and practicality of vibration-
based techniques.

Table 2. Challenges in SHM.

Challenge Section

Establishing alarm thresholds Section 3.1

Stiffness degradation evaluation Section 3.2

Corrosion detection Section 3.3

Fatigue crack length Section 3.4

Sensors and the issue of drift Section 3.5

Impact of environmental factors
and operational conditions Section 3.6

Emerging technologies and methodologies Section 3.7
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2. Vibration-Based Damage Detection (DD) Techniques

Structural health monitoring (SHM) of bridges involves assessing the condition of
the structure over time to detect any potential damage or deterioration. Various vibration-
based techniques are employed to accomplish this, each with its own advantages and
limitations. The following techniques are worth considering for damage detection in SHM,
as analyzed in the following sections:

1. Natural Frequencies and Mode Shapes: Natural frequencies and mode shapes are in-
herent characteristics of a structure. Changes in these properties can indicate damage
or alterations in structural stiffness. Monitoring changes in natural frequencies and
mode shapes can help detect damage such as cracks or degradation phenomena.

2. Damping: Damping refers to the energy dissipation capacity of a structure. Changes
in damping characteristics can indicate the presence of damage or changes in mate-
rial properties. Monitoring damping can provide additional insights into structural
behavior and aid in damage detection.

3. Modal Strain Energy (MSE): Modal strain energy is a measure of the strain energy
associated with each mode of vibration. It represents the distribution of strain energy
throughout the structure. Monitoring changes in modal strain energy can help identify
regions of high stress or strain, which may indicate the presence of damage.

4. Residual Force Vector (RFV): The residual force vector represents the difference be-
tween measured and predicted forces in the structure. Changes in the residual force
vector can indicate the presence of external forces or structural damage that was not
accounted for in the predictions. Monitoring the residual force vector can help detect
anomalies in the structural behavior.

5. Artificial Neural Network (ANNs): Artificial neural networks are computational
models inspired by the structure and function of the human brain. They can be
trained to recognize patterns in complex data sets, making them suitable for analyzing
large numbers of sensor data collected from SHM systems. ANN can learn the
relationships between various sensor readings and structural conditions, enabling
accurate damage detection and prediction.

6. Statistics-based Methods: Statistics-based methods involve analyzing the statistical
properties of sensor data to detect anomalies or changes in the structural behavior.
These methods can identify deviations from normal operating conditions, which may
indicate the presence of damage or deterioration.

The mentioned techniques have been selected both because they are the most widely
adopted and because they offer complementary approaches to monitoring the health
of bridges. By integrating multiple methods, SHM systems can provide comprehensive
insights into the condition of a structure, enabling timely detection of damage and informed
maintenance decisions. Each of the methods listed above is examined in detail in the
following section and relevant references are provided.

2.1. DD Using Modal Frequencies and Shapes

The use of natural frequency in SHM was one of the first techniques used for damage
detection in bridge structures. It involves identifying the natural frequencies and resonant
modes of the structure. Even under significantly different loading conditions, such dynamic
properties remain relatively constant, solely dependent on the structure itself. A reduction
in natural frequencies indicates structural degradation or damage caused by extreme events,
leading to a decrease in stiffness [17]. Among dynamic parameters, natural frequencies
stand out as effective indicators of structural damage in vibration-based SHM systems.
Lower frequencies may experience a slight drop, while higher frequencies may exhibit a
more significant reduction [18]. However, implementing algorithms to extract these modal
properties is not always straightforward and the intricacies involved in implementing
these methods can be challenging. For example, changes in temperature can affect the
natural frequency of the structure. The impact of temperature on the detection of damage,
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particularly based on the relative frequency shift in beam-like structures, was investigated,
among others, by Gillich et al. [19].

Since 1979, there have been numerous studies exploring the use of natural frequency
parameters for the development and application of vibration-based damage detection
techniques in bridge structures.

For instance, Gentile et al. [20] conducted a study on an iron arch bridge, analyzing
vertical and horizontal natural frequencies through periodic dynamic tests to assess the
condition of the bridge structure. Their research revealed a slight decrease in the resonant
frequency of the first bending mode during the second Ambient Vibration Test (AVT),
suggesting potential structural deterioration or damage occurrence. However, despite
its apparent effectiveness, this technique showed limitations in delivering precise results,
being very sensitive to mixed excitation sources and variable environmental conditions.

Garcia-Macias et al. [21] developed an advanced software suite designed for the au-
tonomous management of integrated Structural Health Monitoring (SHM) systems. Their
approach encompasses automated operational modal analysis, precise frequency tracking,
sophisticated filtering of environmental impacts, and the identification of structural damage
using cutting-edge novelty analysis techniques. Furthermore, the potential of their proposed
vibration-based SHM procedure was tested on two real bridges. Uwayed et al. [22] introduced
a damage detection method for laminated CFRP composite plates, focusing on modal charac-
teristics. This method extends the capabilities of a recently enhanced curvature damage index
by utilizing a vibration-based approach. It applies both theoretical and experimental response
data to precisely identify and quantify damage within structures.

However, frequencies alone are not generally sufficient to identify the location of local
damage since they represent global indicators and lack location information. Therefore,
they are commonly used in conjunction with mode shapes, which contain critical location
information and are more sensitive to identifying local damage [23–27]. The mode shapes of
a structure illustrate the distribution of displacements across its elements during vibration.
By analyzing mode shapes, engineers can pinpoint regions of high deformation, indicating
potential areas of damage or weakness. Unlike frequencies, which give a global view of
the structural response, mode shapes offer valuable insights into the localized behavior,
making them essential for accurate damage localization.

To identify and assess damage effectively, a comprehensive approach combining both
frequency and mode shape information is generally adopted: frequencies provide an overall
understanding of the structural dynamic behavior, while mode shapes complement this
knowledge by offering precise localization of potential damage regions. By leveraging these
modal parameters together, engineers can make informed decisions about the condition
and health of critical structures, enabling timely maintenance and ensuring their long-term
performance and safety.

During the monitoring process, the extracted mode shapes of the structure are com-
pared to those relevant to the undamaged state, obtained either from measurement or from
project reports or from structural modelling. Potential local damage can be identified by
means of two widely used damage indices, named Modal Assurance Criterion (MAC) and
COordinate Modal Assurance Criterion (COMAC), respectively:
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i are the i-th undamaged and damaged mode shape, respectively, and xj is
the coordinate of the j-th point.
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The MAC value reflects the similarity between mode shapes, with a perfect match
resulting in a value of 1, which signifies that the structure is in good condition, as the mode
shapes closely resemble the undamaged reference. Conversely, significantly lower MAC
values indicate structural damage, as there are differences between extracted and reference
mode shapes.

In comparison to MAC, the COordinate Modal Assurance Criterion (COMAC) pro-
vides both similarity and location information. A COMAC value close to 1 at a specific
location xj implies that the structure remains intact at that point. On the other hand, a
COMAC value less than 1 at xj suggests the presence of damage at that location.

Extensive research [28–34] has been dedicated to the identification of local damage in
structures using a combination of frequencies and mode shapes. These parameters contain
both global and local information, making them effective for damage detection. To ensure
successful practical application, researchers have proposed various improvements to the
above criteria.

One promising direction for improvement is the accurate construction of the baseline
mode shapes. Finite Element (FE) model updating has emerged as a widely used technique
for this purpose [35–37]. Conventional FE model updating involves regenerating the
baseline of frequencies and mode shapes. The frequencies and mode shapes obtained from
the FE model are then compared with those measured by the monitoring system to detect
potential local damages in the structure with respect to the original as-built condition.
By updating the stiffness matrix (sometimes excluding the mass matrix), the FE model is
adjusted to match the measured frequencies and mode shapes. Mathematically, the FE
model updating process can be cast as a constrained optimization problem, as:

f = a
N

∑
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∣∣∣ f exp
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f exp
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where f exp
i and f num

i are the experimental and numerical natural frequencies of mode i,
respectively, ϕ

exp
i and ϕnum

i are the experimental and numerical i-th mode shape, respec-
tively, a and b are weight factors and N is the total number of considered modes.

The objective is to find the best set of parameters (e.g., stiffness values) that minimizes
the difference between measured and updated modal parameters while satisfying certain
constraints related to the structural properties. By utilizing FE model updating as a tool
for constructing accurate baseline mode shapes, researchers can enhance the reliability
and precision of damage detection methods. This approach allows identification and
assessment of local damage in structures more effectively. However, the results given
by this approach are strictly affected by uncertain parameters connected to the material
and geometric characteristics, structural details, soil–foundation interaction and others of
environmental origin, such as temperature. Therefore, especially in old structures, costs
can exceed benefits and thus engineers should carefully evaluate the use of this technique
in designing SHM systems.

2.2. DD Using Damping

While frequencies and mode shapes are widely used in SHM systems to assess the
condition of structures, damping is less frequently considered in practice due to its measure-
ment complexity [26,38–42]. Nonetheless, several researchers have explored the potential
of damping as an indicator of structural health. The rationale is that damping increases
with damage.

Frizzarin et al. [38] analyzed damping using ambient vibration data to detect damage
without relying on a baseline, successfully demonstrating this approach on a large-scale
concrete bridge model with seismic damage. Mustafa et al. [39] introduced an energy-based
damping evaluation approach for assessing the health condition of a truss bridge through
numerical simulations. Cao et al. [40] compared damping-based damage detection methods
on reinforced concrete structures and fiber-reinforced composites, shedding light on the factors
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influencing damping capability for damage detection. More recently, Liu et al. [26] proposed
a novel complex eigen-parameter identification method to simultaneously evaluate stiffness
reduction and damping defects on a non-classically damped shear building.

While local damage could ideally lead to observable changes in damping, the measure-
ment is susceptible to noise, especially in structures experiencing ambient environmental
vibrations, making it challenging to detect subtle changes in damping due to local damage.
Moreover, selecting or constructing an appropriate damping model is a non-trivial task.
The classical Rayleigh damping model is commonly used due to its simplicity. However, it
may not be applicable to all structures, leading to the proposal of more advanced damping
models. It is essential to consider different damping models for different types of structures.

Another limitation of using damping alone for damage identification is that it repre-
sents a global property of the structure, akin to frequency. As a result, damping alone may
not accurately identify the specific location of local damage. A comprehensive approach
combining multiple SHM indicators, such as damping, frequencies, and mode shapes, is
often necessary to achieve a more accurate and reliable assessment of structural health.

2.3. DD Using Modal Strain Energy (MSE)

Stubbs et al. [43] introduced the concept of Modal Strain Energy (MSE) for damage
localization. MSE has proven to be valuable in accurately identifying and quantifying
structural damage, even without prior baseline data. The general definition of MSE for a
structure in the r-th mode can be expressed as:

MSEr =
1
2

ΦT
r KΦr (4)

where K is the stiffness matrix of the structure and Φr is the r-th mass-normalized mode shape.
Since then, MSE has been widely studied and utilized as an effective parameter for

identifying and localizing damage in structures, contributing significantly to the develop-
ment of SHM.

Zhang et al. [28] improved the damage localization method by utilizing MSE and
estimating the damage size without relying on baseline modal properties. They defined the
contribution of element j to the r-th mode MSE as:

Crj =
ΦT

r k jΦr

ΦT
r KΦr

=
ΦT

r k jΦr

ω2
r

(5)

where k j is the stiffness of element j and ωr is the r-th mode frequency.
Carrasco et al. [44] presented a method based on changes in MSE to effectively locate

and quantify damage in a space truss model. They observed that the magnitude of these
changes served as a reliable indicator of the overall damage extent. The test results demon-
strated that the method succeeds in accurately localizing the damaged elements within
the truss structure. However, minor damages have little effects on modal properties of the
structures; hence, in these cases, the MSE technique may prove inefficient. To extend the
use of MSE technique to such cases, Cha et al. [45] have proposed a hybrid approach in
which damage detection based on the MSE is integrated with multi-objective optimization
algorithms. Since model robustness and measurement uncertainties are a fundamental
issue in model-updating-based damage detection [46–48], the authors also introduced
white noise of 5% in the selected modal shapes, obtaining an error in damage detection
lower than 5%. In the end, the research of Cha et al. demonstrates that the proposed hybrid
method is substantially insensitive to sensor drift and has good damage detection capability
both in severity and localization, although with incomplete mode shapes.

2.4. DD Using a Residual Force Vector (RFV)

With access to measured mode shapes, natural frequencies, and an initial baseline
model, it is possible to calculate a Residual Force Vector (RFV). This vector is obtained
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by solving an eigenvalue equation using the natural frequencies and mode shapes of the
damaged structure for the i-th mode:(

Kd − ω2
di

Md

)
ϕdi

= 0 (6)

where ωd and ϕd are the natural frequency and the mode shape of the damaged structure,
while Kd and Md are the stiffness and mass matrices, defined as:

Kd = Ka + ∆K (7)

Md = Ma + ∆M (8)

where Ka and Ma are the stiffness and mass matrix of the undamaged structure and ∆K
and ∆M are the changes in stiffness and mass matrices.

Substituting Equations (7) and (8) into Equation (6) and rearranging, the definition of
the residual force vector Ri for the i-th mode is obtained:

Ri =
(
Ka − λdi

Ma
)
Φdi

(9)

Each mode corresponds to a unique RFV, which can be interpreted as the harmonic
force excitation required to apply to the undamaged structure, represented by Ka and Ma,
at the frequency

√
λdi

, to elicit the same mode shape Φdi as measured in the damaged
structure. Each row of the RFV corresponds to a specific degree of freedom in the numerical
model of the structure. In the event of damage to an element connected to a particular de-
gree of freedom, the corresponding entry in the RFV becomes significantly larger compared
to other entries with no damage. This distinctive pattern allows for the identification of the
damaged location. However, additional algorithms are needed to quantify the extent of the
damage precisely.

Shen et al. [49] proposed a residual force vector-based method where the vector
is derived through the integration of static displacement data and the stiffness matrix
pertinent to the finite element model of the structure. The method intelligently identifies
damaged elements within the structure by pinpointing the non-zero elements within the
permutation of the force residual vector. Following this identification, the extent of damage
to these elements is calculated using an equilibrium equation. This equation is uniquely
formulated from the global stiffness matrix, focusing solely on the elements identified as
damaged, thereby providing a precise measure of the damage degree within the unit.

Sheinman [50] demonstrated a closed-form algorithm for damage identification through
several numerically simulated examples. Kosmatka and Ricles [51] successfully identi-
fied single damage events (stiffness loss, connection loosening, and lump mass addition)
in a laboratory space truss using the RFV method. Complete mode shapes obtained
from measurements at each degree of freedom aided in pinpointing the damage location.
An additional weighted sensitivity algorithm estimated the magnitude of stiffness/mass
change, with better correlation between the analytical model and baseline modal properties
resulting in improved estimates of damage severity.

Farhat and Hemez [52] proposed a sensitivity-based algorithm that minimized the
norm of the RFV by updating stiffness and mass elemental parameters. They efficiently
expanded incomplete mode shapes by minimizing the RFV, saving computational effort by
updating only elements with large RFV entries. The method was successfully demonstrated
on simulated cantilever and plane truss structures, with an emphasis on including modes
storing sufficient strain energy in damaged elements. Brown et al. [53] further extended
the method to lightly damped structures, updating the mass and stiffness matrices before
handling the remaining RFV with the damping matrix. The method showed satisfactory
results in simulated studies with damping below 3%.

Yang and Liu [54] dealt with the issue of incomplete and/or noisy measured modal
parameters, evaluating the damage location with node residual force vector and then quanti-
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fying damage extents relying to three different techniques: (a) the algebraic solution, (b) the
Minimum-Rank Elemental Update (MREU) and (c) the natural frequency sensitivity. The
study shows that the RFV method enables locating of damage in measured and unmeasured
locations, but the location accuracy is clearly dependent on noise. The first two methods are
in general disreputable. In particular, the algebraic solution of RFV has the advantage of being
the simplest technique in damage quantification, but often gives false damage in the presence
of noise. The MREU method requires a stringent mathematical condition on the rank of the
perturbed matrix, only satisfied in a small number of real cases. Even if this precondition
is fulfilled, the method gives a large error with measurement noise. The natural frequency
sensitivity method has proven to be the most effective technique, providing accurate damage
extents, according to the damage deployment of the tested structures, and excluding the false
damaged elements. The robustness of this method in estimating damage extents is in the easy
and precise measurement of the lower natural frequencies.

From studying the aforementioned works, it is clear that the accuracy of the RFV
method in locating damage relies on the measurement of mode shapes. When mode shapes
are sparsely measured, it is necessary either to reduce the system matrices or expand the
mode shapes. Matrix reduction sacrifices the structure of the matrices, rendering the direct
use of the RFV method for damage location less effective. Conversely, expanding mode
shapes from few measurements raises concerns about the accuracy of damage localization.
However, when the measurements are sufficient, the RFV method proves to be a robust
method for locating damage, and its potential for accurately sizing damage is promising,
whereas when the measurements are limited, the effectiveness of the RFV method can be
enhanced with the natural frequency sensitivity technique.

2.5. DD Using Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) method is one of the artificial intelligence com-
putational models inspired by biological neurons; they are based on machine learning
for algorithm training and predicting damage based on dynamic data acquisition, with
processing units representing neurons, having multiple inputs and a single output.

Data sets, weights, bias, training, the activation function and prediction are the basic
components of ANNs-based algorithms: “data sets” are the input data acquired by the
sensors system, generally abundant; “weights” are the quantities, which need to be cal-
ibrated, that multiply input data to obtain the output; “bias” is an assigned systematic
distortion function of a given data set; “training” means finding weights and bias in a
continued adjustment of both parameters toward the target result; the “activation function”
is a function that makes the ANN capable of resolving non-linearities; “prediction” is the
result obtained by filtering input data with weights and bias. When the ANN has only
one hidden level, it is called Shallow Artificial Neural Network (SANN); conversely, for
a higher number of hidden layers, it is called Deep Artificial Neural Network (DANN).
Figure 2 shows a simple predictive model that takes an input, performs a calculation, and
gives an output; to minimize the error, the Back Propagation (BP) technique is usually
adopted. In this technique, the estimation of error ε is carried out by using the loss function,
i.e., a function that compares expected and predicted results, thus allowing adjustment of
weights and bias during ANN training.

ANNs have been successfully utilized in various applications, including vibration-
based damage identification [55–58]. ANNs are particularly suitable for problems which
have abundant data yet are challenging to solve using explicit algorithms. BP has been
effectively used by Ramu and Johnson [59] and Pandey and Barai [60] for damage iden-
tification, with network topology playing a crucial role in performance. In particular, BP
based on the gradient descent method is a widely used training algorithm, proven to be
effective in predicting damage when: (1) initial weights are not too far from a good solution;
(2) the computational system is sufficiently fast; (3) an extensive database is available.
However, Hochreiter et al. [61] demonstrated that it is difficult to optimize the weights
when the ANNs is organized in multiple hidden layers. To overcome this limit, Hinton and
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Salakhutdinov [62] introduced the Deep Learning (DL) concept to reduce data dimension-
ality and overcome the previous three limitations. Kuo and Lee [63] developed a structural
damage identification method leveraging the capabilities of one-dimensional convolutional
neural networks (1D-CNN). Their approach refines the placement of sensors, concentrating
efforts on regions exhibiting significant displacements, which markedly diminishes damage
detection time. This approach has led to a notable reduction in sensor deployment by
16.67% and has streamlined the process, requiring merely four CNN models to assess a
structure comprising thirty connections. The efficacy of their technique is underscored by
an impressive damage detection accuracy rate of 96.62%. Nick et al. [64] introduced a novel
two-stage damage detection approach tailored for steel frameworks, employing ANNs.
This method accentuates the utilization of adjusted damage indices, derived from modal
flexibility and strain energy to first pinpoint the locations of damage. Subsequently, it
employs ANNs to quantify the extent of the damage accurately. Simulations demonstrated
the method’s effectiveness in identifying both single and multiple instances of damage in a
non-destructive manner. Shi et al. [65] developed an SHM procedure for identifying and
quantifying structural damage, using Convolutional Neural Networks (CNN) in tandem
with Short-Time Fourier Transform (STFT). This method excels in recognizing damage
patterns and assessing the severity of diverse, previously unknown damage. Utilizing the
IASC–ASCE benchmark, which offers vibration signals from a variety of damage scenarios,
the data are converted into STFT spectrograms that serve as training material for the CNN.
Their research notably introduces a novel condition-based damage function, capable of
estimating damage severity across various modes, marking a significant advancement in
the field.
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Barai and Pandey [66] compared the performance of a Time-Delay Neural Network
(TDNN) to a backpropagation network on a 21-bar truss, finding TDNN to generally per-
form better despite longer training times. An intriguing aspect of Marwala and Hunt’s
work [67] was the proposal of a committee of neural networks. Marwala [68] demonstrated
this approach on a damaged experimental cylinder, training three networks with differ-
ent data (frequency response functions, modal data, and wavelet transform data) and
combining their outputs for improved predictions with respect to individual networks.
The enhanced performance was assessed on different structural alterations having varied
apparent effects in the frequency, modal, and time domains.
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2.6. DD Using Statistics-Based Methods

Farrar and Doebling [69] proposed that vibration-based damage detection is essentially
a statistical pattern recognition problem and that non-model-based pattern recognition
methods are needed alongside existing model-based techniques. The use of novelty detec-
tion for condition monitoring has gained traction, where deviations in measured data from
normal operating conditions are identified. The control of statistical processes allows both
monitoring of the distributions of features and detecting of outliers in the data indicative
of damage. This approach effectively detects damage, without necessarily pinpointing its
location and extent. Various studies, including those by Worden et al. [70], Fugate et al. [71],
and Fanning and Carden [72], have considered statistical process control methods for
damage detection, demonstrating their effectiveness compared to other algorithms. In
two companion papers, Samman and Biswas [73] investigated four waveform recognition
techniques to distinguish between Frequency Response Function (FRF) waveforms of intact
and damaged bridges. The first technique used was the Waveform Chain Code (WCC),
which characterizes waveforms based on relative slope and curvature, extracting differ-
ences in these features as indicators. The second technique, Adaptive Template Matching
(ATM), performed a point-by-point magnitude check to detect differences between two
FRFs, deriving a tolerance feature representing signal deviation. The third technique was
the Frequency Response Assurance Criterion (FRAC), assessed similarity to the MAC, with
a value of 1 indicating identical signals and 0 for completely different signals. The fourth
technique, known as the Equivalent Level of Degradation System (ELODS), employed a
transformer that returned an undistorted signal for an undamaged structure but a distorted
version for a damaged signal, yielding a distortion identification function as a feature.

In simulated data without noise, the effectiveness ranking of the techniques was
ELODS, WCC and ATM, with SAC being the least effective. However, when applied to
data from a highway bridge, only the WCC method successfully detected a crack. It is
important to note that all these techniques can only determine the presence of damage
but cannot provide information about the location or severity of the damage. Despite
this limitation, these methods offer valuable tools for initial damage detection in bridge
structures. To overcome this restriction, Pakzad et al. [74] and Dorvash et al. [75] developed
and tested the Influenced Coefficient-Based Damage Detection Algorithm (IDDA), where
the damage features are studied through the changes in linear regression coefficients
produced by the proposed algorithm. Nigro et al. [76] have tested the effectiveness of the
IDDA by expanding it to a more complex structural system and investigating the accuracy
in structural damage localization by using change point analysis. The statistical treatment
of the database took place by using the Univariate Cumulative Sum (UCS), Exponentially
Weighted Moving Average (EWMA), Mean Square Error (MSE), Modified MSE (ModMSE),
and Multivariate Mahalanobis Distance (MMD) and Fisher Criterion (FC). These statistics
were used to build control charts able to detect and localize damage through the correlation
between sensors placement and damage features. The experiment carried out by the
research group proved that when the IDDA is supported by the control charts, it can detect
and locate damage with accuracy. Among the used statistics, the ModMSE has proven to
be the best algorithm in locating damage, thanks to its capability of recognizing changes
in structural response due to variation in environmental and operational conditions, thus
distinguishing between internal (structure) and external (action) changes.

3. Challenges in Structural Health Monitoring

Though scientific research has produced a wealth of theories and applications, it is still
far from reaching a consensus on some relevant issues. The most important, in the authors’
opinion, is that regarding the definition of alarm thresholds, dealt with in Section 3.1. While
several codes propose limits for certain response quantities, it is becoming evident that it is
virtually impossible to foresee appropriate thresholds for all possible quantities, especially
for damage. Another issue, closely linked to the previous one, regards the evaluation of
stiffness degradation, which is often considered as a proxy for damage, as explained in
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Section 3.2. In Sections 3.3 and 3.4, detection of corrosion and of crack length are dealt
with, which are always of concern when assessing the safety of existing bridges. The
last topic treated in Section 3.5 refers to the issue of drift in sensors and its correction,
while in Section 3.6 the impact of environmental factors and operational conditions are
addressed. Finally, in Section 3.7, an overview of emerging technologies and methodologies
is presented.

3.1. Establishing Alarm Thresholds

In structural safety monitoring, a fundamental aspect is the timely implementation
of safety-enhancing contingency measures, which involves developing an alarm system.
This system assists decision makers in promptly intervening based on monitoring out-
comes, while allowing them to allocate attention to other tasks. Violations of preset alarm
thresholds trigger commensurate alert levels, prompting the decision maker to take cor-
rective action, thereby preventing failure in the monitored structure. Thus, thresholds
are defined at chosen values of one or a combination of several monitored parameters.
Therefore, one of the primary challenges in vibration-based SHM is determining what
constitutes “alarm” and establishing thresholds for countermeasures. Alarm thresholds
can vary significantly depending on the type of structure, its material properties, operating
conditions, and the nature of detected damage. While several codes propose limits for
certain response quantities, it is becoming evident that it is virtually impossible to foresee
appropriate thresholds for all possible quantities, especially for damage. Addressing this
challenge often involves a combination of experimental testing, numerical modeling, and
data-driven approaches. Experimental testing helps in understanding how damage affects
vibration characteristics, such as natural frequencies, mode shapes, damping ratios, and
other modal parameters. Numerical modeling techniques, such as Finite Element Analysis
(FEA) or analytical models, can simulate various damage scenarios and their effects on
structural dynamics. These simulations can provide valuable insights into the expected
changes in vibration responses due to different types and severities of damage. Data-driven
approaches involve analyzing large data sets of vibration signals obtained from healthy and
damaged structures to identify patterns or signatures associated with damage. Machine
learning algorithms, such as classification or anomaly detection algorithms, can be trained
using these data sets to automatically detect and classify damage based on vibration data.
Alternatively, probability-based algorithms can be used. Ideally, a deterministic and precise
correlation exists between the observed indicator and the damage measure (degree of
damage), as shown in Figure 3.
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While alarm thresholds play an essential role in ensuring both structural safety and sat-
isfactory serviceability, there is a notable lack of guidance available to engineers regarding
their establishment. For instance, neither Eurocode 7 nor the existing application guidelines
offer detailed advice on this matter. This deficiency in guidance becomes particularly
problematic when employing the observational method, where the alarm threshold dictates
when design adjustments are necessary.

Some of the notable works concerning damage detection through reliability-based
alarm thresholds are as follows:

Johan Spross et al. [77] introduced a comprehensive computational algorithm for
determining reliability-based alarm thresholds in civil engineering structures. The algo-
rithm utilizes subset simulation with independent-component Markov Chain Monte Carlo
(MCMC) and is applicable to both analytical models and finite element models for assessing
the limit state function. The threshold is set to ensure the fulfillment of the target failure
probability, if observations remain within the defined threshold. This concept is particularly
suited for sequentially loaded structures, where observations contribute to predicting the
ultimate behavior.

Sattele et al. [78] introduced a methodology for assessing threshold-based Early Warn-
ing Systems (EWSs) designed for natural hazards. Their proposed reliability method
involves the Probability of Detection (POD) and Probability of False Alarms (PFA). The au-
thors illustrated the formulation of EWSs effectiveness, a metric indicative of risk reduction,
as a function of POD and PFA. To model the EWS and quantify its reliability, the authors
devised a framework grounded in Bayesian networks. This framework was subsequently
expanded to encompass a decision graph, offering a platform for optimizing the warning
system. This integrated approach provides a systematic means of evaluating and enhancing
the performance of threshold-based EWSs for natural hazards. The proposed framework of
Sattele et al. [78] is summarized in Figure 4.
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3.2. Stiffness Degradation Evaluation

Stiffness degradation refers to the reduction in the structural stiffness of bridge com-
ponents over time due to various factors such as material degradation, loading, and envi-
ronmental effects. Monitoring stiffness degradation can help detect changes in structural
behavior, such as increased deflections or shifts in natural frequencies, which may indicate
the presence of damage or deterioration. Techniques such as modal analysis, finite element
modeling, and strain measurement can be employed to assess stiffness degradation and
identify potential structural issues before they lead to failure. Some localization techniques
rely on identifying irregularities in the deflected shape of the structure [34,79–81]. These
methods are based on accurately determining the modal characteristics of the structure, and
particularly the deflected shape. Achieving this requires high-spatial-resolution sensors,
high-quality measurements, and reliable signal processing. One significant advantage
of vibration-based damage identification methods is their ability to detect damage at a
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global level using sensors that may not be deployed close to the damage location, which
is generally unknown. Stiffness loss estimation can be accomplished using response-only
approaches, either by utilizing sensor data exclusively, or by employing physical-based
models like finite element models. Most of these methods capitalize on the relationship
between local stiffness loss and the corresponding variation of curvature, which serves as
the damage-sensitive feature. This involves double differentiation of displacement data
obtained from a dense and distributed network of sensors. However, using such dense sen-
sor arrays can increase the overall cost of the monitoring system. Additionally, estimating
curvature from noisy recorded responses can be challenging. To address these issues, some
researchers have proposed methods that identify curvature variations without explicitly
computing curvatures or by using numerical validation through finite element approaches.
This is particularly useful when experimental data directly associated with damaged struc-
tures are limited. Fortunately, the availability of data recorded on benchmark structures
offers an opportunity to validate the effectiveness of these methods for damage localization
in real-world conditions. The interested readers are referred to [82] to learn more about
individual methodologies based on modal and operational shapes, shape variation due to a
loss of stiffness, methods based on curvature, and methods based on the indirect detection
of curvature changes.

3.3. Corrosion Detection

Corrosion is a common problem in bridge structures, particularly in areas exposed
to harsh environmental conditions or de-icing salts. Corrosion can weaken structural
elements, leading to reduced load-carrying capacity and increased susceptibility to failure.
Corrosion in metallic components of bridges, such as cables, reinforcements, connections,
or girders, can significantly degrade bridge performance, necessitating the monitoring of
corrosion to identify critical degradation requiring maintenance. Even though researchers
have delved into this topic over the past two decades, it is important to recognize that the
scientific literature may not be as extensive on this topic as it is for other issues. However,
this should not mislead the reader into thinking that corrosion-related problems are any less
critical or prevalent. Challenges related to corrosion losses and diagnostics on pre-stressed
rebars or post-tensioned tendons do indeed exist and are commonly addressed through the
utilization of conventional or advanced non-destructive evaluation methods. Monitoring
corrosion using techniques such as electrical resistance sensors, ultrasonic testing, or visual
inspection can help assess the extent of corrosion damage and prioritize maintenance or
repair efforts. Early detection of corrosion allows for timely intervention to prevent further
deterioration and ensure the long-term durability of bridges.

Morris et al. [83] investigated the effects of local variables on rebar corrosion and
proposed a criterion for evaluating rebar corrosion based on concrete electrical resistivity
measurements. The study involved two exposure conditions, a seashore environment and
partial immersion in a saline solution, with variations in water-to-cement ratios and initial
chloride ion additions. The results demonstrated that electrical resistivity can effectively
assess the potential for steel corrosion, and that concrete mix design, environmental expo-
sure conditions, and initial chloride concentration influence the rebar corrosion process.
Notably, this study did not involve the monitoring or testing of specific bridges.

Deeble Sloane et al. [84] presented a strategy to monitor the eventual corrosion of
high-strength steel wires in suspension bridges through a sensor network assessing the
environmental conditions and deterioration of main cables indirectly. The strategy underwent
testing on a full-scale mock-up cable, recording temperature, Relative Humidity (RH), and
corrosion rate levels. The sensor network successfully provided valuable insights into the
cable’s interior environment. Although the observed trend was not consistent throughout the
mock-up cable cross-section, RH values emerged as robust indicators of corrosion rate levels.

For in-depth study, the reader is referred to the pertinent literature addressing cor-
rosion detection through electrochemical methodologies [85–87] and physical-based ap-
proaches [88,89].
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3.4. Fatigue Crack Length

Fatigue cracks develop in bridge components subjected to repeated loading and
unloading cycles, such as vehicular traffic or wind-induced vibrations. Monitoring fa-
tigue crack length is essential for assessing the progression of damage and predicting
the remaining fatigue life of the structure. The initiation and propagation of these cracks
stem from stress concentration induced by minor defects in the material. The nucleation
and accumulation of such defects culminate in the development of fatigue cracks. The
early stages of these cracks are typically characterized by minute dimensions, rendering
their detection challenging. Additionally, depending on the loading conditions and struc-
tural configurations, these cracks may progress swiftly, thereby compromising structural
integrity [90].

It is crucial to note that if bridges undergo inadequate inspection and maintenance,
fatigue cracks have the potential to evolve into critical threats, particularly for fracture-
critical bridges [91]. This underscores the imperative need for vigilant monitoring and
proactive maintenance practices to avert catastrophic failures in bridge structures.

Timely detection of fatigue cracks helps to initiate appropriate maintenance inter-
ventions. Techniques such as non-destructive testing (e.g., ultrasonic testing, magnetic
particle inspection) and visual inspection can be used to measure and monitor fatigue crack
length over time. By tracking crack growth rates and identifying critical crack lengths,
engineers can implement appropriate maintenance and repair strategies to mitigate the
risk of structural failure. Presently, visual inspection stands as the predominant method
for fatigue cracks detection in highway bridges within the United States [92]. Nonetheless,
this approach is characterized by its inherent drawbacks, including high costs, labor inten-
siveness, and susceptibility to errors owing to the minute dimensions of cracks and the
minimal contrast between the crack and its adjacent metallic surface [93].

Various advanced technologies have been proposed for monitoring the initiation
and/or propagation of fatigue cracks, encompassing methods such as acoustic emission [94],
piezoelectric sensors [95], Lamb wave techniques [96], and vibration analysis [97].

Despite their potential, these methodologies are confronted with challenges, including
intricate setups, sophisticated data processing algorithms, and susceptibility to noise,
underscoring the need for continued refinement and development in this domain.

3.5. Sensors and the Issue of Drift

The reliability of sensors is crucial for a successful implementation of SHM and its
effective integration with regular inspections. As sensors age along with the monitored
structure, they may experience a drift phenomenon, which is a gradual and often linear
or exponential decrease in accuracy. Thus, sensor drift refers to the gradual change in
sensor output over time due to environmental factors, aging, or calibration errors. Sensor
drift can compromise the accuracy and reliability of SHM systems, leading to false alarms
or missed detections of damage. If not properly monitored, drift can lead to unnoticed
inaccuracies, potentially causing false positives or, in worst-case scenarios, false negatives.
False positives trigger on-site inspections to verify alarms, while false negatives may result
in critical damage being overlooked until the next bridge inspection cycle.

Engineers and SHM specialists face the challenge of developing methods and strategies
to address or eliminate drift due to sensor aging without incurring high costs that negate
the economic advantages of wireless sensors over wired technology. Although wireless
sensors have become relatively inexpensive, labor costs associated with replacing them can
be significant, and, in certain cases, it poses a considerable safety risk.

While there is currently no standardized approach to correct drift, various methods
have been researched. Calibrating sensors regularly and implementing temperature com-
pensation techniques can help mitigate sensor drift. Temperature variations can affect
sensor performance, so incorporating temperature sensors or using temperature com-
pensation algorithms can adjust for these effects. Redundancy and fault-tolerant sensor
configurations can also improve the reliability of SHM systems in the presence of sensor
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drift. By using multiple sensors to monitor the same structural parameter, discrepancies
or drift in individual sensor readings can be identified and corrected. Advanced signal
processing techniques, such as adaptive filtering or system identification methods, can
be employed to estimate and compensate for sensor drift in real time. These techniques
continuously monitor sensor outputs and adjust calibration parameters or filter settings
accordingly to maintain accuracy.

Another method involves clustering sensors in specific regions rather than using
individual sensors [97]. By evaluating the detections from all sensors in the cluster and
determining a uniform baseline, sensors can be recalibrated to a reference “zero-line”,
establishing the detectable threshold from that point. This recalibration can be achieved
manually using remote computers or by utilizing auto-calibrating sensors. Additionally,
the approach relies on recognizing skewed data and excluding them from the results to
prevent errors. Implementing these methods is essential for maintaining sensor accuracy
and the overall effectiveness of SHM systems.

3.6. Impact of Environmental Factors and Operational Conditions

The impact of environmental factors and operational conditions on the effectiveness of
SHM techniques is indeed a critical aspect that requires thorough consideration. Variations
in temperature, humidity, and traffic loads can significantly influence the performance and
reliability of vibration-based monitoring methods discussed in the review.

Environmental factors such as temperature variations and humidity levels can af-
fect the material properties of structures, leading to changes in their dynamic response
characteristics. For instance, temperature fluctuations can cause thermal expansion and
contraction, leading to alterations in structural stiffness and damping properties. Simi-
larly, variations in humidity levels can affect the moisture content of materials, thereby
influencing their mechanical behavior and structural response to dynamic loads.

Operational conditions, such as varying traffic loads, induce changes in the structural
loading patterns, resulting in fluctuations in the dynamic response of the monitored system.
High traffic loads can impose dynamic forces on the structure, leading to increased struc-
tural vibrations and potentially affecting the accuracy of vibration-based SHM methods in
detecting damage or anomalies. Given the significant influence of these environmental and
operational factors on SHM techniques, there is a clear need for standardized protocols to
account for these variables in SHM practices. Standardized protocols would provide guide-
lines for monitoring and controlling environmental conditions during data acquisition, as
well as methodologies for incorporating operational load variations into the analysis of
structural health.

By establishing standardized protocols, researchers and practitioners can ensure con-
sistency and reliability in SHM assessments across different environmental and operational
conditions. This would enhance the accuracy and effectiveness of vibration-based mon-
itoring methods, ultimately contributing to the advancement of SHM practices and the
maintenance of infrastructure safety and integrity.

However, in the context of railway bridges, it is worth noting that the impact of
changes in operational conditions may be somewhat mitigated compared to other types
of bridges. Unlike highway or road bridges, where traffic loads can vary significantly
due to factors such as vehicle type, speed, and volume, the operational conditions for
railway bridges tend to be more standardized. Railway traffic typically involves trains
with relatively consistent configurations and loading patterns, especially in comparison to
the diverse mix of vehicles found on highways or roads. As a result, the dynamic loading
induced by trains on railway bridges tends to exhibit less variability, which can lead to
more predictable structural responses. The standardized nature of railway traffic can
influence the reliability of vibration-based monitoring methods for railway bridges, as the
structural dynamics are subject to more uniform loading conditions. This can simplify the
interpretation of monitoring data and enhance the accuracy of damage detection algorithms,
as the effects of varying operational conditions are less pronounced.
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As a final comment, understanding the influence of environmental factors and op-
erational conditions on the reliability of vibration-based SHM techniques is essential for
developing robust monitoring strategies. Standardized protocols tailored to account for
these variables would facilitate more accurate and consistent SHM assessments, thereby
improving the reliability and effectiveness of structural health monitoring practices.

3.7. Emerging Technologies and Methodologies

Emerging technologies in SHM can be identified in fiber optic sensors and wireless
sensors, which are currently revolutionizing the way structural health is monitored and
maintained. Fiber optic sensors and wireless sensors represent promising technologies
for structural health monitoring, offering enhanced sensitivity, flexibility, and efficiency
compared to traditional monitoring techniques. As these technologies continue to advance,
they are expected to play a significant role in ensuring the safety and longevity of critical
infrastructure worldwide.

Fiber optic sensors are increasingly being utilized in SHM due to their numerous advan-
tages. These sensors use optical fibers to detect changes in strain, temperature, pressure, and
other parameters within structures. Fiber optic sensors offer high sensitivity, enabling the
detection of small changes in structural conditions. Multiple sensors can be multiplexed along
a single fiber, allowing for distributed sensing over long distances. Fiber optic sensors are
immune to electromagnetic interference, making them suitable for use in harsh environments.
Moreover, they are resistant to corrosion, making them suitable for long-term monitoring
applications. Another significant advantage is that fiber optic sensors can provide real-time
data, allowing for an immediate response to structural changes or failures.

Wireless sensors are another emerging technology that is gaining traction in SHM [98].
These sensors eliminate the need for physical wiring, offering several benefits. First, they
are easier to install compared to traditional wired sensors, reducing installation time
and costs. They also enable remote monitoring of structures, allowing engineers to assess
structural health without being physically present at the site. Another significant advantage
is that wireless sensor networks can be easily scaled up or down, making them suitable
for monitoring structures of varying sizes and complexities. Many wireless sensors are
designed to operate on low power, extending their battery life and reducing maintenance
requirements. Finally, wireless sensors facilitate the collection and transmission of data to
centralized servers or cloud platforms, enabling easy access to monitoring data for analysis
and decision making.

Emerging methodologies in SHM are leveraging cutting-edge technologies such as IoT
(Internet of Things) integration, big data analytics, deep learning, and Artificial Intelligence
(AI) to enhance the accuracy, efficiency, and reliability of monitoring systems. IoT inte-
gration involves the incorporation of interconnected sensors, actuators, and devices into
structural systems to collect and exchange data in real time. Sensors deployed throughout
structures continuously gather data on various parameters such as strain, vibration, temper-
ature, and corrosion. This real-time data collection enables engineers to monitor structural
health remotely, detect anomalies, and identify potential issues before they escalate into
critical failures. IoT integration facilitates predictive maintenance strategies, helping to
optimize asset management and reduce downtime and maintenance costs. This has recently
been achieved using big data analytics, which involves the processing and analysis of large
volumes of data generated by SHM systems to extract valuable insights and patterns.
Sophisticated algorithms and techniques are applied to identify correlations, trends, and
anomalies in the data collected from sensors. By analyzing historical and real-time data,
big data analytics can predict structural behavior, assess performance degradation, and
optimize maintenance schedules. Other technologies are emerging in the field of AI which
encompass various techniques including machine learning, expert systems, and natural
language processing applied to SHM. AI algorithms can analyze sensor data to diagnose
structural health issues, recommend maintenance actions, and optimize structural perfor-
mance. AI-powered decision support systems assist engineers in interpreting complex
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data and making informed decisions regarding maintenance, repair, and retrofitting of
structures. By leveraging AI, SHM systems can become more autonomous and adaptive,
enabling proactive management of structural assets and mitigating risks. Deep learning, a
subset of AI, involves training neural networks with large data sets to recognize patterns
and make predictions. In SHM, deep learning algorithms are employed to analyze sensor
data, identify structural defects, and predict potential failures. Deep learning models can
automatically learn complex relationships within the data, enabling more accurate and
reliable predictions compared to traditional methods. These models can also adapt and
improve over time as they are exposed to more data, leading to continuous enhancements
in predictive capabilities.

Overall, the integration of IoT, big data analytics, deep learning, and artificial intelli-
gence is transforming the field of structural health monitoring, enabling more proactive,
data-driven approaches to maintenance and asset management. The challenges highlighted
in the previous section, such as establishing damage thresholds and mitigating sensor
drift in vibration-based SHM applications, require a multi-faceted approach involving
experimental testing, numerical modeling, data-driven methods, sensor calibration, and
advanced signal processing techniques. Emerging technologies like fiber optic sensors
and wireless sensors, combined with emerging technologies like IoT integration, big data
analytics, and deep learning offer promising avenues for overcoming these limitations and
advancing the capabilities of SHM systems in real-world applications.

4. Conclusions

A comprehensive review of vibration-based condition monitoring techniques revealed
a plethora of diverse algorithms that make use of data in the time, frequency, and modal
domains. However, the scientific literature highlights the need for a homogenization of
approaches to utilizing measured vibration data for damage detection, localization, and
quantification. Particularly, there is a notable disagreement among researchers regarding
the sensitivity and measurability of modal parameter shifts caused by localized damage.
Furthermore, there has not been a universal algorithm proposed that can effectively identify
any type of damage in all types of structures. Similarly, the development of an algorithm
capable of accurately predicting the remaining service life of a structure remains an open
challenge. Some algorithms have demonstrated success in locating damage in a singular
location, while others have limitations in terms of the number of damage locations they
can effectively address.

Finally, despite some recent remarkable contributions, the alarm thresholds are still an
open challenge, because despite their essential role in ensuring both structural safety and
satisfactory serviceability being very clear, there is a notable lack of guidance available to
engineers regarding their practical application, and in most cases the followed approach is
based on experience gained in the field.

As the field of Structural Health Monitoring continues to advance, researchers and en-
gineers are actively working to address these challenges and develop more comprehensive
and versatile algorithms that can enhance the overall effectiveness of damage detection
and structural health assessment.
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