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Abstract: Failure mode and effects analysis (FMEA) helps to identify the weak points in the processing,
manufacturing, and assembly of products and plays an important role in improving product reliability.
To address the shortcomings of the existing FMEA methods in terms of the uncertainty treatment
of information and not considering the weights and correlations between risk factors, we propose
a new FMEA method. In this paper, the Fermatean fuzzy Z-number (FFZN) is proposed by fusing
the Fermatean fuzzy number and Z-number. Extending it to the Bonferroni mean (BM) operator,
the Fermatean fuzzy Z-number-weighted Bonferroni mean (FFZWBM) operator is proposed. A new
FMEA method is proposed based on this operator. In order to overcome the factors not considered in
the FMEA method, two new risk factors are proposed and added. The ability of experts to express
fuzzy information is enhanced by introducing the FFS. The weights and correlations between the
influencing factors can be handled by aggregating the evaluation information using the FFZWBM
operator. Finally, the proposed method is applied to an arithmetic example and the accuracy of the
proposed method is proved by teaming it with other methods.

Keywords: Fermatean fuzzy set; Bonferroni mean operator; failure mode and effects analysis

1. Introduction

FMEA is widely used in the manufacturing industry as an important tool for identi-
fying weaknesses in the production, manufacturing, and assembly of products. The use
of FMEA technology can quickly and efficiently identify the weak links in each link and
develop specialized improvement measures for the weak links, thus greatly improving
the reliability of the product. In the traditional FMEA technique, the occurrence rate (O),
severity (S), and detection rate (D) of failures are often used as evaluation indexes and
scored from 1 to 10. The product of the three scores is used as the risk priority number
for failure mode sequencing; the higher the score, the higher the risk of failure, and the
higher the priority needed to develop improvement measures. Due to the simplicity and
efficiency of the method, it is quickly being applied in the aerospace, automotive, nuclear,
electronics, chemical, and medical technology industries [1–4]. However, the traditional
FEMA technique still has some shortcomings, as follows, when applied to real-world
situations [5–7].

1. Failure to consider the weighting relationship between risk factors, ignoring the fact
that different risk factors are emphasized differently.

2. Experts are unable to take into account the ambiguity and uncertainty of the assess-
ment information when using traditional FMEA techniques for risk assessment. In
a complex decision-making environment, Yes, it retains its intended meaning make
them make biased risk assessments.

3. When traditional FEMA techniques are used for risk assessment, it is easy to achieve
results with the same assessment ordering; however, in practice, the failure modes
with the same ordering results may need to represent different meanings.
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To address several of these issues, researchers have studied FEMA in greater depth.
Xiao, LM et al. [8] developed a new FMEA methodology by considering the combined
weights of expert and risk factors. Liu, Y et al. [9] used the FBWM method to determine
the weight relationship between risk factors and identify the major failure modes of the
tool holder. Zhou, XL et al. [10] conducted a FMEA study on aircraft turbine rotor blades
using the uncertainty measure fuzzy metric to quantify the uncertainty of each expert
and as weights. These studies have improved the traditional FMEA method by studying
the weights among risk factors with good results. However, they neglected the problem
of correlation between the risk factors, and there is a certain correlation between the
reference factors, such as the detectability rate to a certain extent, which affects the statistical
probability of occurrence. By considering the weights and correlations among risk factors
comprehensively, better results can be obtained. Researchers introduced fuzzy sets into
FMEA to solve the problem of inaccurate assessment results [11,12]. Liu, HC [13] extended
VIKOR using triangular fuzzy numbers to refine the application of the FMEA methods
in risk assessment. These methods use fuzzy mathematics to capture the uncertainty
in the FMEA process, enhancing the accurate characterization of the assessment results.
However, they only consider the degree of information affiliation and ignore the effect
of non-affiliation on information uncertainty. To better account for uncertainty, Huang,
GQ [14] uses intuitionistic fuzzy sets combined with the rough set theory to solve the
problem of uncertainty in the assessment results. Xiao, LM [8] combines intuitionistic
fuzzy set theory and cloud modeling theory to propose that intuitionistic fuzzy cloud
further enhances the consideration of uncertainty in decision-making information and
improves the evaluation results. Intuitionistic fuzzy sets well reflect the subordination and
non-subordination situation of the information in the FMEA process, but the limitation
of the fuzzy spatial extent largely affects the ranking results. In order to further improve
the assessment accuracy qualitatively of the FMEA method, the researchers introduced
the fuzzy sets with larger fuzzy space into the FMEA method. Bonab, SR [15], considering
uncertainty in the FMEA process using Pythagorean fuzzy sets, clarifies high-risk failure
modes in water pollution.

In order to further enhance the uncertainty representation of decision-making in-
formation in the FMEA process, this paper proposes the use of the Fermatean fuzzy set
(FFS) [16] to express the degree of subordination and non-subordination of information
in the FMEA process. As an extension of an intuitionistic fuzzy set, the FFS has a larger
fuzzy space and better performance in expressing the uncertainty of information. The FFS
has also been intensively studied and used by researchers. Akram, M [17] extends the
COPRAS method using the FFS to propose new multi-criteria decision-making methods to
solve the practical problems of ranking food firms and supplier selection. Kirishi, M [18]
solved the biomedical material selection problem by combining the FFS with ELECTRE.
Rani, P [19] used the FFS to solve the uncertainty problem in the electric vehicle charging
station selection problem and illustrated the advantages of his method by comparison.
These applications illustrate that the FFS has greater advantages in dealing with problem
uncertainty and is more suitable for solving uncertainty in FMEA problems. Although
the FFS has a larger fuzzy space in expressing uncertainty in FMEA, it lacks the reliability
judgment of FMEA information, which will affect the accuracy of the assessment results.
The Z-number [20] has a great advantage in expressing the reliability of information in
the form of (A, B), where A is the uncertainty of the assessment information, and B is the
reliability of A. In order to solve the deficiency of the FFS in the reliability of information,
this paper introduces the Z-number and proposes to use the Fermatean fuzzy Z-number to
express the uncertainty in FMEA.

In order to be able to consider both the weighting relationships and correlations
between risk factors, this paper uses the Bonferroni mean (BM) to aggregate the assess-
ment information.

Researchers have solved many decision-making problems by using the BM operator.
Wang, J [21] solved the supplier selection problem in a green supply chain by proposing
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a new multi-attribute decision-making approach by extending the BM operator to the
2-tuple linguistic neutrosophic number. Also, in multi-attribute decision-making, the BM
operator has been extended by researchers to intuitionistic fuzzy sets [22–24], T-spherical
fuzzy sets [25], Pythagorean fuzzy sets [26–28], hesitant fuzzy sets [29,30], interval fuzzy
sets [31], etc., which constitutes a new aggregation operator that has achieved good results
in various fields. The BM operator, compared to other FMEA methods, such as TOPSIS,
ELECTRE, weighted average operator, geometric mean operator, etc., is not only able to
take into account the weight relationship between risk factors, but it can also deal with the
correlation between risk factors.

With the development of the times, the three risk factors, O, S, and D, defined in the
traditional FMEA, are no longer sufficient to meet the requirements of the FMEA techniques
in the present complex environment. In order to further improve the FMEA technique,
considering the high requirements of modern enterprises on economic and time costs, this
paper adds two risk factors of economic cost and time cost, so that the FMEA technique
can satisfy the requirements of modern industry.

Based on this, this paper proposes an improved FMEA method which has the follow-
ing advantages:

(1) The method proposed in this paper adopts FFZS to express the uncertainty of FMEA,
which enhances the uncertainty and reliability of FMEA information.

(2) The introduction of the BM operator simultaneously considers the weight relation-
ship and correlation between risk factors, expanding the scope of risk factors to
be considered.

(3) The introduced cost factor and time factor enhance the accuracy of the risk ranking results.

In Section 2, we introduce some of the concepts used. In Section 3, we derive some
Fermatean fuzzy Z-number BM operators and provide the proof procedure and ideal
properties of the operators. In Section 4, we provide a new FMEA method based on the
proposed aggregation operator, Section 5 provides a numerical case and a comparative
description of the methods, and Section 6 concludes.

2. FMEA Implementation

In an industrial environment, the implementation of the proposed FMEA methodology
requires a group of experts to come together for a meeting. However, too much execution
meeting time may delay the production schedule, and to minimize disruption to the team’s
work, the following process can be followed:

(1) Information on target product failures (failed components, failure modes, failure
frequencies, etc.) will be collected by technicians and can be extracted directly from
the failure maintenance records of the target product to reduce the workload.

(2) A small expert meeting, which may take the form of a videoconference, is held on the
basis of the fault information collected, and typical failure modes, assessment criteria,
and risk factor weightings are determined by joint decision-making.

(3) Each expert can individually rate the typical failure modes based on their own exper-
tise and in accordance with the evaluation criteria.

(4) A staff member will summarize the assessment results from the experts using the
new methodology proposed in this paper, and the summarization process can be
calculated using a computer via FFZBWM to produce the final risk ranking results of
the failure modes, to clarify the weaknesses, and to target the corrective actions.

Implementing FMEA in an industrial environment through the above process mini-
mizes disruption to the team’s process.

3. Preliminaries

In this part, we briefly introduce some fundamental concepts about the Fermatean
fuzzy number (FFN), Z-number, and Bonferroni mean (BM) operator, which will be used in
the following sections.



Machines 2024, 12, 332 4 of 14

Definition 1. Let X = {x1, x2, · · · , xn} be a finite nonempty set, and a Fermatean fuzzy set F in
X is an object having the form as follows:

F = {< x, µF(x), νF(x) >|x ∈ X} (1)

where µF(x) : X → [0, 1] and νF(x) :X → [0, 1] , including the condition (µF(x))
3 +(νF(x))

3 ≤ 1,
for all x ∈ X. The numbers µF(x) and νF(x) denote, respectively, the degree of membership and the
degree of non-membership of the element x in the set F. For every x ∈ X, we designate πF(x) as the

degree of indeterminacy of the FFS, where πF(x) = 3
√

1− µ3
F(x)− ν3

F(x). For convenience, simplify it

as πF = 3
√

1− µ3
F − ν3

F, where α = (µF, νF) is a FFN, and µ3
F + ν3

F ≤ 1.

Definition 2. The concept of the Z-number was first proposed by Zadeh in 2011. A Z-number is
defined as an ordered pair of fuzzy numbers Z = (S, T) , where S is the fuzzy restriction on the
value of X and T gives the reliability of S; here, X is a finite nonempty set.

Definition 3. Assume that FZ is a Fermatean fuzzy Z-number (FFZN) and Yes, it retains its
intended meaning universal set:

FZ = {µ(S, T)(x), ν(S, T)(x)|x ∈ N} (2)

where the funtion µ(S, T)(x) : N → [0, 1] and ν(S, T)(x) : N → [0, 1] are constructed as follows:

FZ = {µ(S, T), ν(S, T)} = {(µS, µT), (νS, νT)} (3)

It meets the following requirements:

0 ≤ µ(S)(x)3 + ν(S)(x)3 ≤ 1 (4)

0 ≤ µ(T)(x)3 + ν(T)(x)3 ≤ 1 (5)

Now, we will discuss the properties of Fermatean fuzzy Z-numbers, which are already discussed
in Definition 3.

Definition 4. Let FZ1 = {µ1(S, T), ν1(S, T)} = {(µS1, µT1), (νS1, νT1)} and
FZ2 = {µ2(S, T), ν2(S, T)} = {(µS2, µT2), (νS2, νT2)} be two Fermatean fuzzy Z-numbers
(FFZNs) and w > 0; then, their operations are defined as follows:

(1) FZ1 ⊇ FZ2 if and only if µS1 ≥ µS2, µT1 ≥ µT2 and νS1 ≤ νS2, νT1 ≤ νT2.
(2) FZ1 = FZ2 if and only if FZ1 ⊇ FZ2 and FZ1 ⊆ FZ2.
(3) FZ1 ∪ FZ2 = {(µS1 ∨ µS2, µT1 ∨ µT2), (νS1 ∧ νS2, νT1 ∧ νT2)}.
(4) FZ1 ∩ FZ2 = {(µS1 ∧ µS2, µT1 ∧ µT2), (νS1 ∨ νS2, νT1 ∨ νT2)}.
(5) FC

Z = {(νS, νT), (µS, µT)}.

(6) FZ1 ⊕ FZ2 =
{
( 3
√

µ3
S1 + µ3

S2 − µ3
S1µ3

S2, 3
√

µ3
T1 + µ3

T2 − µ3
T1µ3

T2), (νS1νS2, νT1νT2)
}

.

(7) FZ1 ⊗ FZ2 =
{
(µS1µS2, µT1µT2), ( 3

√
ν3

S1 + ν3
S2 − ν3

S1ν3
S2, 3
√

ν3
T1 + ν3

T2 − ν3
T1ν3

T2)
}

.

(8) w · FZ =

{
( 3
√

1 − (1 − µ3
S)

w, 3
√

1 − (1 − µ3
T)

w
), (νw

S , νw
T )

}
.

(9) Fw
Z =

{
(µw

S , µw
T ), (

3
√

1 − (1 − ν3
S)

w, 3
√

1 − (1 − ν3
T)

w
)

}
.

Definition 5. Let FZ = {(µS, µ), (νS, νT)} ∈ FFZNs. Then, the score and accuracy function are
defined, respectively, as follows:

S(FZ) =
1 + µSµT − νSνT

2
(6)
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H(FZ) = µSµT + νSνT (7)

where S(FZ) ∈ [0, 1], H(FZ) ∈ [0, 1]. The larger the score S(FZ) is, the greater the FFZN FZ is.
And the larger the accuracy degree H(FZ) is, the greater the FFZN FZ is.

Definition 6. Let ψj(j = 1, 2, . . . , n) be a set of positive real numbers and r, t ≥ 0. Then, the
Bonferroni mean (BM) operator is defined as follows:

BMr,t(λ1, λ2, . . . , λn) =

(
1

n(n − 1)
n
⊕

i,j=1
ψr

j ⊗ ψt
i

) 1
r+t

(8)

4. Some Fermatean Fuzzy Z Number Bonferroni Mean Operators
4.1. Fermatean Fuzzy Z-Number Bonferroni Mean Operator (FFZBM)

Definition 7. Let λi = {(µSi, µTi), (νSi, νTi)}(i = 1, 2, · · · , n) be a collection of FFZNs. Then,
the FFZBM operator is defined as follows:

FFZBMr,t(λ1, λ2, . . . , λn) =

(
1

n(n − 1)
n
⊕

i,j=1
λr

j ⊗ λt
i

) 1
r+t

(9)

Theorem 1. Let λi = {(µSi, µTi), (νSi, νTi))}(i = 1, 2, · · · , n) be a collection of FFZNs; then, the
aggregated value by using the FFZBM operator is also a FFZN, and

FFZBMr,t(λ1, λ2, . . . , λn)

=



(
1 −

(
n
∏

i,j=1l ̸=j

(1− uSr
i
· uSt

j

)3
) 1

n(n−1)


1
3(r+t)

,

(
1 −

(
n
∏

i,j=1l ̸=j

(1− ur
Ti
· ut

Tj

)3
) 1

n(n−1)
) 1

3(r+t)

,(
1 −

(
n
∏

i,j=1i ̸=j

(
2 −

(
1 − v3

Si
)r −

(
1 − v3

Sj

)t
−
(

1 −
(
1 − v3

Si
)r
)(

1 −
(

1 − v3
Sj

)t
)) 1

n(n−1)
)

1
r+t

) 1
3
))

,(
1 −

(
n
∏

i,j=1i ̸=j

(
2 −

(
1 − v3

Ti
)r −

(
1 − v3

Tj

)t
−
(

1 −
(
1 − v3

Ti
)r
)(

1 −
(

1 − v3
Tj

)t
)) 1

n(n−1)
)

1
r+t

) 1
3
))


(10)

Proof of Theorem 1.

Let λi = {(µSi, µTi), (νSi, νTi)}, λj =
{
(µSj, µTj), (νSj, νTj)

}
.

Therefore, λr
i =

((
ur

Si
, ur

Ti

)
,

((
1 −

(
1 − v3

Si

)r) 1
3
,
(

1 −
(

1 − v3
Ti

)r) 1
3

))
and

λt
j =

((
ut

Sj
, ut

Tj

)
,

((
1 −

(
1 − v3

Sj

)t
) 1

3
,
(

1 −
(

1 − v3
Tj

)t
) 1

3
))

.

Thus,

λr
i ⊗ λt

j =

(ur
Siu

t
Sj, ur

Tiu
t
Tj

)
,


(

2 −
(
1 − v3

Si
)r −

(
1 − v3

Sj

)t
−
(

1 −
(
1 − v3

Si
)r
)
×
(

1 −
(

1 − v3
Sj

)t
)) 1

3

,
(

2 −
(
1 − v3

Ti
)r −

(
1 − v3

Tj

)t
−
(

1 −
(
1 − v3

Ti
)r
)
×
(

1 −
(

1 − v3
Tj

)t
)) 1

3
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Hence,

n
⊕

i,j=1

(
λr

i ⊗ λt
j

)
=

(
1 −

(
n
∏

i,j=1i ̸=j

(
1 − ur

Si
· ut

Sj

)3
)

, 1 −
(

n
∏

i,j=1i ̸=j

(
1 − ur

Ti
· ut

Tj

)3
))

,
n
∏

i,j=1i ̸=j

(
2 −

(
1 − v3

Si
)r −

(
1 − v3

Sj

)t
−
(

1 −
(
1 − v3

Si
)r
)(

1 −
(

1 − v3
Sj

)t
)) 1

3
,

n
∏

i,j=1i ̸=j

(
2 −

(
1 − v3

Ti
)r −

(
1 − v3

Tj

)t
−
(

1 −
(
1 − v3

Ti
)r
)(

1 −
(

1 − v3
Tj

)t
)) 1

3


Therefore,

(
1

n(n−1)

n
⊕

i,j=1

(
λr

i ⊗ λt
j

)) 1
r+t

=

(
1 −

(
n
∏

i,j=1l ̸=j

(1− ur
Si
· ut

Sj

)3
) 1

n(n−1)
) 1

3(r+t)

,

(
1 −

(
n
∏

i,j=1l ̸=j

(1− ur
Ti
· ut

Tj

)3
) 1

n(n−1)
) 1

3(r+t)

,(
1 −

(
n
∏

i,j=1i ̸=j

(
2 −

(
1 − v3

Si
)r −

(
1 − v3

Sj

)t
−
(

1 −
(
1 − v3

Si
)r
)(

1 −
(

1 − v3
Sj

)t
)) 1

n(n−1)
)

1
r+t

) 1
3
))

,(
1 −

(
n
∏

i,j=1i ̸=j

(
2 −

(
1 − v3

Ti
)r −

(
1 − v3

Tj

)t
−
(

1 −
(
1 − v3

Ti
)r
)(

1 −
(

1 − v3
Tj

)t
)) 1

n(n−1)
)

1
r+t

) 1
3
))


This completes the proof. □

Theorem 2 (Commutativity). Let λi = {(µSi, µTi), (νSi, νTi))}(i = 1, 2, · · · , n),
λi =

{
(µSi, µTi), (νSi, νTi))

}
(i = 1, 2, · · · , n) be two collections of FFZNs. Through using

the FFZBM operator, if λi ≥ λi(i = 1, 2, · · · , n),

FFZBMr,t(λ1, λ2, · · · , λn) ≥ FFZBMr,t(λ1, λ2, · · · , λn
)

Theorem 3 (Boundedness). Let λi = {(µSi, µTi), (νSi, νTi))}(i = 1, 2, · · · , n) be a collection of
FFZNs, and let

λmin = {min(µSi, µTi), max(νSi, νTi)} = {(min(µSi), min(µTi)), (max(νSi), max(νTi))}

λmax = {max(µSi, µTi), min(νSi, νTi)} = {(max(µSi), max(µTi)), (min(νSi), min(νTi))}

Then, λmin ≤ FFZBMr,t(λ1, λ2, · · · , λn) ≤ λmax

Theorem 4 (Idempotency). Let λi = {(µSi, µTi), (νSi, νTi))}(i = 1, 2, · · · , n) be equal, i.e.,
λi = λ = {(µS, µT), (νS, νT))}(i = 1, 2, · · · , n) for all i, then,

FFZBMr,t(λ1, λ2, · · · , λn) = λ = {(µS, µT), (νS, νT)} (11)
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4.2. Fermatean Fuzzy Z-Number-Weighted Bonferroni Mean (FFZWBM) Operator

Definition 8. Let λi = {(µSi, µTi), (νSi, νTi))}(i = 1, 2, · · · , n) be a collection of FFZNs,
and ω = (ω1, ω2, · · · , ωn)

Tbe the weight vector of λi, where ωiindicates the importance degree

of λi, satisfying ωi ∈ [0, 1]and
n
∑
i

ωi = 1. Then, the FFZWBM operator is defined as follows:

FFZWBMr,t(λ1, λ2, . . . , λn) =

(
1

n(n − 1)
n
⊕

i,j=1

(
ωjλj

)r ⊗ (ωiλi)
t

) 1
r+t

(12)

Theorem 5. Let λi = {(µSi, µTi), (νSi, νTi))}(i = 1, 2, · · · , n) be a collection of FFZNs, and
ω = (ω1, ω2, · · · , ωn)

T be the weight vector of λi , where ωi indicates the importance degree of λi,

satisfying ωi ∈ [0, 1] and
n
∑
i

ωi = 1. Then, the aggregated value by using the FFZWBM operator is

also a FFZN, and

FFZWBMr,t(λ1, λ2, . . . , λn)

=



(
1 −

(
n
∏

i,j=1l ̸=j

(
1 −

(
1 −

(
1 − u3

Si

)ωi
)r

·
(

1 −
(

1 − u3
Sj

)ωj
)t
)

1
n(n−1)

) 1
3(r+t)

,(
1 −

(
n
∏

i,j=1l ̸=j

(
1 −

(
1 −

(
1 − u3

Si

)ωi
)r

·
(

1 −
(

1 − u3
Sj

)ωj
)t
)

1
n(n−1)

) 1
3(r+t)

,(
1 −

(
1 −

(
n
∏

i,j=1i ̸=j

(
2 −

(
1 − v3ωi

Si

)r
−
(

1 − v
3ωj

Sj

)t
−
(

1 −
(

1 − v3ωi
Si

)r)(
1 −

(
1 − v

3ωj

Sj

)t
)) 3

n(n−1)
)

1
r+t

) 1
3
))

,(
1 −

(
1 −

(
n
∏

i,j=1i ̸=j

(
2 −

(
1 − v3ωi

Ti

)r
−
(

1 − v
3ωj

Tj

)t
−
(

1 −
(

1 − v3ωi
Ti

)r)(
1 −

(
1 − v

3ωj

Tj

)t
)) 3

n(n−1)
)

1
r+t

) 1
3
))



(13)

Proof. The proof is similar to Theorem 1. □

Theorem 6 (Commutativity). Let λi = {(µSi, µTi), (νSi, νTi))}(i = 1, 2, · · · , n),
λi =

{
(µSi, µTi), (νSi, νTi))

}
(i = 1, 2, · · · , n) be two collections of FFZNs. Through using

the FFZBM operator, if λi ≥ λi(i = 1, 2, · · · , n),

FFZWBMr,t(λ1, λ2, · · · , λn) ≥ FFZWBMr,t(λ1, λ2, · · · , λn
)

Theorem 7 (Boundedness). Let λi = {(µSi, µTi), (νSi, νTi)}(i = 1, 2, · · · , n) be a collection of
FFZNs, and let

λmin = {min(µSi, µTi), max(νSi, νTi)} = {(min(µSi), min(µTi)), (max(νSi), max(νTi))}

λmax = {max(µSi, µTi), min(νSi, νTi)} = {(max(µSi), max(µTi)), (min(νSi), min(νTi))}

Then, λmin ≤ FFZWBMr,t(λ1, λ2, · · · , λn) ≤ λmax

Theorem 8 (Idempotency). Let λi = {(µSi, µTi), (νSi, νTi))}(i = 1, 2, · · · , n) be equal, i.e.,
λi = λ = {(µS, µT), (νS, νT))}(i = 1, 2, · · · , n) for all i, then,

FFZWBMr,t(λ1, λ2, · · · , λn) = λ = {(µS, µT), (νS, νT)} (14)
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5. New Method

A novel FMEA method based on the proposed FFZWBM operator is given in this
section. The proposed method is more applicable to problems that require the consideration
of a correlation between two risk factors and is not applicable to problems that require
the consideration of a correlation between a larger number of risk factors. The method
consists of two main parts: the preparation part of the decision-making information and
the data processing phase. Decision-making information preparation stage: The expert
team lists typical failure modes based on the statistically obtained failure information and
provides the scores of different risk factors for each failure mode as well as the weighting
relationships of different risk factors. Decision-making phase: the information given by
the expert team is aggregated using the method proposed in this paper, and the final
sorting result is given according to the scoring function; the specific process is described in
Steps 1–Step 5.

Suppose {E1, E2, . . ., En} is a set of failure modes. {L1, L2,. . ., Lm} are the risk factors

and have the weight vector ω = (ω1, ω2, · · · , ωn), satisfying ωi ∈ [0, 1] and
n
∑
i

ωi = 1.

The given decision scheme is H =
[

hij

]
m × n =

[
(µSij, µTij), (νSij, νTij)

]
m × n, where µSij

denotes the decision information affiliation of the Lj risk factor of the failure mode of the
bit Ei, µTij denotes the decision information non-affiliation, νSij denotes the reliability of
µSij, and νTij denotes the reliability of µTij.

In this paper, a new FMEA method is proposed using the FFZWBM aggregation
operator, and the method steps are shown in Figure 1.
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Step 1. Normalizing assessment information according to Equation (15)

hij =

{ (
(µSij, µTij), (νSij, νTij)

)
, for benefit factor(

(νSij, νTij), (µSij, µTij)
)
, for cost factor

(15)

When hij is a benefit-type attribute, the information matrix remains unchanged.
When hij is a cost-based attribute, the membership and non-membership degrees of

the FFZ fuzzy sets change their positions.
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Step 2. The decision-making information for each failure mode is summarized by the
FFZWBM operator hi, and the aggregation operator is as follows:

hi = FFZWBM
(
hi1, hi2, · · · , hin

)

=



(
1 −

(
n
∏

i,j=1l ̸=j

(
1 −

(
1 −

(
1 − u3

Si

)ωi
)r

·
(

1 −
(

1 − u3
Sj

)ωj
)t
)

1
n(n−1)

) 1
3(r+t)

,(
1 −

(
n
∏

i,j=1l ̸=j

(
1 −

(
1 −

(
1 − u3

Si

)ωi
)r

·
(

1 −
(

1 − u3
Sj

)ωj
)t
)

1
n(n−1)

) 1
3(r+t)

,(
1 −
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n
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i,j=1i ̸=j
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Si
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The different risk factor scoring information for each failure mode is aggregated by
the above aggregation operator, where hin is the nth risk factor scoring result for the i-th
failure mode.

Step 3. By aggregating the results hi, the score and accuracy values for the ith failure
mode are calculated based on the score function and accuracy function in Definition 5.

Step 4. With the score and accuracy values obtained in step 3 for the different failure
modes, all the failure modes are sorted according to the comparison method in Definition 5,
and the sorting results are obtained.

Step 5. End.

6. Example

The FMEA methodology proposed in this paper aims to guide companies and re-
searchers to obtain typical failure modes of the study object through failure mode scoring in
order to identify the weaknesses and develop targeted modifications. The proposed method
is a new approach improved on the traditional FMEA method, and in this section, the
proposed method is used to analyze the tool holder assembly of a CNC machine tool. The
effectiveness of the method is verified by comparing it with other methods. The method in
this paper is carried out by selecting experts who are familiar with the target research object
when the component expert team is selected, and in order to ensure the reasonableness of
the expert team, different types of researchers are selected as much as possible to carry it
out, such as engineers, PhDs, and teachers, who are familiar with the research object, who
are selected in this paper. When determining the typicality failure mode and risk factor
weight relationship, the expert team carried out teamwork.

6.1. Numerical Example

CNC tool holders are subject to many unexpected failures during use. In order to
complete the risk analysis of the failure modes, a FMEA team, DMt (t = 1, 2, 3), consisting of
three experts, was formed. The first expert was a reliability engineer with a master’s degree
who had worked in the reliability assessment industry for four years. The second expert
was a PhD mechanic who had worked in the field of CNC machine tools for five years. The
third expert was a professor who specializes in the reliability analysis of CNC machine tools
and has written numerous articles and books on the subject, with more than eight years of
academic experience. Based on the experience and data provided by the factory, the FMEA
team members chose to analyze eight failure modes that were relatively important for the
servo tool holder. The evaluation team evaluated and analyzed the CNC tool holder failure
modes and identified eight failure modes as follows: E1, the cutter cannot be rotated; E2,
the power head cannot be rotated; E3, poor positioning accuracy; E4, the tool cannot be
locked; E5, tool holder rattling; E6, hydraulic oil leakage; E7, power head rattling; and E8,
poor power head rotation accuracy. Table 1 shows the table of the failure mode information
that was screened by the experts.
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Table 1. Failure modes of CNC tool holders.

Number Failure Mode Fault Impact Cause of Failure

E1 Cutter cannot be rotated Tool holder does not work Motor failure
E2 Power head cannot be rotated Tool holder does not work Motor failure
E3 Poor positioning accuracy Reduced accuracy of tool holder machining Poor positioning accuracy
E4 Cutter cannot be rotated Tool holder does not work Motor failure
E5 Tool holder rattling Reduced tool holder life Gear damage
E6 Hydraulic oil leakage Tool holder does not work Damaged seal
E7 Power head rattling Power head accuracy exceeds the standard Bearing wear
E8 Poor power head rotation accuracy Reduced accuracy of tool holder machining Power head bearing wear

Risk factors are added to the traditional FMEA method by considering five risk factors:
L1, probability of failure; L2, failure severity; L3, detection difficulty; L4, time cost; and L5,
economic cost. According to the type and probability of occurrence of the failure data of
the CNC tool holder, the expert team, combined with their own work experience and the
actual needs of the production, provides a reasonable weight ratio for the five risk factors
and the weight vector of the five risk factors is determined as W = [0.3, 0.4, 0.1, 0.1, 0.1].
The experts used FFZN to evaluate each failure mode. We then ranked the failure modes
using the new methodology. Table 2 shows the results of the assessment information given
by the expert team.

Table 2. Evaluation matrix for expert team.

Failure Mode L1 L2 L3 L4 L5

E1
{(0.2, 0.8),
(0.5, 0.7)}

{(0.7, 0.6),
(0.5, 0.7)}

{(0.6, 0.7),
(0.4, 0.8)}

{(0.4, 0.5),
(0.6, 0.6)}

{(0.3, 0.7),
(0.7, 0.7)}

E2
{(0.6, 0.7),
(0.4, 0.6)}

{(0.8, 0.7),
(0.2, 0.6)}

{(0.6, 0.8),
(0.4, 0.8)}

{(0.7, 0.7),
(0.3, 0.6)}

{(0.6, 0.5),
(0.4, 0.5)}

E3
{(0.6, 0.8),
(0.4, 0.7)}

{(0.5, 0.7),
(0.5, 0.7)}

{(0.5, 0.8),
(0.5, 0.6)}

{(0.6, 0.6),
(0.4, 0.5)}

{(0.6, 0.6),
(0.4, 0.7)}

E4
{(0.8, 0.7),
(0.2, 0.7)}

{(0.9, 0.8),
(0.1, 0.7)}

{(0.7, 0.8),
(0.3, 0.7)}

{(0.8, 0.7),
(0.2, 0.6)}

{(0.6, 0.7),
(0.4, 0.8)}

E5
{(0.2, 0.8),
(0.8, 0.6)}

{(0.3, 0.7),
(0.7, 0.7)}

{(0.6, 0.8),
(0.4, 0.8)}

{(0.6, 0.7),
(0.4, 0.7)}

{(0.5, 0.7),
(0.5, 0.6)}

E6
{(0.2, 0.7),
(0.8, 0.8)}

{(0.2, 0.6),
(0.8, 0.7)}

{(0.5, 0.7),
(0.5, 0.7)}

{(0.6, 0.6),
(0.4, 0.6)}

{(0.4, 0.6),
(0.6, 0.6)}

E7
{(0.2, 0.8),
(0.8, 0.8)}

{(0.1, 0.8),
(0.9, 0.7)}

{(0.4, 0.7),
(0.6, 0.8)}

{(0.5, 0.7),
(0.5, 0.8)}

{(0.6, 0.5),
(0.4, 0.6)}

E8
{(0.2, 0.7),
(0.8, 0.8)}

{(0.5, 0.8),
(0.5, 0.7)}

{(0.4, 0.6),
(0.6, 0.7)}

{(0.6, 0.7),
(0.4, 0.6)}

{(0.5, 0.6),
(0.5, 0.6)}

Step1. Unifying decision information.
Since all property values in this case are of the same type, no normalization is required.
Step2. Using the FFZWBM operator, all assessment information was summarized, and

the results are shown in Table 3.
Step3. The score values for each failure mode are derived from the score function in

Definition 5, and the results are shown in Table 2.
Step4. All the failure modes are ranked according to the score values obtained from

fault 4, and the ranking results are shown in Table 2.
Step5. End.
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Table 3. Aggregation results by FFZWBM operator.

Failure Mode Comprehensive Evaluation Score

F1 {(0.5601, 0.7703), (0.3702, 0.5523)} 0.6135
F2 {(0.7658, 0.7901), (0.1765, 0.4601} 0.7619
F3 {(0.6597, 0.8072), (0.3079, 0.4814)} 0.6922
F4 {(0.8635, 0.8406), (0.1054, 0.5523)} 0.8338
F5 {(0.5639, 0.8406), (0.4131, 0.5293)} 0.6277
F6 {(0.4972, 0.7437), (0.4879, 0.5293)} 0.5558
F7 {(0.4927, 0.8116), (0.5236, 0.6127)} 0.5396
F8 {(0.5515, 0.7857), (0.4014, 0.5293)} 0.6104

Rank F4 > F2 > F3 > F5 > F1 > F8 > F6 > F7

6.2. Comparing with the Other Operators

In order to validate the effectiveness of the proposed methodology, the proposed
methodology was compared to the Fermatean fuzzy Z-number-weighted aggregation
(FFZWA) operator and traditional FMEA methods. The sorting results of the three methods
are shown in Table 4. Figure 2 shows the scores of the different methods, and Figure 3
shows the different sorting results.

Table 4. Results of different methods.

Method Rank

FFZWBM F4 > F2 > F3 > F5 > F1 > F8 > F6 > F7
FFZWA F4 > F2 > F3 > F5 > F8 > F1 > F6 > F7

Traditional FMEA F4 > F2 > F1 = F3 > F8 > F5 >F6 > F7
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The case applications of the three methods lead to the following conclusions:

1. Failure mode F4 is in the first place in the results of all three methods, and failure
mode F7 is in the last place, which proves the effectiveness of the method of this paper.

2. The traditional FMEA method provides the results of the failure mode F1 = F3; this
paper proposes a method and the FFZWA method that F3 > F1. In practice, the failure
mode F1 for the tool holder cannot be rotated; the severity of its degree of severity is
higher than the failure mode F3’s poor positioning accuracy. However, the probability
of the occurrence of F1 is much lower than F3, and the failure mode F3 positioning
accuracy is an important observation index of the CNC tool holder, so it should have
a higher degree of concern. Thus, the failure mode F3 sorting results should be higher
than failure mode F1, which also shows that the traditional FMEA method is purely
in the shortcomings.

3. The results obtained from the method proposed in this paper are as follows: F1 > F8.
Conversely, the results from the FFZWA method indicate F8 > F1. Specifically, F1 refers
to the inability to rotate the tool holder for the failure mode, while F8’s power head
rotation accuracy is poor. In actual working conditions, the tool holder’s inability
to be indexed directly affects the working condition of the tool holder with high
severity, and at the same time, its severity has a certain correlation with the detectable
condition, which should also be considered when considering the sorting results.
The poor rotational accuracy of the power head is less severe in the severity of the
failure mode, but the detection of its failure mode requires more complex detection
equipment and is also more expensive in terms of economic and time costs. Using the
FFZWBM method proposed in this paper, the scoring values of different risk factors
are aggregated, and the values of parameters r and t are set to clarify the correlation
between different risk factors. For example, in this case, the correlation between
failure mode severity and monitorability is considered, and the parameters r and t are
set to 1 for these two items and 0 for the other items. Therefore, it is more reasonable
to rank failure mode F1 before failure mode F8. Obtaining this result also indirectly
proves the necessity of considering the correlation between risk factors.

7. Conclusions

In this paper, we propose FFZN by combining the advantages of FFS and the Z-number
and extend the BM operator on the basis of FFZN to propose the FFZWBM operator. A
new FMEA method is proposed using the proposed FFZWBM operator, which has a
good effect on the uncertainty and ambiguity of FMEA while considering the weight
relationship and correlation between the hazard factors. This makes the ranking results
of the proposed method more reasonable, and in order to meet the demand for the FME
methods in technological progress, this paper extends the hazard factors of the traditional
FMEA method by including the time and economic costs as newly added hazard factors.
This improves the FMEA technique and makes it more responsive to the needs of modern
technology. The proposed method is applied to a set of CNC tool holder cases and the
effectiveness and rationality of the proposed method is verified by comparative analysis
with the traditional FMEA method and FFZWA method.

In our future research work, we will further explore the refinement of the FMEA
methodology. Although the method in this paper has great advantages in terms of uncer-
tainty and ambiguity, it still cannot exclude the assessor’s preference, so it is important to
study the objective scoring method to provide more accurate ranking results.
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