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Abstract: Aimed at the problem of human–machine interaction between patients and robots in the pro-
cess of using rehabilitation robots for rehabilitation training, this paper proposes a human–machine
interactive control method based on an independently developed upper limb rehabilitation robot. In
this method, the camera is used as a sensor, the human skeleton model is used to analyse the moving
image, and the key points of the human body are extracted. Then, the three-dimensional coordinates
of the key points of the human arm are extracted by depth estimation and spatial geometry, and
then the real-time motion data are obtained, and the control instructions of the robot are generated
from it to realise the real-time interactive control of the robot. This method can not only improve the
adaptability of the system to individual patient differences, but also improve the robustness of the
system, which is less affected by environmental changes. The experimental results show that this
method can realise real-time control of the rehabilitation robot, and that the robot assists the patient
to complete the action with high accuracy. The results show that this control method is effective and
can be applied to the fields of robot control and robot-assisted rehabilitation training.

Keywords: rehabilitation robot; interactive control; posture detection; mirror motion

1. Introduction

In recent years, with the change of lifestyle and the influence of aging, the number
of stroke patients has increased significantly, and about 60% of patients have upper limb
motor dysfunction after the disease. In the existing rehabilitation training programmes, the
robot-assisted training method has been sought after due to its high efficiency and good
rehabilitation effect, and the research on rehabilitation robots and their control systems has
gradually become an area of focus.

Many research teams have made good progress in the field of upper limb rehabilitation
robots. For example, some exoskeletal robots are controlled by surface electromyographic
signals [1], and some robots are driven by pneumatic muscle actuators [2] to assist users
in performing upper limb movements. ANYexo2.0 [3], with its unique motion structure
and bionic control shoulder coupling, allows users to train most everyday upper limb
movements and interact with real objects. However, such devices typically have a complex
structural design, take up a large amount of space and are not easy to carry. To solve this
problem, people began to study desktop upper limb rehabilitation robots. For example,
the cable-driven three-degree of freedom rehabilitation robot [4], and a desktop upper
limb rehabilitation robot [5] designed by a team from Changzhou University based on the
McNamm wheel, which abandoned the complex structure of the exoskeleton and avoided
the problem of large size common to end-pull robots. A similar rehabilitation system is
ArmAssist [6], a rehabilitation platform that can not only automatically assess the athletic
ability of the user, but also help the therapist to provide remote supervision.

In terms of an interactive control system, Meng et al. proposed an active interactive
controller based on motion recognition and adaptive impedance control [7], and applied
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it to a 6-DOF parallel lower limb rehabilitation robot. Guo et al. proposed an interactive
control method of a lower limb exoskeleton robot using an adaptive admittance model [8].
Guang et al. proposed an interactive upper limb rehabilitation robot [9], which can display
the motion trajectory through a parallel mechanism and a non-equidistant screen on the
platform, and provide users with the most intuitive visual feedback. There are also many
similar robotic rehabilitation systems that have been designed with visual feedback [10,11],
which greatly improves user engagement in the process of use and enables them to achieve
better rehabilitation effects. At the same time, the robot control system, when combined
with the image processing method, has also achieved good results in the experiment. For
example, Hyung S.N. et al. proposed a robot treatment device that uses a visual assistant
algorithm to extract user intention [12]. Similarly, the precision control system of an upper
limb rehabilitation robot proposed by Bang et al. is based on camera image processing [13].

At present, many treatment programmes combined with rehabilitation robots have
been applied, but such methods have not been able to achieve large-scale promotion and
popularisation. Specific reasons include, but are not limited to, the high cost of equipment,
the complexity of operating the systems, and the need for medical staff to provide guidance.
Also, the fact that many systems need to be set up and adapted for different users before
use, which increases time costs.

Therefore, in this study, we proposed an interactive control method of an upper limb
rehabilitation robot based on image processing. This method uses a monocular camera
to capture motion images, uses a human skeleton model to analyse the human node in
the image, and then extracts the coordinates of the upper limb node by combining the
space geometry method to calculate the motion data of the upper limb and generate
control instructions accordingly, realising the real-time control of the robot. This method
can improve the adaptability of the system to individual differences and environmental
changes, and reduce the difficulty of system operation, thus solving the problem of the
current interactive control system being too difficult to popularize on a large scale.

2. System Structure
2.1. Overall Structure of Interactive Control Systems

The overall structure of the system is shown in Figure 1. The system is composed of
the following parts.
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(1) Table-top upper limb rehabilitation robot. This paper selects an upper limb rehabil-
itation robot designed by Shenyang Aerospace University in China, which supports both
active and passive movement, and aims to meet patients’ needs for rehabilitation training
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at home. To achieve this goal, the overall design of the robot focuses on a compact structure
and easy operation, and the main structure of the robot is divided into an omnidirectional
mobile platform at the bottom and a mechanical movement unit at the top. Such a design
ensures that patients have sufficient room to move during rehabilitation exercises, and the
robot has the characteristics of small size and offers convenient use.

(2) USB camera. The camera selected in this paper is produced by Shenzhen Tafeike
Technology Co., Ltd., Shenzhen, China. It is used to capture motion images to extract
human motion data as input signals for the control system. Compared with cognitive
human–computer interaction for biological signal acquisition, although the performance
of physical human–computer interaction in the interaction process is not as intuitive and
natural as the former, it is more stable and will not cause large errors due to individual
differences and environmental changes. Considering that some limbs of stroke patients
still have the ability to move after the disease, the movement data of the healthy limbs is
chosen as the input signal of the control system. The use of image analysis can not only
greatly improve the adaptability of the control system to individual differences, but also
reduce the effect of environmental changes and improve the robustness of the system.

(3) Laptop. The laptop used in this paper is made by Dell in Xiamen, China. It is
used to analyse the motion image, extract the motion information and generate control
commands. The generated commands are transmitted to the Arduino board of the lower
computer via serial communication to realize the control of the robot. At the same time,
the host computer also provides an interactive interface for rehabilitation training, and the
user can receive the task instruction of the movement through the interactive interface, and
then perform the corresponding action.

2.2. Mechanical Structure of Rehabilitation Robot

The robot part of this system selects a self-developed desktop upper limb rehabilitation
robot [14], and its overall structure and freedom diagram are shown in Figure 2. The robot
is mainly divided into two parts: wrist rehabilitation mechanism and omnidirectional
mobile platform. Among them, the omnidirectional mobile platform adopts the design
of MY wheel set [15,16], which can carry the same or more weight in a smaller size while
ensuring mobility.
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Figure 2. Overall structure and freedom of upper limb rehabilitation robot.

The schematic diagram of the upper limb rehabilitation robot in actual use is shown in
Figure 3. The patient should place his forearm on the arm rest, hold the foremost grip of his
hand and perform the wrist rehabilitation movements of palmar/dorsiflexion, radial/ulnar
flexion and forearm rotation using the three-degrees-of-freedom wrist rehabilitation actua-
tor. Elbow flexion/extension and horizontal shoulder rotation are performed by the robot
moving on the table in all directions to provide upper extremity rehabilitation training.
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Figure 3. Schematic diagram of upper limb rehabilitation robot: (a) passive movement and
(b) active movement.

The patient can perform both passive and active movements with the help of the
robot. The interactive mode designed in this paper is shown in Figure 3b. By analysing the
motion image of the patient’s healthy arm captured by the monocular camera, the motion
data are obtained, and then new instructions are generated to realise the real-time control
of the robot.

3. Control Method

The structure block diagram of the interactive control method proposed in this paper
is shown in Figure 4. Firstly, the interactive interface gives the task instructions, and the
patient moves the healthy measuring limbs to perform corresponding actions according
to the requirements after receiving the instructions. The camera captures the patient’s
movement process in real time, obtains the movement data of the patient’s healthy arm by
analysing the motion picture, updates the control command of the rehabilitation robot in
real time, and assists the patient’s sick arm to complete the movement, thus realizing the
patient’s real-time interactive control of the robot.

Machines 2024, 12, x FOR PEER REVIEW 4 of 5 
 

 

by the robot moving on the table in all directions to provide upper extremity rehabilitation 
training. 

The patient can perform both passive and active movements with the help of the ro-
bot. The interactive mode designed in this paper is shown in Figure 3b. By analysing the 
motion image of the patient’s healthy arm captured by the monocular camera, the motion 
data are obtained, and then new instructions are generated to realise the real-time control 
of the robot. 

  
(a) (b) 

Figure 3. Schematic diagram of upper limb rehabilitation robot: (a) passive movement and (b) active 
movement. 

3. Control Method 
The structure block diagram of the interactive control method proposed in this paper 

is shown in Figure 4. Firstly, the interactive interface gives the task instructions, and the 
patient moves the healthy measuring limbs to perform corresponding actions according 
to the requirements after receiving the instructions. The camera captures the patient’s 
movement process in real time, obtains the movement data of the patient’s healthy arm 
by analysing the motion picture, updates the control command of the rehabilitation robot 
in real time, and assists the patient’s sick arm to complete the movement, thus realizing 
the patient’s real-time interactive control of the robot. 

 
Figure 4. Block diagram of control system of rehabilitation robot. 

3.1. Motion Data Analysis Based on a 2D Image 
Mediapipe is an open-source multimedia processing framework developed by 

Google, in which the skeleton frame can be used to detect and track human bone key 
points in real time. Based on deep learning and computer vision technology, it uses a loss 
function to optimize model performance and improve model stability [17,18]. It not only 

Figure 4. Block diagram of control system of rehabilitation robot.

3.1. Motion Data Analysis Based on a 2D Image

Mediapipe is an open-source multimedia processing framework developed by Google,
in which the skeleton frame can be used to detect and track human bone key points in real
time. Based on deep learning and computer vision technology, it uses a loss function to
optimize model performance and improve model stability [17,18]. It not only shows good
accuracy in detecting key points, but also shows good robustness in processing tasks in
different scenes and under different lighting and occlusion conditions. It is very suitable
for identifying human motion information in real life.
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Usually, the methods for analysing video streams or images to obtain human body
information are to adopt deep learning methods or use depth cameras, but the former has
a large amount of computation, and the latter has high requirements on the environment
and equipment, which is not suitable for large-scale promotion. Therefore, this paper uses
a monocular camera to capture the image, analyses the image using a human skeleton
model, and calculates the two-dimensional coordinates of the upper limb joint points in
preparation for the subsequent solution of the three-dimensional coordinates.

The specific process of solving the three-dimensional coordinates is shown in Figure 5.
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When solving three-dimensional coordinates, the first step is to establish a world
coordinate system cantered on the patient. Due to the construction of the rehabilitation
robot, it can only move on a horizontal plane, and since the patient’s hand is always close
to the grip when using it, the coordinate system can be established with the surface of the
patient’s wrist as the horizontal plane and the centre of the patient’s body as the centre of
the circle, as shown in Figure 6. The monocular camera is positioned directly above the
patient to obtain the projection data of the upper limb on the horizontal plane. Before use, it
is necessary to measure the real data of the patient’s arm, i.e., the real lengths of AB and BC.
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Then, the key points of the human body are identified. After the monocular camera
streams the video to the host computer, it is analysed using a human skeletal frame. First,
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the OpenCV library is called to read an image for key point identification, here taking
a frame of the video image. The image is then pre-processed to meet the input requirements,
including resizing, colour space conversion and normalisation. Next, the model uses
a convolutional neural network for feature extraction and a detection algorithm to locate
the key points of the human body, which are finally given in the form of coordinates and
marked in the image.

According to the imaging principle, the length shown in the image taken by the
monocular camera is the projected length of the human body, i.e., the position and
two-dimensional coordinates of points A′, B′ and C are obtained through the skeleton.
As shown in Figure 6b, the height of the human elbow point B can be obtained from
Formulas (1) and (2) as follows:

θ1= arccos

∣∣B′C
∣∣

|BC| (1)∣∣BB′∣∣ = sin θ1 × |BC| (2)

Similarly, the height of the shoulder joint point A can be obtained, and the three-
dimensional coordinates of the key points of the upper limb can be calculated by combining
the two-dimensional coordinates of the three key points obtained; then, the movement data
of the upper limbs (joint velocity and angular velocity) can be calculated. Taking the wrist
joint as an example, the specific formula is as follows:

v =

√
[(x 2−x1)

2 +(y 2−y1)
2 +(z 2−z1)

2]

∆t
(3)

a =
(v2 − v1)

∆t
(4)

∆t—time interval, the interval between two image analyses;
x1, y1, z1—the coordinates of the wrist in the first image;
x2, y2, z2—the coordinates of the wrist in the second image.

The movement data of the shoulder joint and elbow joints were calculated in the same way.
At the same time, to further evaluate the patient’s movement, it is also necessary to

calculate the user’s joint angle. Assuming that the coordinate points of the shoulder joint,
elbow joint and wrist joint are A, B and C, respectively, the angle of the elbow joint can be
obtained from the following formula. The effect of the actual operation is shown in Figure 7.

∠B = arccos

( →
AB ×

→
BC

)
(|

→
AB|∗|

→
BC|)
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Considering the uncontrolled limb shaking that may occur in stroke patients, the
coordinate sequence was smoothed before extracting the motion data to reduce irregular
fluctuations in the data. According to the type and amount of data obtained from the host
computer, the local weighted regression algorithm is selected to smooth the data. As shown
in Figure 8a, the method needs to assign a certain weight to the points near each data point
to be calculated, and then perform normal regression based on the minimum mean square
error on this subset.

Machines 2024, 12, x FOR PEER REVIEW 8 of 9 
 

 

∑
k

T 2
i i i

i=1

1J(β)= (y -β x ) v(x )
k

 (9) 

xi, yi—coordinates of the fitting point; 
β—the best regression coefficient; 
v(xi)—the weight of the fit point. 
By repeating the above steps, all data points in the original sequence are fitted and 

the LOESS regression curve is obtained. The data points in the curve can be considered as 
the result of smoothing. Figure 8b shows the effect of using this method to process the 
time series of elbow joint angle changes; the fitted effect is shown in the figure. After pro-
cessing the coordinate sequence of the key points, the motion data of the patient’s healthy 
arm can be calculated through the coordinate points. 

  
(a) (b) 

Figure 8. (a) Schematic diagram of locally weighted regression and (b) data series fitting. 

3.2. Human–Computer Interactive Control 
After realizing the 3D pose construction and motion data extraction based on 2D im-

ages, the interactive control program of the rehabilitation robot is designed. Considering 
that the patient’s upper limb movement is relatively large in the process of rehabilitation 
training, in order to enable the robot to stably follow the upper limb movement of the 
human body, improve the accuracy and flexibility of control, and make the robot’s action 
closer to the human body, the PID algorithm is selected to introduce feedback control. By 
comparing the real-time motion data of the user’s wrist with the current motion state of 
the rehabilitation robot, a feedback loop is established. Then, the output of the controller 
is calculated by the ratio, integral and differential gain and current error to control the 
motion of the rehabilitation robot. 

The formula of PID control is as follows: 

t

P i d0

de(t)u(t)=K e(t)+K e(τ)dτ+K
dt∫  (10) 

KP—proportional gain; 
Ki—integral gain; 
Kd—differential gain; 
e(t)—error signal. 
In the process of programming the PID controller, the manual tuning method is cho-

sen to find the appropriate gain coefficient. After the manual tuning of the PID controller 
has been completed in Python, by observing the changes in the feedback signal, a set of 
gain coefficients with the best effect is finally selected. Based on this feedback control 
method, considering that the trajectory of the relevant movements of the upper limb will 
change due to the length difference of the user’s upper limb, the final control scheme also 

Figure 8. (a) Schematic diagram of locally weighted regression and (b) data series fitting.

First, the bandwidth factor is set, the window length is calculated, and the number
of samples involved in each fit is determined; k is the nearest positive integer. Secondly,
the data points in the sequence to be processed are selected and the weights are calculated
according to the distance between them and their neighbours.

The cubic weight function is selected for this calculation as follows:

u(xi) =
|x − xi|

∆(x)
(6)

W(u) =

{ (
1 − u3)3, 0 ≤ u < 1

0, u ≥ 1
(7)

u(xi)—the normalised distance between the sample point and the fit point in the X direction;
∆(x)—the distance between the furthest sample point and the fit point in the X direction;
W(u)—cubic weight function.

The reason for choosing a cubic weight function is that the system is mainly designed
for patients with hemiplegia caused by stroke. During rehabilitation robot training, the
patient’s arms may shake or move uncontrollably, so there will be many abnormal data
points in the collected data set. Compared to the quadratic weighting function, the cubic
weighting function gives less weight to sample points far from the target region and is less
sensitive to outliers. Therefore, it can better handle data abnormal points and reduce their
impact on the regression results.

The weights of the data points are calculated as follows:

v(xi) = W(
|x − xi|

∆(x)
) (8)

After calculating the weights, the best regression coefficient β and fitting point (x, y)
are calculated using the least squares method to minimise the loss function of locally
weighted regression. The loss function expression is as follows:

J(β) =
1
k

k

∑
i=1

(y i−βTxi

)2
v(x i) (9)
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xi, yi—coordinates of the fitting point;
β—the best regression coefficient;
v(xi)—the weight of the fit point.

By repeating the above steps, all data points in the original sequence are fitted and the
LOESS regression curve is obtained. The data points in the curve can be considered as the
result of smoothing. Figure 8b shows the effect of using this method to process the time
series of elbow joint angle changes; the fitted effect is shown in the figure. After processing
the coordinate sequence of the key points, the motion data of the patient’s healthy arm can
be calculated through the coordinate points.

3.2. Human–Computer Interactive Control

After realizing the 3D pose construction and motion data extraction based on 2D
images, the interactive control program of the rehabilitation robot is designed. Considering
that the patient’s upper limb movement is relatively large in the process of rehabilitation
training, in order to enable the robot to stably follow the upper limb movement of the
human body, improve the accuracy and flexibility of control, and make the robot’s action
closer to the human body, the PID algorithm is selected to introduce feedback control. By
comparing the real-time motion data of the user’s wrist with the current motion state of
the rehabilitation robot, a feedback loop is established. Then, the output of the controller is
calculated by the ratio, integral and differential gain and current error to control the motion
of the rehabilitation robot.

The formula of PID control is as follows:

u(t) = KPe(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)
dt

(10)

KP—proportional gain;
Ki—integral gain;
Kd—differential gain;
e(t)—error signal.

In the process of programming the PID controller, the manual tuning method is chosen
to find the appropriate gain coefficient. After the manual tuning of the PID controller has
been completed in Python, by observing the changes in the feedback signal, a set of gain
coefficients with the best effect is finally selected. Based on this feedback control method,
considering that the trajectory of the relevant movements of the upper limb will change due
to the length difference of the user’s upper limb, the final control scheme also introduces
the correction of the movement trajectory, and finally realizes the real-time control of the
rehabilitation robot. In this control system, xd represents the expected position of the end
of the experimenter’s arm on the side supported by the robot during movement. Assuming
that the shoulder joint of the healthy arm of the experimenter is point A, the elbow joint is
point B, and the wrist joint is point C, the coordinates of the three points A, B and C are
obtained by the three-dimensional coordinate extraction method. With reference to the
established coordinate system, it can be calculated by the mirror image method regarding
the expected coordinates of xd (−xc, yc, zc), and the rotation angle of the robot at this point
can be calculated by the vector BC. The calculation formula is as follows:

θ = −arctan(
yb−yc
xb−xc

) (11)

The specific control policies are shown in the following Figure 9.
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4. Rehabilitation Training Experiment

Mirror therapy is a rehabilitation treatment that uses visual feedback and mirroring
to create illusions to improve the motor function of the limb. The principle is that by
pre-senting the healthy limb and the affected limb symmetrically in the mirror, the patient
ob-serves the movement of the healthy limb in the mirror, thereby stimulating the brain’s
motor control of the affected limb. This illusionary stimulation can promote the remodelling
and recovery of the nervous system, improving the range of motion, coordination and
strength in the affected limb [19,20].

Based on this theory, we hope to help patients achieve true mirror movements through
the above interactive control method. This means that after the system detects the move-
ment of the patient’s healthy arm, it can control the rehabilitation robot to assist the patient’s
sick arm in performing the corresponding movement. For patients, rehabilitation robots
can help them move damaged limbs, exercise muscles and promote the recovery of athletic
ability; furthermore, robot-assisted mirror therapy can provide two-way feedback to the
patient’s brain and the affected limb, enhance the neuroplasticity process, and accelerate
the recovery of neurological function in patients after stroke [21]. And the reason we chose
the mirror experiment was to verify the performance of the interactive control system by
comparing the similarity between the robot’s auxiliary action and the original action.

The specific procedure of the experiment was as follows. The experimenter moved his
‘healthy arm’ to perform an action according to the prompts of the interactive interface, the
control system recognised the action, and controlled the rehabilitation robot to assist the
experimenter’s other arm to complete the mirror action. In this experiment, three groups of
movements were set up, namely shoulder joint horizontal swing, elbow joint horizontal
swing and joint collaborative movement, and each movement was tested 10 times. During
the experiment, angle sensors attached to both sides of the patient’s arm were used to
measure the angle changes of the patient’s corresponding joints during the experiment.
Finally, the two groups of time series obtained were analysed and the similarity between
them was calculated to verify the performance of the control system. The experimental
process and results are shown in Figure 10.

To evaluate the experimental results, the Dynamic Time Adjustment (DTW) algorithm
was selected to evaluate the similarity between the image motion and the original motion
assisted by the robot, so as to verify the accuracy of the motion under the control method.

The DTW algorithm was designed to calculate the similarity of time series, using
the idea of dynamic programming to calculate the shortest distance between different
time series to achieve the highest similarity. After long-term experimental research on
rehabilitation, it was verified that the DTW algorithm had achieved excellent results in the
rehabilitation medical field.
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Here are the steps to implement the DTW algorithm. First, assume that there are two
time series X and Y. {

X = x1, x2, . . . xi, xn
Y = y1, y2, . . . yi, ym

(12)

Then, define an n × m matrix D, where D[i,j] is the distance between the i-th element
of X and the j-th element of Y. Define the same matrix C again, using C[i,j] as the minimum
distance from the first element of X to the i-th element, and from the first element of Y to the
i-th element. The first step in the calculation is to initialise the boundary, i.e., to calculate
the first row and the first column of C:

C[1, 1] = D[1, 1] (13)

For i = 2 to n, and j = 2 to m, calculate

C[i, j] = D[i, j] + min(C[i − 1, j − 1], C[i, j − 1], C[i − 1, j]) (14)

Finally, the resulting C[i,j] is the DTW distance between time series X and Y, which
can be used to compare the similarity of the two actions.

5. Discussion

In order to verify the effectiveness of the rehabilitation robot, we conducted experi-
ments. Ten experiments were carried out for each of the three movements, and the time
series data of the corresponding joint angles of the two arms were collected. The DTW
algorithm was then used to analyse the similarity between the mirrored movement and the
original movement. The average similarity of the shoulder and elbow joints was calculated
for horizontal push-pull. The specific conclusion data are shown in the following Table 1.

Table 1. Similarity of bilateral arm movements.

1 2 3 4 5 6 7 8 9 10 Average

shoulder 88.8% 89.4% 86.7% 89.7% 87.6% 86.6% 85.9% 90.5% 85.0% 89.3% 87.95%
elbow 89.5% 87.1% 91.5% 87.6% 86.8% 86.3% 85.8% 89.4% 87.5% 85.5% 87.70%

push-pull 85.6% 88.8% 88.2% 87.4% 88.7% 88.0% 88.1% 89.5% 88.5% 89.0% 88.18%

From the information in the table, it can be seen that when training shoulder and elbow
movements, the mirror movements assisted by the rehabilitation robot are very similar
to the original movements, indicating that the control system has good control accuracy.
And compared with traditional mirror therapy, our experimental method, although it has
a certain delay, can help patients to practise practically and regain muscle movement.

To improve the real-time performance of the system, the image processing and coor-
dinate extraction programs of the system run at a frequency of twice per second, and the
generated instructions are transmitted via serial communication and then executed. The
whole control system will respond to the experimenter’s actions within 0.8 s. Combined
with the above two points, it can be assumed that the experimenter completed the mirror
movement. This shows that the interactive control method proposed in this paper is effec-
tive, that patients can complete the real-time control of the rehabilitation robot through this
method, and that the movement of the controlled robot has good real-time accuracy.

6. Conclusions

Due to the shortcomings of current rehabilitation training devices in human–machine
interaction, this paper proposes a new human–machine interaction control method based
on the existing omnidirectional mobile upper limb rehabilitation robot. Considering the
lack of the robustness of cognitive human–machine interaction and the need to improve
the adaptability of the interaction for different patients as much as possible, we choose
to use the motion information of the user’s own healthy arm as the input control signal.
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By analysing the motion images captured by the camera, the human skeleton model and
3D pose reconstruction method are used to obtain the user’s pose information and motion
information. This method can greatly improve the adaptability of the interaction mode to
individual user differences and environmental differences. At the same time, the upper
function generates new control instructions in real time and generates corrections according
to changes in the user’s motion data to modify the robot’s motion instructions. The user can
control the robot in real time by the feedback control method and ensure the accuracy of the
motion at the same time. The experimental results show that the mirror action assisted by
the rehabilitation robot has high real-time performance and high similarity to the original
action. Therefore, the interactive control method proposed in this paper has a good effect
and can be applied to the interactive control of the robot or the rehabilitation training of
the rehabilitation robot.

There are some limitations of the proposed method. Firstly, the motion data extraction
method proposed in this paper makes it difficult to extract the motion data of the hand part.
The finger is occluded or overlapped in the image during the actual movement process,
which makes it difficult to accurately locate the finger node. Because the distance between
the wrist joint and the finger joint is too short, the change in length in the image is not
obvious, and the calculation is prone to large errors, so the current method is only suitable
for extracting the motion data of the torso. Secondly, when measuring the length data of
the patients’ upper limbs before the experiment, the measurement results are prone to error
due to the manual measurement method. Finally, the control method can only be applied
to the upper limb rehabilitation robot mentioned in the paper at present, and it needs to be
modified and adjusted appropriately if it is to be applied to other devices.

Potential research directions. The main advantage of this method is that it is highly
adaptable, stable and easy to use. In the future, it can be combined with other types of
rehabilitation robots, such as lower limb rehabilitation robots, to design a rehabilitation
robot training programme that is easier to promote and use. At the same time, if the
recognition precision and accuracy of the system can be improved, it can be combined with
the hand rehabilitation robot to provide rehabilitation training programmes for the end
of the limb. Finally, the control system is not only applicable to the human body, but can
also be applied to the posture recognition and control of industrial equipment such as arm
robots in the future.
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