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Abstract: Artificial neural networks (ANNs) provide supervised learning via input pattern assessment
and effective resource management, thereby improving energy efficiency and predicting environmen-
tal fluctuations. The advanced technique of ANNs forecasts diesel engine emissions by collecting
measurements during trial sessions. This study included experimental sessions to establish technical
and ecological indicators for a diesel engine across several operational scenarios. VALLUM01, a novel
tool, has been created with a user-friendly interface for data input/output, intended for the purposes
of testing and prediction. There was a comprehensive collection of 12 input parameters and 10 output
parameters that were identified as relevant and sufficient for the objectives of training, validation,
and prediction. The proper value ranges for transforming into fuzzy sets for input/output to an ANN
were found. Given that the ANN’s training session comprises 1,000,000 epochs and 1000 perceptrons
within a single-hidden layer, its effectiveness can be considered high. Many statistical distributions,
including Pearson, Spearman, and Kendall, validate the prediction accuracy. The accuracy ranges
from 96% on average, and in some instances, it may go up to 99%.

Keywords: artificial neural networks (ANNs); data validation problems; engine’s emissions; diesel
engine

1. Introduction

Many technical and industrial problems [1] (predicting output parameters based
on predicted or implied influencing factors) are addressed and solved by choosing the
correct approximation function and evaluating the nature of the correlation [2]. However,
this type of task quickly becomes too difficult when (a) there are many parameters that
potentially influence the phenomenon, (b) the correlation is weak and insignificant, and
(c) the previous approximations of a linear nature do not work or work with a large error.
Many natural processes in complex nonlinear systems occur at very low speeds [3]. Over
time, the process accelerates and approaches saturation [4]. In this case, it is possible to
use artificial intelligence implementations that can solve atypical, incorrect, or large-scale
sampling tasks.

An artificial neural network is a basic network consisting of an input layer, an output
layer, and one or more intermediate neuron layers [5]. The main advantage of this network
is that it evaluates input patterns after training [6]. For such a network, supervised learning
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can be organized based on examples where input and output are linked by an event, or,
in other words, a cause forms an effect (for example, experimental results of physical
phenomena or function values obtained by an unknown formula, etc.). The essence of
ANN training is that the desired output can be produced within a given error tolerance.

Artificial intelligence (AI) refers to the simulation of human intelligence in computer
systems designed to solve problems in a human way [7]. AI systems are designed to analyze
data, recognize patterns, make decisions, and improve over time through iterative learning
processes or decision-making. Artificial intelligence can be used to monitor and manage
resources [8], optimize energy consumption [9], and predict environmental changes to help
address climate-related issues [10]. AI’s main realization is ANN, which is based on the
properties of biological neural networks. The structure and activity of the animal brain are
modelled as a mathematical network of interconnected nodes (perceptron) divided into
several layers: input, hidden, and output.

Several fundamental textbooks are interesting for understanding the newly developed
paradigms of artificial neural networks. Zurada [11] defines the focus of the study of
artificial neural systems. “Artificial neural systems are physical cellular systems that can
acquire, store, and utilise experiential knowledge”. Multilayer feedforward networks are
presented and discussed in a user-friendly form. Rabunal et al. [12] described the processes
of brain learning and the corresponding mathematical operations built up according to the
analogy to brain activity. According to Rabunal, two main advantages of ANN are adaptive
learning and fault tolerance. Adaptive learning is the ability to learn to perform tasks based
on a training session that consists of selecting data specific to the task. Fault tolerance refers
to the ability of a network to maintain its previous functions after a partial destruction of
the network results in a corresponding performance degradation. Goodfellow et al. [13]
presented the paradigm of deep learning, which allows a computer to construct complex
concepts from simpler concepts. A significant example of a deep learning model is a
multilayer perceptron (MLP). A mathematical function in the form of MPL associates some
set of input values with output values. Torres-Sospedra [14] presented and discussed
several design methods that are important for expanding the ANN. Lou [15] presented and
discussed the abilities of neural networks, which belong to a subfield of machine learning.

Implementations of ANN for technical purposes (control and prediction of exhausts)
were described in a series of contemporary publications.

Firstly, problems of data sampling must be solved within the framework of Big Data. Li
et al. [16] presented a study that introduces a high-throughput fuel screening approach for
early property-oriented fuel design in internal combustion engines. This process includes
Tier 1 fuel physicochemical property screening and Tier 2 chemical kinetic screening.
Ahmad et al. [17] claim that machine learning (ML) is one of the major driving forces
behind the fourth industrial revolution. This study reviews the ML applications in the
life cycle stages of biofuels, i.e., soil, feedstock, production, consumption, and emissions.
The ML applications in the production stage include the estimation and optimization of
quality, quantity, and process conditions. Usman et al. [18] presented the ANN-2HL-15 N
model, among six trained models, which demonstrated exceptional efficiency in predicting
operational effectiveness and discharge levels in small-scale single-cylinder SI engines.
Its performance under optimal operating conditions improved emissions, CO, and HC
emissions, as well as combustion. The combination of ANN and RSM promotes sustainable
industrialization, conscientious consumption, and ethical production patterns, supporting
SDGs 9 and 12.

Secondly, the implementation of ANN must be realized in a standalone manner as well
as in close collaboration with other AI algorithms. Deng et al. [19] described the possibilities
of ANN for engine application purposes (testing and diagnostics). Several models, such
as the basic model for a fuel path control system, ANN to represent air flow rate, the
Nox prediction ANN model, and the smoke prediction ANN model, are presented and
estimated. Xing et al. [20] examine various aspects of control related to biodiesel production.
Identifying unknown nonlinear relationships between the system input and output data is
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not easy. Therefore, accurate and swift modelling instruments like M) or AI are necessary to
design, handle, control, optimize, and monitor the system. Aliramezani et al. [21] presented
ICE modelling for meeting emission regulations and minimizing fuel consumption. ML can
tackle these challenges by addressing areas such as combustion knock detection, emission
formation modelling, mode transition, combustion noise modelling, instability control, ICE
optimization, and component fault diagnostics. Zhang et al. [22] studied a single model to
simulate CO2, CO, and Nox emissions from biodiesel combustion in compression ignition
engines. The authors used three machine-learning tools to model the complex MIMO-type
regression problem. The biodiesel source’s physical features were found to be the best, and
the MLS-SVR was the most reliable tool for estimating emissions. Khac et al. [23] present
ANN-based models for estimating nitrogen oxide and carbon dioxide emissions from a
maritime diesel engine’s in-cylinder pressure. Using data from a four-cylinder engine,
the models show MLP has higher accuracy than RBF, despite the engine’s conventional
nature and generalization to avoid overfitting. Žvirblis et al. [4] described the optimal
prediction model for exhaust emission parameters. The optimal model predicted most
engine emissions with high accuracy, but NOX remained unpredictable. The interaction
between injection timing and sound pressure remained statistically relevant. Engine
emissions from the DF and HVO50 groups were not statistically different, with higher
trends for PM, CO, HC, and NOX in the DF group. Injection timing had more influence on
the distribution of emission parameters.

The problem of an algorithm suitable for ANN could be treated as a classical problem
due to the impossibility of strong systematization of the calculation routine. Venkatesh
et al. [24] studied the usage of 29 machine learning algorithms to estimate engine emissions
in dual-fuel engines with hydrogen and diesel. The most effective algorithms included pace
regression, radial basis function regressors, multilayer perceptron regressors, k-nearest
neighbor, and alternating model trees. The J48 decision tree algorithm was used to establish
the relationship. Leo et al. [25] used the random forest algorithm for evaluating the
emissions of WCOB biodiesel with Al2O3 and FeCl3 in a gasoline-premixed HCCI-DI
engine. Results showed lower BTE, a 54.17% reduction in HC emissions, and decreased
carbon dioxide emissions. Al2O3 nano-additives reduced smoke emissions by 30.4%, 24.8%,
and 23.65%, respectively. Williams et al. [26] studied the random forest regression and
neural network models to predict the rate-of-injection (ROI) profiles of a diesel injector.
The neural network model performed better than the random forest model. Future work
could include considering pressure, parameters, and larger input data, as well as focusing
on ROI input in CFD simulations.

For prediction purposes, ANN is generally considered the most profitable model.
Bekesiene et al. [27] examined complex stress factors in military service using an ANN
model. Maximum accuracy was obtained using a multilayer perceptron neural network
(MLPNN) with a 6-2-2 partition. The best ANN model was determined as the one that
showed the smallest cross-entropy error. Jovanovic et al. [28] discussed how to implement
neural networks in different programming languages. Here, the implementation of an
arbitrary neural network in Java is examined. Godwin et al. [29] studied ANN and Ensem-
ble LS Boosting to predict the combustion, performance, and emission parameters of an
internal combustion engine using gasoline and ethanol blends. The ANN model demon-
strated near-perfect precision in predicting key engine parameters, while the Ensemble LS
Boosting model showed superior congruence with experimental engine parameters. The
ensemble nature, resistance to overfitting, and optimized hyperparameters contributed to
the Ensemble LS Boosting model’s outstanding performance.

This work is based on experimental studies of the combustion characteristics, energy,
and ecological indicators of a diesel engine carried out at Vilnius Tech.

The main aims of this work could be formulated as follows:

1. To construct an advanced tool with a user-friendly interface for data input and output
facilities to provide simulations and predictions of exhausts in outcomes.



Machines 2024, 12, 279 4 of 24

2. For an artificial neural network, construct the interfaces for input the layer and output
layer (number of parameters, intervals) according to the general working principles
of a diesel engine.

3. To establish the suitable parameters of ANN (number of hidden layers, amount of
perceptron in the hidden layer), the number of training epochs must be chosen, which
allows for the smallest deviation of the simulated value from the experimental value.

4. To provide the simulations and estimate simulated values within the framework of
statistical distribution.

Diesel engines rely on several chemical reactions to produce energy: (i) the combustion
reaction releases energy in the form of heat; (ii) the carbon and hydrogen atoms in the fuel
molecules combine with oxygen from the air to form carbon dioxide (CO2) and water (H2O),
along with the release of heat energy. In addition, the emissions may contain a wide variety
of exhausts (NO, CO, HC, etc.). Different power regimes and unstable nonequilibrium
states of combustion reactions are two factors that create uncertainty in the estimation and
prediction of exhaust emissions. The correlations between the parameters of the diesel
engine and the amount of exhaust products are weak and very weak. The presented paper’s
scientific novelty lies in its use of ANN to predict results based on experimental values
obtained during measurement sessions.

2. Materials and Methods
2.1. Experimental Test Equipment and Materials

A compression-ignition, direct fuel injection turbocharged VW-Audi engine 1.9 TDI
was used for experimental tests. Table 1 displays the engine’s main technical characteristics.

Table 1. Main parameters of a 1.9 TDI compression ignition. Adapted according to [30].

Parameter Units Value

Displacement, VH dm3 1.896
Number of cylinders, i - 4/OHC

Number of engine strokes, τ - 4
Compression ratio - 19.5

Power kW 66 (4000 rpm)
Torque Nm 180 (2000–2500 rpm)

Bore mm 79.5
Stroke mm 95.5

Fuel injection - Direct injection (single)
Nozzle type and holder assembly - Hole-type, two spring

Nozzle opening pressure bar 190

During the tests, the engine ran on a 100% renewable fuel—Hydrotreated Vegetable
Oil. Pure Hydrotreated Vegetable Oil (HVO100) and pure fossil diesel (D100) have been
tested in the laboratory [31] and meet the requirements of automotive fuel standards
EN15940 and EN 590 [31]. Table 2 displays a comparison of the main properties of HVO100
and pure diesel D100. In the experimental research, pure biodiesel HVO100 and pure
diesel D100 can be blended in different volume fraction percentages. This will change the
properties of these fuel blends.

The engine control unit (ECU) controls the exhaust gas recirculation (EGR) system on
the engine. During the test, the EGR system is disconnected from the ECU and controlled
by a separate controller, which allows the EGR influence to be studied over a wide range.
Similarly, the effect of the start of injection (SOI) on engine performance was investigated
by disconnecting the control of the fuel injectors from the ECU and by using a separate
controller to adjust the SOI. The actual SOI value is determined using a specialized VW-
Audi diagnostic tool VCDS [33], which is connected to the on-board diagnostics (OBD)
connector on the ECU. SOI units are crank angle degree before top dead centre (CAD
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bTDC), with a measurement accuracy of 0.5 CAD. A scheme of engine test equipment is
shown in Figure 1.

Table 2. Main properties of the fuels tested. Adapted according to [32].

Properties Units HVO100 EN 15940 D100 EN 590

Density at 15 ◦C g/mL 0.782 0.765–0.800 0.838 0.820–0.845
Kinematic viscosity at 40 ◦C cSt 2.876 2.000–4.500 2.9401 2.000–4.500

Cold filter plugging point ◦C –44 ≤+5. . . ≤–44 * –22 ≤+5. . . ≤–44 *
Pour point ◦C <–50 ≤–10 *. . . ≤–34 * –39 ≤–10 *. . . ≤–34 *
Flash point ◦C 65.0 > 55.0 74.8 >55.0

Water content % V/V 0.0021 ≤0.020 0.0028 ≤0.020
Lubricity µm 344 ≤460 406 ≤460

Cetane number - 74.3 ≥70 ~53 ≥51.0
Elemental composition (H) % 15.62 - 13.31 -
Elemental composition (C) % 84.38 - 86.69 -

C/H ratio 5.40 - 6.51 -
Stoichiometric air to fuel ratio (l0) kg air/1 kg fuel 15.10 - 14.50 -

Lower heating value (LHV) MJ/kg 43.63 ≈44 42.83 ≈43

* Severe winter and arctic grades.

Machines 2024, 12, x FOR PEER REVIEW 5 of 25 
 

 

Table 2. Main properties of the fuels tested. Adapted according to [32]. 

Properties Units HVO100 EN 15940 D100 EN 590 
Density at 15 °C g/mL 0.782 0.765–0.800 0.838 0.820–0.845 

Kinematic viscosity at 40 °C cSt 2.876 2.000–4.500 2.9401 2.000–4.500 
Cold filter plugging point °C –44 ≤+5… ≤–44 * –22 ≤+5… ≤–44 * 

Pour point °C <–50 ≤–10 *… ≤–34 * –39 ≤–10 *… ≤–34 * 
Flash point °C 65.0 > 55.0 74.8 >55.0 

Water content % V/V 0.0021 ≤0.020 0.0028 ≤0.020 
Lubricity µm 344 ≤460 406 ≤460 

Cetane number - 74.3 ≥70 ~53 ≥51.0 
Elemental composition (H) % 15.62 - 13.31 - 
Elemental composition (C) % 84.38 - 86.69 - 

C/H ratio  5.40 - 6.51 - 
Stoichiometric air to fuel ratio (𝑙 ) kg air/1 kg fuel 15.10 - 14.50 - 

Lower heating value (LHV) MJ/kg 43.63 ≈44 42.83 ≈43 
* Severe winter and arctic grades. 

The engine control unit (ECU) controls the exhaust gas recirculation (EGR) system 
on the engine. During the test, the EGR system is disconnected from the ECU and con-
trolled by a separate controller, which allows the EGR influence to be studied over a wide 
range. Similarly, the effect of the start of injection (SOI) on engine performance was inves-
tigated by disconnecting the control of the fuel injectors from the ECU and by using a 
separate controller to adjust the SOI. The actual SOI value is determined using a special-
ized VW-Audi diagnostic tool VCDS [33], which is connected to the on-board diagnostics 
(OBD) connector on the ECU. SOI units are crank angle degree before top dead centre 
(CAD bTDC), with a measurement accuracy of 0.5 CAD. A scheme of engine test equip-
ment is shown in Figure 1. 

 
Figure 1. Scheme of engine test equipment. 

The engine brake stand (KI-5543) is used to load the engine with the selected brake 
torque (MB). Brake torque loads of 30 Nm, 60 Nm, 90 Nm, and 120 Nm are used. The 
accuracy of the MB measurement is ±1.23 Nm. The engine speed was set to n = 2000 rpm 
and n = 2500 rpm. In order to ensure that the engine operates in a wide range of possible 
modes, the SOI and EGR strategies were varied during the testing at different speeds and 
loads. The results section contains more details on the experimental regimes (seven 
stages). 

Figure 1. Scheme of engine test equipment.

The engine brake stand (KI-5543) is used to load the engine with the selected brake
torque (MB). Brake torque loads of 30 Nm, 60 Nm, 90 Nm, and 120 Nm are used. The
accuracy of the MB measurement is ±1.23 Nm. The engine speed was set to n = 2000 rpm
and n = 2500 rpm. In order to ensure that the engine operates in a wide range of possible
modes, the SOI and EGR strategies were varied during the testing at different speeds and
loads. The results section contains more details on the experimental regimes (seven stages).

Fuel consumption was measured using an AMX 212F gravity scale, which measures
the fuel flow of 0.01. . .50 kg/h with an accuracy of ±0.1%. Air consumption was measured
with a BOSCH HFM 5 air mass meter, which measures an air flow rate of 8. . .370 kg/h with
an accuracy of ± 2%. An AVL DiCom 4000 gas analyser was used to measure pollutants.
CO2 measuring range 0. . .20%, accuracy ±0.1%; CO measuring range 0. . .10%, accuracy
±0.01%; HC measuring range 0. . .20000 ppm, accuracy ±1 ppm; NOx measuring range
0. . .5000 ppm, accuracy ±1 ppm; O2 measuring range 0. . .25%, accuracy ±0.01%; and
smokiness (opacity) measuring range 0. . .99.99%, accuracy ±0.01%. The engine characteris-
tics were calculated according to the routine equations presented in [34]. Engine braking
(loading) power:

PB =
MB·n
9549

, [kW]. (1)
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Engine load is converted to a specific value—brake means effective pressure:

BMEP =
MB·30·τ
VH ·9549

, [MPa]. (2)

The brake torques to be provided are equivalent to BMEPs of 0.2 MPa, 0.4 MPa,
0.6 MPa, and 0.8 MPa. Fuel consumption was measured using an electronic scale (SK-5000)
and a stopwatch, and the hourly fuel consumption B f was determined with an accuracy of
0.5%. Brake specific fuel consumption:

BSFC =
B f ·1000

PB
, [

g
kWh

]. (3)

Brake thermal efficiency (BTE) calculated by considering the power output of the
engine and the energy supplied by the fuel:

BTE =
PB·3.6

B f ·LHV
, (4)

The air inlet to the engine Bair is measured with a BOSCH HFM 5 air mass meter
(measuring range 8–370 kg/h, accuracy ±2%). Using information on fuel and air mass
consumption and the stoichiometric air to fuel ratio (l0), the excess air ratio is calculated:

λ =
Bair

B f ·l0
. (5)

The mass of exhaust gases returned to the cylinder is determined by considering the
mass of air intake into the cylinders when EGR is off (Bair) and the mass of air when EGR is
on (Bair_EGR) and the engine is running at the same load and speed:

BEGR = Bair − BairEGR , [
kg
h
]. (6)

EGR ratio:
EGR =

BEGR
Bair_EGR + BEGR

, (7)

The exhaust gas analyser AVL DICOM 4000 is used to measure the exhaust gas
composition—the volumetric concentration of various components. Carbon monoxide
(CO) measurement range 0–10% (vol.), accuracy 0.01%; carbon dioxide (CO2) measurement
range 0–20% (vol.), accuracy 0.1%; hydrocarbons (HC) measuring range 0–20,000 ppm
(vol.), accuracy 1 ppm; nitrogen oxides (NOx) measuring range 0–5000 ppm (vol.), accuracy
1 ppm; smoke opacity (SO) measurement range 0–99.99%, accuracy 0.01%. The mass flows
of individual exhausts (BCO, BCO2 , BHC, BNOx) are calculated by taking into account the
engine’s air and fuel consumption (Bair, B f ), the concentration of the exhausts, and their
specific properties. Specific emissions are the mass of exhaust per unit of engine power.
For example, specific emissions of CO include the following:

SCO =
BCO·1000

PB
,
[ g

kWh

]
, (8)

For other exhausts (SCO2, SHC, and SNOx), specific emissions are calculated in the
same way.

2.2. Data Collection

Input data consists of fuel properties (cetane number, volume fraction of HVO100,
C/H ratio, l0, λ, LHV, density) and engine control parameters (engine speed, BMEP, SOI,
EGR). The output data consists of the engine’s energy performance (BSFC, BTE), exhaust gas
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concentration (CO2, O2, NOx), and specific emissions (CO, CO2, HC, NOx, and smokiness).
The input data distribution ranges have been chosen because the engine can run on a wide
range of fuel compositions when varying the ratio of D100 to HVO100 in the fuel. Fuel
blends may also contain other additives that change the fuel properties. The engine can
operate over a wide range of loads and speeds, with different EGR and SOI settings in
different modes. The interval limits for the output parameters are based on the experience
of various experimental studies in different modes of engine operation. Tables 3 and 4
represent the experimental parameters of the diesel engine used for ANN as input and
output, respectively. Output parameters were divided into three clusters (according to
increased order index). The first cluster contains volumetric O2 concentration (R08), SNOx
(R04), and volumetric concentration of NOx (R09). The second cluster contains smoke (R00),
brake specific fuel consumption (BSFC) (R01), and brake thermal efficiency (BTE) (R02).
The third cluster contains SHC (R05), SCO (R03), volumetric CO2 concentration (R07), and
SCO2 (R06).

Table 3. Experimental parameters of diesel engine used for an ANN as the input parameters.

Index Abbr. Parameter Units
Interval

XMIN XMAX

0 P10 The excess air ratio (λ) - 1.0 10.0
1 P03 Brake mean effective pressure (BMEP) MPa 0.0 1.2
2 P02 EGR ratio - 0.0 0.5
3 P11 Start of injection (SOI) CA bTDC −3.0 18.0
4 P09 Cetane number - 5.0 85.0
5 P01 Engine speed (n) rpm 800.0 4000.0
6 P04 Volume fraction of HVO100 % 0.0 100.0
7 P05 Volume fraction of D100 % 0.0 100.0
8 P12 C/H ratio - 5.0 7.0

9 P06 Stoichiometric air to fuel ratio (l0 ) 1 kg of air/1 kg
of fuel 10.0 20.0

10 P08 Lower heating value (LHV) MJ·kg−1 18.0 60.0
11 P07 Density kg·m−3 600.0 900.0

Table 4. Experimental parameters of diesel engine used for ANN as the output parameters.

Index Abbr. Parameter Units
Interval

YMIN YMAX

0 R03 SCO g·kWh−1 0.5 10.0
1 R07 Volumetric CO2 concentration % 0.1 15.0
2 R06 SCO2 g·kWh−1 100.0 2000.0
3 R00 Smokiness m−1 0.001 100.0
4 R01 Brake specific fuel consumption (BSFC) g·kWh−1 150.0 3000.0
5 R02 Brake thermal efficiency (BTE) - 0.01 0.5
6 R05 SHC g·kWh−1 0.01 2.0
7 R08 Volumetric O2 concentration % 0.5 20.0
8 R04 SNOx g·kWh−1 0.1 20.0
9 R09 Volumetric NOx concentration ppm 10.0 10,000.0

2.3. Principal Scheme of Tool VALLUM01

The advanced tool VALLUM01 [35] was constructed according to schemes presented
in Figures 2 and 3. Two different modules (a) for data conversion (from any real interval
to fuzzy logic interval (0;1), forward and backward, see Figure 2) and (b) implementation
of an ANN (see Figure 3) represent the main engines of the current project VALLUM01.
All inputs are aggregated into the input layer, L = 12, all inputs are aggregated into the
output layer N = 10. This ANN represents the implementation of one internal layer (called
hidden), consisting of a requested number of perceptron M = (500;1000). Due to adjusting
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possibilities, bias was included in the hidden layer. The programmed package VALLUM01,
which contains a graphical, user-friendly interface for input, output, and control, was
created using the JAVA Eclipse framework. For ANNs, two typical classes from [36] were
used: matrix and neural network. As an S-shaped function, a sigmoidal function was used:

σ(x) =
1

1 + e−x (9)
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2.4. Organization of Data Input/Output

Real input data of the P01-P12 type (aggregated into the input layer, number of units
L = 12) and real output data of the R00-R09 type (aggregated into the output layer, number
of units N = 10), which express strong defined measurable physical quantities (see Tables 3
and 4), were selected and approved for development. For an artificial neural network
(ANN), input and output values must be presented in normalised form, which expresses
the behaviour of fuzzy logic in the interval (0;1). Due to that, for all real values, the interval
of distribution (XMIN; XMAX) was initially established (see Tables 3 and 4). The module of
data conversion recalculates the experimental input values Xi (i= 0; L) and output values
Yj (j = 0; N) to corresponding fuzzy logic values XXi and YYj in a forward or backward
direction according to the formulas, respectively:

XXi =
Xi − XMIN

XMAX − XMIN
(10)

Xi = XMIN + XXi(XMAX − XMIN) (11)

2.5. Test Campaign

Figure 4 represents the distribution of experimental events (the current working state
of the diesel engine) related to the different technical regimes (enumerated as 1. . .40).
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Experimental testing was carried out with the engine running at different speeds with
varying loads, EGR, and SOI:

• In the I stage (regimes 1–4, events, 1–30), the engine speed was set at 2000 rpm and the
load was set at 30 Nm, 60 Nm, 90 Nm, and 120 Nm; the EGR was switched off, and
the SOI (2–5 CAD bTDC) was controlled by the ECU.

• In the II stage (regimes 5–8, events 31–52), the engine speed was set at 2500 rpm and
the load was set at 30 Nm, 60 Nm, 90 Nm, and 120 Nm; the EGR was switched off,
and the SOI (5–12 CAD bTDC) was controlled by the ECU.

• In the III stage (regimes 11–14, events 53–76), the engine speed (2000 rpm) and load
(60 Nm) were fixed, the EGR ratio was changed (0.05; 0.10; 0.15 and 0.20) using an
EGR controller, and the SOI (3–4 CAD bTDC) was controlled by the ECU.

• In the IV stage (regimes 15–23, 77–112), the engine speed (2000 rpm) and load (60 Nm)
were fixed, EGR = 0.15 was set by the EGR controller, and fuel injection was changed
by the SOI controller in the range of −3–15 CAD bTDC.

• In the V stage (regimes 24–27, 113–140), the engine speed was set at 2500 rpm and the
load was set at 30 Nm, 60 Nm, 90 Nm, and 120 Nm; the EGR ratio (0.35–0.05) and the
SOI (5–10 CAD bTDC) were controlled by the ECU.

• In the VI stage (regimes 28–31, 141–159), the engine speed was set at 2500 rpm and the
load was set at 30 Nm, 60 Nm, 90 Nm, and 120 Nm; the EGR ratio (0.45–0.20) and the
SOI (2–5 CAD bTDC) were controlled by the ECU.

• In the VII stage (regimes 32–40, 160–195), the engine speed (2000 rpm) and load
(60 Nm) were fixed, the controller set to EGR = 0.2, and the SOI controller varied the
start of injection in the range of −3–15 CAD bTDC.
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diesel engines.

In these experimental studies, the engine was controlled both by the ECU’s default
algorithm, by further modification of the control parameters, and by extending the field
of operations.

3. Results

Simulations (training of ANN and output validation as a special case of prediction)
were provided using a desktop computer, 11th Gen Intel(R) Core (TM) i5-11600K, 3.90 GHz,
32.0 GB RAM, and OS Windows 10 Pro. Programming package VALLUM01 (implementa-
tion of ANN in the regime of backpropagation, one hidden layer) was used for training
and validation. The learning rate for training was established at 0.01 (without changes).
Table 5 represents several simulation regimes for the usage and validation of ANN.
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First, two training data sets (abc1.csv and bcd1.csv) consisting of P01–P12 and R00–R09
types were prepared. The set abc1.csv (size 194 events) represents pure experimental data
without any filtering or mathematical development. Set abc1.csv consists of 40 subsets
corresponding to the different technical regimes of diesel engines as presented in Figure 4.
Set bcd1.csv (size 38 events) represents averaged data only (one averaged value per regime).

Second, six simulations (using different hidden layer, M = (500; 1000)) for the vali-
dation of the data in the abc1.csv file were provided. Several different training routines
T1–T6 were used by selecting the training data set (abc1.csv, real values of 194 events or,
bcd1.csv, averaged values of 38 events, respectively), as well as by changing the number of
training epochs (500,000; 1,000,000). Training was provided using the learning rate value of
0.01. Table 6 represents the distribution of the total network error (TNE), or error on the
number of training epochs for different training regimes T1–T6: predefined by the number
of training events and the number of perceptrons in hidden layers.

TNE2 =
1
N

N

∑
i=1

(
Xcurrent

i − Targeti
)2 (12)

Table 5. The procedure of training and validation of ANNs. Input layer L = 12, output layer N = 10,
amount of perceptron in the hidden layer M, learning rate 0.01.

Project One Hidden Layer Training Validation

Name M Routine File Events Epochs TNE2 File Events

aaaa 500 T1 abc1.csv 194 500,000 Tables 7–12 abc1.csv 194
bbbb 500 T2 bcd1.csv 38 500,000 Tables 7–12 abc1.csv 194
cccc 1000 T3 abc1.csv 194 500,000 Tables 7–12 abc1.csv 194

dddd 1000 T4 bcd1.csv 38 500,000 Tables 7–12 abc1.csv 194
eeee 1000 T5 abc1.csv 194 1,000,000 Tables 7–12 abc1.csv 194
ffff 1000 T6 bcd1.csv 38 1,000,000 Tables 7–12 abc1.csv 194

Table 6. Distribution of the TNE2 on the number of training epochs for different training regimes
T1–T6: predefined by number of training events and number of hidden layers.

Hidden Layer

Epochs Events M = 500 M = 1000

500,000 194
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Table 6. Cont.

Hidden Layer

Epochs Events M = 500 M = 1000

500,000 38
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Tables 7–12 represent the results of validation after training the ANN using different
training regimes (T1–T6). Results are presented in the form of a triplet (R as the real experi-
mental value, R* as predicted using the T1, T3, and T5 routine, and R** as predicted using
the T2, T4, and T6 routine). Tables 7, 9 and 11 represent distributions of predicted values
R03, R07, R06, R00, and R01 and corresponding Pearson diagrams, and Tables 8, 10 and 12
represent distributions of predicted values R02, R05, R08, R04, and R09 and corresponding
Pearson diagrams. The smallest deviations between experimental and simulated values
were obtained using training routines the T5 and T6 (see Table 5).
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Table 7. Results of validation after training of ANNs (one hidden layer, M = 500). Distributions of
predicted values R03, R07, R06, R00, and R01 and corresponding Pearson diagrams. Two different
training routines T1 and T2 were used (see Table 5). Number of training epochs: 500,000. Distributions
of values: R as real experimental value, R* as predicted using T1 routine, and R** as predicted using
T2 routine). Number of events for validation 194.

Abbr Parameter Distributions of Predicted Value Pearson

R03 SCO,
g·kWh−1
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Table 7. Cont.
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Table 8. Results of validation after training of ANN (one hidden layer, M = 500). Distributions of
predicted values R02, R05, R08, R04, and R09 and corresponding Pearson diagrams. Two different
training routines T1 and T2 were used (see Table 5). Number of training epochs: 500,000. Distributions
of values: R as real experimental value, R* as predicted using the T1 routine, and R** as predicted
using the T2 routine. Number of events for validation 194.
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Table 11. Results of validation after training of ANNs (one hidden layer, M = 1000). Distributions of
predicted values R03, R07, R06, R00, and R01 and corresponding Pearson diagrams. Two different
training routines T5 and T6 were used (see Table 5). Number of training epochs: 1,000,000. Distri-
butions of values: R as real experimental value, R* as predicted using the T5 routine, and R** as
predicted using the T6 routine. Number of events for validation 194.
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Abbr Parameter Distribution of Predicted Value Pearson
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double- or triple-hidden layers is easier than with a single-hidden layer because fewer 
parameters require optimization. In our case, hierarchical-related data are absent. To de-
crease the wasting of computer resources (to decrease the training time), we decided to 
use the ANN containing a single-hidden layer due to the absence of multistep hierarchical 
behavior (see Tables 3 and 4). The amount of perceptrons per hidden layer plays a crucial 
role in the training process. There is no general rule for the size of the hidden layer, but 
there are some empirical formulas. For example, Bekešienė et al. [27] presented some for-
mulas for the expression of the size of the hidden layer (in our case, it would be M = 20..50). 
The decision was to increase M significantly per order and more by up to 500 and 1000. 
The regime of overfitting was exceeded at M = 2000. Due to that, the amount of percep-
trons in the single-hidden layer must be in intervals (500; 1000). Bias was presented for 
adjusting purposes, but finally, we did not use this possibility to shift the argument of the 
action function sigmoid. 

The third stage represents the training process. In the case of the single-hidden layer, 
we increased the starting number of training epochs (50,000) to 500,000 and 1,000,000, 
which allowed us to significantly improve the result. According to the distributions of 
TNE (see Figure 4), modes T5 and T6 must be named as satisfied. The quality of training 
could be established using the TNE parameter (see Equation (12)) or gradient distribution. 
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4. Discussion

The performance of ANNs is heavily dependent on the architecture and dynamic
training mode. Three different stages were overcome to achieve a good result.

The first stage was related to the selection of interfaces. The output parameters
(given in Table 4) are the measurement parameters that are appropriate to use for emission
assessment. The number of output units for ANNs (N = 10) was established according
to the experimental setup (R00. . .R09; see Table 4). For input parameters, two problems
occur at the initial simulation. Firstly, we decided to use a significantly lower number
of input parameters (L = 8). Parameters P00. . .P07 are traditional parameters that are
suitable for the description of different power regimes of diesel engines (see Table 3).
Unfortunately, the ANN learning process was unsuccessful. Then, we decided to increase
the number of input units (L = 12) by adding several technical and physical parameters
P08. . .P11 step-by-step, which allowed for receiving a satisfactory process of ANN learning.
Secondly, the clusterization of input parameters needed realized using several technical and
physical approaches. We decided to create the first input cluster according to the technical
suggestions (P10, P03, P02, P11, and P01) and the second cluster according to the burning
chemistry suggestions (P04, P05, P12, P06, P08, and P07). This assumption allows us to
significantly improve the ANN learning process and avoid unpredictable increases in TNE.

The second stage pertains to the selection of the artificial neural network architecture.
The feedforward method (information flow from the input layer through hidden layers to
the output layer) was chosen due to the cause-and-effect relationship [37]. The possibility
of using an ANN containing a single-hidden layer and multi-hidden layers was discovered
and estimated. ANNs with double-hidden layers and triple-hidden layers are suitable for
complex data containing hierarchical features. Generally, training an ANN with double-
or triple-hidden layers is easier than with a single-hidden layer because fewer parameters
require optimization. In our case, hierarchical-related data are absent. To decrease the
wasting of computer resources (to decrease the training time), we decided to use the ANN
containing a single-hidden layer due to the absence of multistep hierarchical behavior (see
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Tables 3 and 4). The amount of perceptrons per hidden layer plays a crucial role in the
training process. There is no general rule for the size of the hidden layer, but there are
some empirical formulas. For example, Bekešienė et al. [27] presented some formulas for
the expression of the size of the hidden layer (in our case, it would be M = 20. . .50). The
decision was to increase M significantly per order and more by up to 500 and 1000. The
regime of overfitting was exceeded at M = 2000. Due to that, the amount of perceptrons in
the single-hidden layer must be in intervals (500; 1000). Bias was presented for adjusting
purposes, but finally, we did not use this possibility to shift the argument of the action
function sigmoid.

The third stage represents the training process. In the case of the single-hidden layer,
we increased the starting number of training epochs (50,000) to 500,000 and 1,000,000,
which allowed us to significantly improve the result. According to the distributions of TNE
(see Figure 4), modes T5 and T6 must be named as satisfied. The quality of training could
be established using the TNE parameter (see Equation (12)) or gradient distribution. We
have used the TNE distribution, which allows us to assess the overtraining state and the
unlearning state (both of which are indicators of incomplete training).

There were classifications for assessing the quality of ANN predictions as both a
science and a kind of art. The quality of predictions is related to the training process, and
the quantitative dynamical parameters of the training process determine further validation
and prediction. The first approach to estimating the training process could be conducted
using the TNE distribution (Figure 5). There was an exponential decrease in TNE as the
number of epochs increased, which allowed the learning process to be called satisfied. In
the interval from 500,000 to 1,000,000 epochs, the overtraining state was not distinguished
(no significant increase in TNE distribution, more than two orders of magnitude or more).
The second approach to estimating the training process is related to the existence of a plateau
phase (i.e., saturation of the TNE distribution). In this case, this regime was distinguished
after 100,000 epochs only (see Table 6).
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Generally, it is impossible to evaluate which parameters have a less sensible result.
The quality of training could be established using the TNE parameter (see Equation (12))
or gradient distribution. We have used TNE distribution, which allows us to assess the
overtraining state (which is out of our interest). We have used several sets of input interfaces
with different numbers of parameters (L = 7, 8, 10, and 12). Only one expanded set (P01–P12,
L = 12; see Table 3) allows for a successful process of training. The possibility of removing
several parameters from the expanded set (P01–P12, L = 12) was checked, but no significant
training process was established.

The results in Tables 7–12 can be used for a nondirected sensitivity analysis. This is
possible when validation is shown along with Pearson distributions after training an ANN
using different training regimes. The used ANN (feedforward ANN, two adjusted input,
output interfaces, architecture of ANN (single-hidden layer, M = 500 and M = 1000) and
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dynamical regime—number of epochs 500,000 or 1,000,000)) allows to receive very high
agreement between experimental and predicted results (R and R*, R and R**).

After evaluating the distributions of predicted values (Tables 7–12), it is necessary to
pay attention to the best prediction found for the first cluster: volumetric O2 concentration
(R08), SNOx (R04), the volumetric concentration of NOx (R09), and SHC (R05). The third
cluster contains SCO (R03), volumetric CO2 concentration (R07), and SCO2 (R06). The
predictions of both clusters are in good agreement with the experimental ones.

The second cluster contains smoke (R00), brake specific fuel consumption (BSFC) (R01),
and brake thermal efficiency (BTE) (R02). Especially for smoking, the predicted values are
far from the experimental values. This large difference can be explained by measurement
error (the effect of contaminant coupling in outcome tubes). A large deviation of smokiness
(R00) between experimental and predicted values is essential when the V stage (regimes
24–27, 113–140) and the VI stage (regimes 28–31, 141–159) are distinguished. In all cases,
extreme conditions (engine speed was set at 2500 rpm and the load was set at 30 Nm,
60 Nm, 90 Nm, and 120 N) have a bad correlation with the output parameter smokiness.

Figure 5 represents a comparison of different statistics: Pearson, Spearman, and
Kendall.

Pearson, Spearman, and Kendall correlations were used to assess the magnitude and
orientation of associations among variables. Figure 5 illustrates that the data dependencies
exhibit a more linear pattern. As the number of epochs grows, the range of data quantiles
reduces, resulting in a more condensed distribution. This is true for both the whole data
package and the average data package, as demonstrated by the Pearson correlation. The
Spearman correlation coefficient assists in comprehending the monotonic relationship of
the data. It is evident that the data exhibited essentially identical variations while increasing
the number of epochs and when analyzing the full and average data packets. The analyzed
data is likely non-monotonic. Kendall’s correlation coefficient enables us to assess the
degree of non-linearity in the data. Both Pearson and Kendall correlations demonstrate
that the relationships in our dataset are linear in nature.

Commonly used statistical distributions show an exact and close-to-exact agreement
between the experimental values and the expected ones. Pearson coefficient deviations
are in the interval (3; 10%) (see Table 5). There were precise value predictions for the R00
(smokiness) distribution. The use of two training modes (500,000 and 1,000,000 epochs)
and different ANN architectures (number of perceptrons 500 and 1000) cannot improve the
result (RolNo110–130, 140–160, see Table 9, row R00 Smokiness). Perhaps the training data
set for the R00 distribution (smokiness) is incomplete and requires partial experimental
correlation. This hypothesis was made because only a few confirmed values deviated
significantly from the experimental range. Evaluation of experimental regimes represents
extreme engine operating conditions, and inaccurate predictions occur only at extreme
regimes. Stage V (Modes 24–27, Rol No 110–130) was set at 2500 rpm, with a load of 90 Nm
and 120 Nm. For stage VI (Modes 28–31, 140–159), the engine speed was set at 2500 rpm
and the load was 60 Nm, 90 Nm, and 120 Nm. All series of experiments include the loads
of 30, 60, 90, and 120 Nm. Two solutions to the presented problem could be formulated.
Firstly, for extreme regimes, an incomplete set of input parameters must be supplemented
by one or several parameters that allow the specified behavior of complex and complicated
burning processes. Secondly, the experimental data set for training operations must be
significantly increased, especially when using extreme regimes.

Other distributions (for example, R05 and SHC, see Table 12) show a close-to-satisfied
agreement between the predicted values and the experimental ones. The R05 presents the
experimental values in a chaotic manner, and the ANN prediction’s performance functions
as a filter, averaging the weight.

5. Conclusions

1. The advanced tool VALLUM01 (with ANN implementation) containing a user-friendly
interface for data input and output facilities was created, designed, and tested to pro-
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vide simulations and predictions of exhausts in motor outcomes. A user-friendly
input/output interface was created and used for solving the specific task of diesel
motor efficiency using ANN. The set of input parameters (12) and output parameters
(10) was estimated to be significant and sufficient for training, validation, and predic-
tion. Intervals of values were recognized as suitable for fuzzification for input/output
to ANN.

2. Training sessions for ANN (1,000,000 epochs, 1000 perceptrons in a single-hidden
layer) could be titled as the most successful. For training, the use of averaged values
instead of real experimental values is acceptable.

3. Following the development of a user-friendly input/output interface, the appro-
priateness of the input values for the artificial neural network (ANN) was verified
(Table 3).

4. The first cluster, which includes volumetric O2 concentration, SNOx, and SHC, and
the third cluster, which includes SCO, CO2 concentration, and SCO2, yielded the
best predictions. However, the second cluster, including smoke, brake specific fuel
consumption, and brake thermal efficiency, showed significant deviations from exper-
imental values, mainly due to measurement error and extreme conditions.
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Abbreviations

λ The excess air ratio
AI Artificial intelligence
ANN Artificial neural networks
BMEP Brake mean effective pressure
BTE Brake thermal efficiency
BSFC Brake specific fuel consumption
CO2 Carbon dioxide
CO Carbon monoxide
D100 Pure fossil diesel fuel
ECU Engine control unit
EGR Exhaust gas recirculation
HC Hydrocarbons
HVO100 Hydrotreated Vegetable Oil
l0 Stoichiometric air to fuel ratio
LHV Lower heating value
ML Machine Learning
MLP Multilayer perceptron
MLPNN Multilayer perceptron neural network
NOx Nitrogen oxides
RSM Response surface methodology
SCO2 Recalculated CO2 value
SCO Recalculated CO value
SHC Recalculated HC value
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SO Smoke opacity
SOI Start of injection
SNOx Recalculated NOx value
TNE Total network error
H2O Water
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