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Abstract: In this paper, we investigate static spherically symmetric teleparallel F(T) gravity contain-
ing a perfect isotropic fluid. We first write the field equations and proceed to find new teleparallel
F(T) solutions for perfect isotropic and linear fluids. By using a power-law ansatz for the coframe
components, we find several classes of new non-trivial teleparallel F(T) solutions. We also find a
new class of teleparallel F(T) solutions for a matter dust fluid. After, we solve the field equations for
a non-linear perfect fluid. Once again, there are several new exact teleparallel F(T) solutions and also
some approximated teleparallel F(T) solutions. All these classes of new solutions may be relevant
for future cosmological and astrophysical applications.
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1. Introduction

There are a number of alternative theories of gravity to General Relativity (GR). The
F(T)-type teleparallel theories of gravity are very promising [1–3]. In these theories, the
geometry is characterized by the torsion which is a function of the coframe, ha , derivatives
of the coframe, and a zero curvature and metric compatible spin-connection one-form
ωa

b. Hence, in teleparallel gravity, it is necessary to work with a frame basis instead of a
metric tensor. In such theories the role of symmetry is no longer as clearly defined as in
pseudo-Riemannian geometry, where symmetry is defined in terms of an isometry of the
metric or Killing Vectors (KVs). In GR, the Riemannian geometry is completely defined by
the curvature of a Levi-Civita connection and calculated from the metric. But this is not
really the case for some alternative theories, in particular for teleparallel F(T)-type gravity.

The development of a frame-based approach for determining the symmetries of a
spacetime has been explored [4–6]. A possible complication arises due to the possible
existence of a non-trivial linear isotropy group: a Lie group of Lorentz frame transforma-
tions keeping the associated tensors of the geometry invariant. If a given spacetime has a
non-trivial linear isotropy group, determining the group of symmetries requires solving a
set of inhomogeneous differential equations [7]:

LXha = λa
bhb and LXωa

bc = 0, (1)

where ha is the orthonormal coframe basis, λa
b is a Lie algebra generator of Lorentz

transformations and ωa
bc are the components of the spin connection.

In ref. [8], Coley et al. introduced a new approach to determine the symmetries of
any geometry based on an independent frame and connection which admits the torsion
tensor and the curvature tensor as geometric objects. In these theories, the connection is
an independent object. They call any geometry where the non-metricity and curvature
tensors vanish a teleparallel geometry. The approach relies on the existence of a particular
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class of invariantly defined frames known as symmetry frames, which facilitates solving
the differential equations arising from Equation (1), by fixing the λa

b in an invariant way.
This assumes an orthonormal frame where the gauge metric is gab = diag[−1, 1, 1, 1].

The spin connection, ωa
bc, is defined in terms of an arbitrary Lorentz transformation, Λa

b,
through the equation

ωa
bc = Λa

dhc((Λ−1)d
b). (2)

A particular subclass of teleparallel gravitational theories is dynamically equivalent to GR
and is called the Teleparallel Equivalent to General Relativity (TEGR), which is based on a
torsion scalar T constructed from the torsion tensor [1]. The most common generalization
of TEGR is F(T)-type teleparallel gravity, where F is an arbitrary function of the torsion
scalar T [9–11]. In the covariant approach to F(T)-type gravity, the teleparallel geometry
is defined in a gauge-invariant manner as a geometry where the spin connection has zero
curvature and zero non-metricity. The spin connection will vanish in the special class of
proper frames, and will be non-zero in all other frames [1,3,12]. Therefore, the resulting
teleparallel gravity theory has Lorentz covariant FEs and is locally Lorentz invariant [13]. A
proper frame is not invariantly defined since it is defined in terms of the connection, which
is not a tensorial quantity, which leads to a number of problems when using such a frame
to determine symmetries.

There are several papers in the literature about static and non-static spherically sym-
metric solutions in teleparallel F(T) gravity [14–29]. There are several perturbative solu-
tions in TEGR (Teleparallel Equivalent of General Relativity) and there are some power-law
F(T) solutions with power-law frame components (see [14–17] and references within).
These papers essentially use the Weitzenback gauge (leading to proper frames) because
the antisymmetric FEs are trivially satisfied, but there are arising some extra degrees of
freedom (DoFs) by imposing the zero spin connection. This requirement leads to only
symmetric parts of FEs and the presented solutions are essentially limited to power-law in
F(T) and frame components by using a complex coframe. Beyond these considerations,
even if the symmetric parts of FEs and their solutions are similar between the different
gauges, the fact remains that the extra DoF potential issue associated with the proper frame
should be resolved by a frame changing. For this requirement, it is necessary to go towards
a frame where the spin connections can be found by solving the non-trivial antisymmetric
parts of FEs. From there, all the DoFs will be covered by all the FEs and the solutions will
be found by a non-trivial approach for the spin-connection and coframe components and
then for the F(T) solutions.

For rectifying this extra DoF potential issue and going further than power-law F(T)
solutions, there is a paper on general teleparallel spherically symmetric geometries with
an emphasis on vacuum solutions and possible additional symmetry structures [18]. They
found the general FEs in an orthonormal gauge assuming a diagonal frame and a non-trivial
spin connection, leading to specific antisymmetric parts of FEs and then to well-determined
symmetric parts of FEs without extra DoFs. There are some specific symmetry structures
such as static (radial coordinate dependent), Kantowski–Sacks (KS) (time coordinate de-
pendent) and an additional affine symmetry called X4. For static geometries, the study
is restricted to find the F(T) solutions in the vacuum. They found more power-law solu-
tions, but also more general F(T) solutions such as products, quotient, exponential and/or
a mix of these type of functions. In this case, the X4 symmetry will be defined by the
time-coordinate derivative ∂t leading to radial coordinate dependence for coframes, spin
connections and FEs.

For non-vacuum spherically symmetric F(T) solutions, there are in principle several
possible types of energy-momentum sources. The most interesting are the perfect isotropic
cosmological and astrophysical fluids, and there are some teleparallel F(T) solutions such
as Bahamonde and Camci’s [20]. In this paper, there are some specific power-law F(T)
solutions leading to some specific types of fluid where they find specific expressions for P
and ρ. But this type of approach is restrictive because this supposes first a power-law F(T)
solution and then they look for possible ρ and P. Alternatively, for finding new solutions, a
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different approach would assume an energy-momentum source with an equation of state
(EoS) (relation between P and ρ as P = P(ρ)) and then find all possible F(T) solutions
satisfying the FEs with these EoS relations.

For this paper, we assume a static (r-coordinate dependent) spherically symmetric
teleparallel geometry in an orthonormal gauge as defined in ref. [18]. We will focus on
finding non-vacuum static spherically symmetric teleparallel F(T) solutions. After a brief
summary of the static spherically symmetric teleparallel geometry and FEs in Section 2,
we will find in Section 3 several possible F(T) solutions for the linear and isotropic perfect
fluids. In Section 4, we will do the same with a dust fluid, because this special case arises
from the conservation laws. In Section 5, we will solve FEs and find some F(T) solutions
for a non-linear perfect fluid.

We will use the notation as follows: the coordinate indices are µ, ν, . . . and the tangent
space indices are a, b, . . . as in ref. [8]. The spacetime coordinates will be xµ. The frame
fields are denoted as ha and the dual coframe one-forms are ha. The vierbein components
are h µ

a or ha
µ. The spacetime metric is gµν and the Minkowski tangent space metric is

ηab. For a local Lorentz transformation leaving ηab unchanged, we write Λ b
a (xµ). The

spin-connection one-form ωa
b is defined as ωa

b = ωa
bchc. The curvature and torsion tensors

are, respectively, Ra
bcd and Ta

bc. Covariant derivatives with respect to a metric-compatible
connection are denoted using a semi-colon, Tabc;e.

2. Summary of Teleparallel Spherically Symmetric Spacetimes and Field Equations
2.1. Teleparallel Static Spherical Symmetry

The teleparallel spherically symmetric spacetimes were defined and discussed in detail
with all necessary justifications in ref. [18]. From this last paper, there is a new coordinate
system to “diagonalize” the frame described by a static spherically symmetric vierbein
satisfying Equation (1), as follows:

ha
µ = Diag[A1(r), A2(r), A3(r), A3(r) sin(θ)]. (3)

This frame choice in Equation (3) is an invariant symmetry frame, and the most general
static spherically symmetric spin connection is as follows [18]:

ω341 = W1(r), ω342 = W2(r), ω233 = ω244 = W3(r), ω234 = −ω243 = W4(r),

ω121 = W5(r), ω122 = W6(r), ω133 = ω144 = W7(r),

ω134 = −ω143 = W8(r), ω344 = − cos(θ)
A3 sin(θ)

.

(4)

We determine the most general connection by imposing the flatness condition on the
geometry. The resulting eqns can be solved so that any spherically symmetric teleparallel
geometry is defined by the three arbitrary functions in the vierbein described by Equation (3)
and by the following spin-connection components [18]:

W1 = 0, W2 = − χ′

A2
, W3 =

cosh(ψ) cos(χ)
A3

, W4 =
cosh(ψ) sin(χ)

A3
,

W5 = 0, W6 = − ψ′

A2
, W7 =

sinh(ψ) cos(χ)
A3

, W8 =
sinh(ψ) sin(χ)

A3
,

(5)

where χ(r) and ψ(r) are arbitrary functions of the radial coordinate r and then χ′ = ∂rχ(r)
and ψ′ = ∂rψ(r). We will subsequently find via the antisymmetric parts of the FEs the exact
expressions for χ(r) and ψ(r), and therefore the components of Equations (4) and (5).

Any choice of the arbitrary functions, ψ and χ, picks out a unique teleparallel geometry,
as any change in the form of the spin connection which could affect the form of ψ or χ leads
to a change in the form of the vierbein. For a given pair of functions, the invariantly defined
frame up to the linear isotropy group H̄q arising from the Cartan–Karlhede (CK) algorithm
could be computed to provide further sub-classification. We note that there are only five
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arbitrary functions required to specify a geometry: A1, A2, A3, ψ and χ [18]. We note that
special subclasses of these teleparallel geometries have been studied earlier in teleparallel
gravity using the Killing equations for an arbitrary spherically symmetric metric and using
the non-invariant proper frame approach [25,30–32].

2.2. Summary of Teleparallel Field Equations

The teleparallel action integral is as follows [1–3,18]:

SF(T) =
∫

d4 x
[

h
2κ

F(T) + LMatter

]
(6)

By applying the least-action principle to Equation (6), we obtain the symmetric and anti-
symmetric parts of FEs [18]:

κ Θ(ab) = F′(T)
◦

Gab + F′′(T) S µ

(ab) ∂µT +
gab
2
[
F(T)− T F′(T)

]
, (7a)

0 = F′′(T) S µ

[ab] ∂µT, (7b)

where
◦

Gab is the Einstein tensor, Θ(ab) the energy momentum, T the torsion scalar, gab the
gauge metric, S µ

ab the superpotential (torsion dependent) and κ the coupling constant. The
canonical energy momentum is obtained from the LMatter term of Equation (6) and defined
as follows:

Θ µ
a =

1
h
LMatter

δha
µ

(8)

The antisymmetric and symmetric parts of Equation (8) are, respectively [18]:

Θ[ab] = 0, Θ(ab) = Tab (9)

where Tab is the symmetric part of the energy-momentum tensor. In Equation (9), we see
that Θab is a symmetric physical quantity. Equation (9) is valid especially for the case where
the matter field interacts with the metric gµν associated with the coframe ha

µ and the gauge
gab, and is not intricately coupled to the F(T) gravity. This consideration is valid in the
case of this paper, because there is an absence of hypermomentum (i.e., Tµν = 0 as defined
in ref. [16]). The conservation of energy momentum in teleparallel gravity states that Θ µ

a
must satisfy the following relation [1,2]:

∇ν(Θµν) = 0, (10)

where ∇ν is th covariant derivative and Θµν is the conserved energy-momentum tensor.
Equation (10) is the same conservation of energy-momentum expression as GR. Satisfying
Equation (10) is automatically required by the previous equations in cases of null hyper-
momentum (Tµν = 0 case). In non-zero hypermomentum situations (Tµν ̸= 0 case), we
will need to satisfy more complex conservation equations than Equation (10) as shown in
ref. [16].

For a perfect and isotropic fluid with any EoS (linear or not), the Tab tensor is defined
as follows [33,34]:

Tab = (P(ρ(r)) + ρ(r)) ua ub + gab P(ρ(r)), (11)

where P(ρ(r)) is the EoS in terms of the static fluid density ρ(r) and ua = (1, 0, 0, 0) for a
stationary fluid. In some astrophysical applications, the pressure is sometimes modeled
with radial and tangential components, especially for stellar modeling [33,34]. But this is
not the specific purpose of this paper.
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2.3. General Static Spherically Symmetric Perfect Fluid Field Equations

For the static spherically symmetric case, the antisymmetric FEs in terms of
Equations (4) and (5) components are as follows [18]:

0 =
F′′(T) ∂r T

κ A2 A3
[cos χ sinh ψ] and 0 =

F′′(T) ∂r T
κ A2 A3

[sin χ cosh ψ]. (12)

Assuming T ̸= constant, Equation (12) admits only the solution sin χ = 0 and sinh ψ = 0,
with χ = n π and ψ = 0 where n ∈ Z is an integer and cos χ = cos(n π) = ±1 = δ.
Substituting these expressions for χ and ψ into Equation (5), we obtain that W3(r) = δ

A3
is the only non-zero component (i.e., Wi = 0 for all i ̸= 3) and find as Equation (4) for the
non-vanishing spin-connection components:

ω233 = ω244 =
δ

A3
, ω344 = − cos(θ)

A3 sin(θ)
. (13)

Equation (13), for non-vanishing spin-connections components, goes in the same direction
and improves the expressions obtained recently in refs. [3,16].
By using the solution for Equation (12), we find the three equations for the symmetric
FEs [18]:

∂r
[
ln F′(T(r))

]
=

g1(r)
k1(r)

, (14a)

κ [ρ + P] =− 2 F′′(T) (∂r T) k2(r) + 2 F′(T) g2(r), (14b)

κ ρ =− F(T)
2

− 2 F′′(T) (∂r T) k3(r) + 2 F′(T) g3(r), (14c)

where the gi and ki components are expressed in Appendix A. In addition, because we are
not in a vacuum, we need to satisfy the static conservation law [18]

[ρ + P] ∂r(ln A1) + ∂r P = 0, (15)

where A′
1 = ∂r A1(r) and P′ = ∂r P(r) are r radial coordinate derivatives. For P = −ρ,

we obtain from Equation (15) that P = P0 = −ρ0 = constant. In this case, we will obtain
with Equations (14a)–(14c) the vacuum solutions, but with a −2κ ρ0 shifting inside the F(T)
solutions [18,19]. From the FE components in Appendix A, we have k2(r) = k3(r) for all
Ai, i = 1, 2, 3. By also substituting Equation (14a) into Equations (14b) and (14c), we find
that the FEs become the following:

F′(T(r)) =F′(T(0)) exp
[∫

dr′
g1(r′)
k1(r′)

]
, (16a)

κ [ρ + P] =2 F′(T)
[
−
(

g1(r)
k1(r)

)
k2(r) + g2(r)

]
, (16b)

κ ρ =− F(T)
2

+ 2 F′(T)
[
−
(

g1(r)
k1(r)

)
k2(r) + g3(r)

]
. (16c)

From there, we have to solve Equations (15)–(16c) for non-vacuum solutions by using the
torsion scalar expression and the gi and ki.

3. Perfect Linear Fluid Solutions

As the first case of a non-vacuum solution with an isotropic fluid having a linear EoS,
we have P(r) = α ρ(r) with −1 < α < 0 and 0 < α ≤ 1 (i.e., α ̸= 0), the static perfect
cosmological fluid case. First, Equation (15) will simplify as follows [18]:

(1 + α) (ln A1)
′ + α (ln ρ)′ = 0, (17)
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where ρ′(r) = ∂r ρ(r). By integration, we find as a solution for Equation (17) the following:

ρ(r) = ρ0 [A1(r)]
− (1+α)

α . (18)

In a such case, the density of the fluid ρ(r) is directly dependent on A1(r) for α ̸= 0 and
the energy condition constraints to satisfy ρ(r) ≥ 0 for positive mass density. For α = 0
(dust fluid), we will need to solve this case separately to avoid the singular solution for
Equation (18). If we set an ansatz for the Ai, ρ(r) will depend directly on this same ansatz
according to the conservation laws. But since ρ(r) depends only on A1(r), one can in
principle perform a coordinate change dt′ → A1(r) dt for going to a frame where we have
a constant and positive fluid density ρ = ρ0 [18].

Then, although Equation (14a) remains unchanged, Equations (16b) and (16c) will
simplify as follows:

κ ρ =
2 F′(T)
(1 + α)

[
− g1(r) k2(r)

k1(r)
+ g2(r)

]
, (19a)

κ ρ =− F(T)
2

+ 2 F′(T)
[
− g1(r) k2(r)

k1(r)
+ g3(r)

]
. (19b)

With Equations (19a) and (19b), we can put them together eliminating ρ to finally have a
relation linking F(T) and F′(T):

F(T) =4 F′(T)
[
− α

1 + α

g1(r) k2(r)
k1(r)

+

(
g3(r)−

g2(r)
1 + α

)]
. (20)

The torsion scalar is as follows:

T(r) = −2
(

δ

A3
+

A′
3

A2 A3

)(
δ

A3
+

A′
3

A2 A3
+

2 A′
1

A1 A2

)
. (21)

There are a number of possible approaches for solutions to the FEs described by
Equations (14a), (19a), (19b) and (21) added by the conservation law solution described by
Equation (18). The main goal is to find several possible F(T) solutions from these previous
equations. For this purpose, we will solve for A3 = constant and A3 = r as in ref. [18]. We
can do this because there is a set of coordinates where A3 = r is valuable without any loss
of generality and the constant A3 system is the exception to this rule. This consideration
is only for a local coordinate definition. The constant A3 case is an exception because we
cannot perform a local transformation allowing this to change into a non-constant term.
All other non-constant A3 can be changed by a local transformation into an A3 = r system.

3.1. Constant A3 Field Equation Solutions
By setting A3 = c0 = constant in our FEs, Equations (14a), (19a) and (19b) become the

following with Equation (A2) components:

F′(T) =F′(0) exp

[
−
∫

dr

(
A′′

1 − A′
1 A′

2
A2

+
A1 A2

2
c2

0

)
(

A′
1 +

δ A1 A2
c0

) ]
, (22a)

κ (1 + α) ρ =2 F′(T)

[(A′′
1 − A′

1 A′
2

A2
+

A1 A2
2

c2
0

)
(

A′
1 +

δ A1 A2
c0

) δ

A2 c0

]
, (22b)

κ ρ =− F(T)
2

+ 2 F′(T)

[(A′′
1 − A′

1 A′
2

A2
+

A1 A2
2

c2
0

)
(

A′
1 +

δ A1 A2
c0

) δ

A2 c0
−

δ A′
1

A1 A2 c0

]
. (22c)
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Equation (21) for torsion scalar becomes the following:

T(r) = − 2
c2

0
−

4δ A′
1

c0 A1 A2
. (23)

3.1.1. Power-Law Solutions

We will solve Equations (22a)–(22c) by using the following ansatz:

A1(r) = a0 ra, A2(r) = b0 rb. (24)

In the supplement, Equation (18) from the conservation laws becomes the following:

ρ(r) = ρ1 r−
a(1+α)

α . (25)

where ρ1 = ρ0 a−
a(1+α)

α
0 and α ̸= 0. Equations (22a)–(23) become the following:

F′(T) =F′(0) exp

[ ∫
dr

[
a(1 − a + b) r−2(b+1) −

(
b0
c0

)2
]

r
[

a r−2(b+1) + δ
(

b0
c0

)
r−(b+1)

] ] (26a)

κ ρ(r) =− 2δ F′(T(r))
(1 + α) b0c0

[[a(1 − a + b) r−2(b+1) −
(

b0
c0

)2
]

[
a r−(b+1) + δ

(
b0
c0

)] ]
, (26b)

κ ρ(r) =− F(T(r))
2

− 2δ F′(T(r))
b0c0

[
a r−(b+1) +

[
a(1 − a + b) r−2(b+1) −

(
b0
c0

)2
]

[
a r−(b+1) + δ

(
b0
c0

)] ]
. (26c)

T(r) =− 2
c2

0
− 4δa

b0 c0
r−(b+1) (26d)

For setting Equations (26a)–(26c) in terms of torsion scalar T, we isolate r(T) from
Equation (26d):

r−(b+1)(T) =− δ b0 c0

4a

(
T +

2
c2

0

)
(27)

By substituting Equation (27) into Equations (26a)–(26c) and by simplifying Equation (26a),
we obtain the following:

F′(T) =F′(0)

(
T − 2

c2
0

) 2a
(1+b)−1(

T +
2
c2

0

)− a
(b+1)

exp

[
4a

c2
0 (b + 1)

(
T + 2

c2
0

)] (28a)

κ ρ =
2 F′(T)
(1 + α)

[ (1+b−a)
4a

(
T + 2

c2
0

)2
− 4

c4
0(

T − 2
c2

0

) ]
, (28b)

κ ρ =− F(T)
2

+ 2 F′(T)

[
1
4

(
T +

2
c2

0

)
+

(1+b−a)
4a

(
T + 2

c2
0

)2
− 4

c4
0(

T − 2
c2

0

) ]
. (28c)
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By putting Equations (28b) and (28c) and then by substituting Equation (28a), we find the
following as a solution for F(T):

F(T) = F′(0)

(
T − 2

c2
0

) 2a
(1+b)−2(

T +
2
c2

0

)− a
(b+1)

exp

[
4a

c2
0 (b + 1)

(
T + 2

c2
0

)]

×
[(

T +
2
c2

0

)(
T − 2

c2
0

)
+

α

(1 + α)

 (1 + b − a)
a

(
T +

2
c2

0

)2

− 16
c4

0

], (29)

where a ̸= 0 and b ̸= −1. Equation (29) is a new non-trivial F(T) teleparallel solution
arising from the A3 = constant case. Then, Equation (25) for the fluid density in terms of T
will be expressed as follows:

ρ(T) = ρ2

(
T +

2
c2

0

)− a(1+α)
(1+b)α

. (30)

where ρ2 = ρ0 a−
a(1+α)

α
0

(
− 4δ a

b0 c0

) a(1+α)
(1+b)α . Therefore, Equation (29) has two possible singularities:

• T = − 2
c2

0
: This singularity appears in two terms of Equation (29) leading to an

undefined limT→− 2
c2
0

F(T) and then F(T) is undefined in all situations. For fluid

density, Equation (30) will lead to the following situations:

– a
(1+b)α > 0 subcase: ρ(T) is undefined.

– a
(1+b)α < 0 subcase: ρ(T) = 0, the vacuum situation.

Then, Equation (27) will lead to the following situations:

– b > −1 subcase: r(T) is undefined.
– b < −1 subcase: r(T) → 0: a point-like singularity.

• T = + 2
c2

0
: This singularity only occurs for b ̸= −1 and a < 1 + b. For

Equations (27) and (30), there are no real consequences because we obtain definite
values of r(T) and ρ(T). This is only that limT→+ 2

c2
0

F(T) = ∞.

For a = b + 1, Equation (29) becomes the following:

F(T) = F′(0) exp

[
4

c2
0 T + 2

] [(
T − 2

c2
0

)
− 16α

c4
0(1 + α)

(
T +

2
c2

0

)−1]
, (31)

and then Equation (30) will simplify as follows:

ρ(T) = ρ2

(
T +

2
c2

0

)− (1+α)
α

, (32)

where ρ2 = ρ0 a−
a(1+α)

α
0

(
− 4δ a

b0 c0

) (1+α)
α . The T = − 2

c2
0

singularity is now the remaining one

inside Equation (31) and leads to an undefined F(T). We obtain from Equation (32) that
the fluid density is as follows:

• α > 0 subcase: ρ(T) is undefined.
• α < 0 subcase: ρ(T) = 0, the vacuum situation.

For Equation (27), we find the following:

• b > −1 subcase: r(T) is undefined.
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• b < −1 subcase: r(T) → 0, a point-like singularity.

For a = 0 and/or b = −1, these are constant torsion scalar spacetime cases according to
Equation (26d) and are GR solutions.

3.1.2. Constant A2 and Exponential A1 Solutions

Another possible ansatz for F(T) solutions is A1(r) = a0(1 − e−ar) and A2(r) = b0 = 1.
We replace the component A1 of the simple power-law ansatz expressed in Equation (24)
by an infinite series of power laws leading to an exponential ansatz defined as

A1(r) = a0 ∑k≥0
(−1)k

(k+1)! (a r)k+1. We then set b = 0 for the component A2 of this same
ansatz thus generalizing the power-law ansatz as expressed in Equation (24). Then,
Equation (23) becomes the following:

T(r) =− 2
c2

0
− 4δ a

c0 (ear − 1)

⇒ e−a r(T) =

(
T + 2

c2
0

)
(

T + 2
c2

0
(1 − 2δ a c0)

) (33)

Equations (22a)–(22c) become the following:

F′(T) =F′(0)

(
T − 2

c2
0

) (δ+a c0)
(δ−a c0)

(
T +

2
c2

0

) δ
a c0
(

T +
2
c2

0
(1 − 2δ a c0)

)− (1+a2 c2
0)

a c0(δ−a c0)

, (34a)

−κ ρ =
F′(T)
(1 + α)

[ 8
c4

0
+ 2δa

c0

(
T + 2

c2
0

)
(

T − 2
c2

0

) ]
, (34b)

−κ ρ =
F(T)

2
+ F′(T)

[( 8
c4

0
+ 2δa

c0

(
T + 2

c2
0

))
(

T − 2
c2

0

) −

(
T + 2

c2
0

)
2

]
. (34c)

By putting Equations (34b) and (34c) together and then by substituting Equation (34a), we
find the following:

F(T) =F′(0)

(
T − 2

c2
0

) (δ+a c0)
(δ−a c0)

(
T +

2
c2

0

) δ
a c0
(

T +
2
c2

0
(1 − 2δ a c0)

)− (1+a2 c2
0)

a c0(δ−a c0)

×
[
− 2α

(1 + α)

(
8
c4

0
+ 2δa

c0

(
T + 2

c2
0

))
(

T − 2
c2

0

) +

(
T +

2
c2

0

)]
, (35)

where a ̸=
{

0, δ
c0

}
. Equation (35) is another new non-trivial F(T) teleparallel solution with

A3 = constant. Then, Equation (18) for the fluid density in terms of T will be as follows:

ρ(T) = ρ3

(
T +

2
c2

0
(1 − 2δ a c0)

) (1+α)
α

, (36)

where ρ3 = ρ0

(
− 4δ a0 a

c0

)− (1+α)
α and α ̸= 0. From Equation (35), we find three singularities:
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• T = − 2
c2

0
: This singularity arises when δ

a c0
< 0 and limT→− 2

c2
0

F(T) is undefined.

There is no impact on ρ(T), only a limit of ρ(T) = ρ0. We have that r(T) → ∞ for
a > 0 and r(T) is undefined for a < 0 according to Equation (33).

• T = 2
c2

0
: This singularity arises when ac0 < 0 only and leads to an undefined

limT→ 2
c2
0

F(T). There are no real consequences on ρ(T) and r(T): these quantities

will be constant.
• T = 2

c2
0
(2δ a c0 − 1): This case arises when 0 < a c0 < 1 for δ = +1 and −1 < a c0 < 0

for δ = −1 only, all leading to an undefined limT→ 2
c2
0
(2δ a c0−1) F(T), an undefined ρ(T)

for α < 0 and to ρ(T) = 0 (vacuum case) for α > 0 according to Equation (36). For
Equation (33), we find that r(T) → ∞ if a < 0 (point-like singularity) and r(T) is
undefined if a > 0.

For a = δ
c0

, Equation (33) will be as follows:

e−
δ

c0
r(T)

=

(
T + 2

c2
0

)
(

T − 2
c2

0

) , (37)

where T ̸= 2
c2

0
. Then, Equations (34a)–(34c) will become the following:

F′(T) =F′(0)

(
T + 2

c2
0

)
(

T − 2
c2

0

) exp

[
− 2

(
T + 2

c2
0

)
(

T − 2
c2

0

)], (38a)

−κ ρ =
2F′(T)

c2
0(1 + α)

(
T + 6

c2
0

)
(

T − 2
c2

0

) , (38b)

−κ ρ =
F(T)

2
+

2F′(T)
c2

0

[(T + 6
c2

0

)
(

T − 2
c2

0

) −
c2

0
4

(
T +

2
c2

0

)]
. (38c)

By putting Equations (38b) and (38c) and then by substituting Equation (38a) inside, we
find the following:

F(T) =
F′(0)

c2
0

(
T + 2

c2
0

)
(

T − 2
c2

0

)2 exp

[
− 2

(
T + 2

c2
0

)
(

T − 2
c2

0

)][c2
0

(
T +

2
c2

0

)(
T − 2

c2
0

)
− 4α

(1 + α)

(
T +

6
c2

0

)]
. (39)

Then, Equation (36) for fluid density will be as follows:

ρ(T) = ρ3

(
T − 2

c2
0

) (1+α)
α

, (40)

where ρ3 = ρ0

(
− 4 a0

c2
0

)− (1+α)
α

and α ̸= 0. In the case of Equation (39), the only and

remaining singularity is T = 2
c2

0
leading to an undefined F(T), ρ(T) = 0 for α > 0 (vacuum)

and an undefined ρ(T) for α < 0 according to Equation (40), all with r → ∞ and δ
c0

< 0
from Equation (37).
For a = 0, we obtain from Equation (33) that the torsion scalar is constant (i.e., T = − 2

c2
0
),

A1 = a0 and ρ(T) = ρ0 a−
(1+α)

α
0 = constant leading to GR solutions.
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In comparison with ref. [18], we obtain as a result for the pure vacuum case a linear
F(T), which is a GR solution. But for a perfect fluid with α ̸= 0, we find some new and non-
trivial teleparallel F(T) specific solutions. These are all new teleparallel fluid non-vacuum
solutions for the A3 = constant class.

3.2. A3 = r Field Equation Solutions

For A3 = r FEs, Equations (14a), (19a) and (19b) become the following with Equation (A3)
components:

F′(T) =F′(0) exp

[ ∫ dr
A2 r

[
−A2 r2 A′′

1 + A1 A2 + (A1 A2)
′ r + r2 A′

1 A′
2 − A1 A3

2
][

A1 + r A′
1 + δ A1 A2

] ]
, (41a)

κ (1 + α) ρ =2 F′(T)

[
−
[
−A2 r2 A′′

1 + A1 A2 + (A1 A2)
′ r + r2 A′

1 A′
2 − A1 A3

2
][

A1 + r A′
1 + δ A1 A2

] (1 + δ A2)

A3
2 r2

+
(A1 A2)

′

A1 A3
2 r

]
, (41b)

κ ρ +
F(T)

2
=2 F′(T)

[
−
[
−A2 r2 A′′

1 + A1 A2 + (A1 A2)
′ r + r2 A′

1 A′
2 − A1 A3

2
][

A1 + r A′
1 + δ A1 A2

] (1 + δ A2)

A3
2 r2

+
1

A1 A3
2 r2

[
−A1 A2 − A2 r A′

1 − δ A1 A2
2 + A1 r A′

2 − δ A2
2 r A′

1

]]
. (41c)

Equation (21) for torsion scalar becomes the following:

T(r) = − 2
r2 A2

2

[
(δ A2 + 1)2 +

2 r A′
1

A1
(δ A2 + 1)

]
. (42)

There are a number of approach for solving Equations (41a)–(42) to find specific pure F(T)
new solutions in the general perfect fluid case with α ̸= 0. For conservation laws, ρ(r) is
still described by Equation (18), because ρ(r) depends only on the A1(r) component.

3.2.1. General Power-Law Field Equations

For FEs and conservation law in terms of power-law solutions, we will use the
Equation (24) ansatz in Equations (25) and (41a)–(42). From there, we obtain the following:

F′(T(r)) =F′(T(0)) exp

[∫
dr
[(

2a − a2 + ab + b + 1
)

r−2b − b2
0
][

(a + 1) r1−2b + δ b0 r1−b
] ]

(43a)

κ (1 + α) ρ =
2 F′(T)

b2
0

[
−
[(

2a − a2 + ab + b + 1
)

r−2b − b2
0
][

(a + 1) r1−2b + δ b0 r1−b
] [

r−2b−1 + δ b0 r−b−1

]
+ (a + b) r−2b−2

]
, (43b)

κ ρ =− F(T)
2

+
2 F′(T)

b2
0

[
−
[(

2a − a2 + ab + b + 1
)

r−2b − b2
0
][

(a + 1) r2(1−b)−1 + δ b0 r(1−b)
] [

r−2b−1 + δ b0 r−b−1

]

+ (−a + b − 1) r−2b−2 − δ b0 (a + 1) r−b−2

]
, (43c)

T(r) =− 2
b2

0

[
b2

0 r−2 + 2δ b0 (1 + a) r−2−b + (2 a + 1) r−2−2b
]
, (43d)

ρ(r) =ρ1 r−
a (1+α)

α , (43e)

where ρ1 = a−
a(1+α)

α
0 = constant and α ̸= 0. From Equation (43d), we find the following

characteristic eqn for r(T):

0 =
b2

0 T
2

+ b2
0 r−2 + 2δ b0 (1 + a) r−2−b + (2 a + 1) r−2−2b. (44)

From Equation (44), we can in principle isolate for each value of a and b a relation r(T) for
finding a specific solution F(T), which is the main aim of this rigorous work.



Axioms 2024, 13, 333 12 of 38

3.2.2. Simple Spacetime Solutions

Before going to more complex solutions, it is important to consider the simplest case
of pure flat cosmological spacetimes where a = b = 0. In this case, Equation (44) becomes
the following:

0 =
b2

0 T
2

+ (1 + δ b0)
2 r−2,

⇒ r−2(T) =
b2

0

2(1 + δ b0)
2 (−T). (45)

Then, Equations (43a)–(43c) and Equation (25) become the following:

F′(T) =F′(0)

(
b0√

2(1 + δ b0)

)δb0−1

(−T)
δb0−1

2 (46a)

κ ρ =
(1 − δb0)

(1 + δ b0)(1 + α)
T F′(T), (46b)

κ ρ =− F(T)
2

+
(2 − δb0)

(1 + δ b0)
T F′(T), (46c)

ρ =ρ1 = ρ0 a−
a(1+α)

α
0 = const. (46d)

Equations (46a)–(46c) are expressed in terms of T, F(T) and F′(T) only. By putting
Equations (46b) and (46c) together, we find the following:

F(T) = F(0) T
(1+δ b0)(1+α)

2(1+α(2−δb0)) , (47)

where F(0) is an integration constant. Equation (47) is a pure power-law solution for
static simple cosmological spacetimes where α ̸= 0, which is similar to Bahamonde–Camci
solutions [20]. If b0 = δ, we find that Equation (47) will be reduced to the TEGR-like
solution F(T) = F(0) T. For a pure flat null torsion spacetime, we require that b0 = −δ in
Equations (45)–(46c), which leads to T = 0 and F(T) = F(0) = constant without any other
condition. If then F(0) = 0, we obtain the pure Minkowski spacetime [35].

3.2.3. General Case Solutions

We will consider different cases according to the value of b for the general case (i.e.,
a ̸=

{
−1, − 1

2

}
):

1. b = 0 case: Equation (44) will be as follows:

0 =
b2

0 T
2

+
(

b2
0 + 2δ b0 (1 + a) + 2 a + 1

)
r−2,

⇒ r−1(T) = ± b0
√

2
√

b2
0 + 2δ b0 (1 + a) + 2 a + 1

(−T)1/2, (48)

where T ≤ 0. As for the simple case presented in Section 3.2.2, we substitute
Equation (48) into Equations (43a)–(43c) by setting b = 0. After that, by putting
Equations (43b) and (43c) together, and then by substituting Equation (43a), we find
the following:

F(T) = 4F′(0)
(

2
(

b2
0 + 2δ b0 (1 + a) + 2 a + 1

))− (a2+(1+δ b0)
2]

2(a+1+δ b0) b
− [2a−a2+1−b2

0 ]
(a+1+δ b0)

0

×
[

α
[
a2 − 2a − 1 + b2

0
]

(1 + α)(a + 1 + δ b0)
(1 + δ b0)−

a
(1 + α)

− (a + 1)(1 + δ b0)

]

× (−T)
(a2+(1+δ b0)

2]
2(a+1+δ b0) ,

= F1 (−T)
(a2+(1+δ b0)

2]
2(a+1+δ b0) , (49)
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where F1 is a constant. Here, we have a power-law solution similar to the Bahamonde–
Camci solution where ρ(r) is described by Equation (25) [20]. In terms of torsion
scalar, this Equation (25) becomes the following:

ρ(T) = ρ1

(
b2

0
2
(
b2

0 + 2δ b0 (1 + a) + 2 a + 1
)) a(1+α)

2α

(−T)
a(1+α)

2α , (50)

where α ̸= 0. We have a direct density-linked F(T) solution in this case.
2. b = 1 case: Equation (44) will be as follows:

0 =
b2

0 T
2

+ b2
0 r−2 + 2δ b0 (1 + a) r−3 + (2 a + 1) r−4, (51)

The solutions are as follows:

r−1(T) =

δ1 b0(a + 1)
2(2a + 1)

− δ1

2

[(
−

2b2
0

3(2a + 1)
+

b2
0(a + 1)2

(2a + 1)2

+
1

6 3
√

2(2a + 1)

((
16b6

0 +
(

432(a + 1)2 − 288 (2a + 1)
)

b4
0 T

+

√((
16b6

0 + (432(a + 1)2 − 288(2a + 1)) b4
0 T
)2 − 4b6

0
(
4b2

0 + 24(2a + 1) T
)3
))1/3)

+
24/3b2

0
(
b2

0 + 6 (2a + 1) T
)

3(2a + 1)

(
16b6

0 +
(

432(a + 1)2 − 288 (2a + 1)
)

b4
0 T

+

√((
16b6

0 + (432(a + 1)2 − 288(2a + 1)) b4
0 T
)2 − 4b6

0
(
4b2

0 + 24(2a + 1) T
)3
))−1/3)]1/2

− δ2

2

[(
−

4b2
0

3(2a + 1)
+

2b2
0(a + 1)2

(2a + 1)2

− 1
6 3
√

2(2a + 1)

((
16b6

0 +
(

432(a + 1)2 − 288 (2a + 1)
)

b4
0 T

+

√((
16b6

0 + (432(a + 1)2 − 288(2a + 1)) b4
0 T
)2 − 4b6

0
(
4b2

0 + 24(2a + 1) T
)3
))1/3)

+
24/3b2

0
(
b2

0 + 6 (2a + 1) T
)

3(2a + 1)

(
16b6

0 +
(

432(a + 1)2 − 288 (2a + 1)
)

b4
0 T

+

√((
16b6

0 + (432(a + 1)2 − 288(2a + 1)) b4
0 T
)2 − 4b6

0
(
4b2

0 + 24(2a + 1) T
)3
))−1/3)

+ δ1
8δ b3

0 a2 (a + 1)
(2a + 1)3

[
4

[(
−

2b2
0

3(2a + 1)
+

b2
0(a + 1)2

(2a + 1)2

+
1

6 3
√

2(2a + 1)

((
16b6

0 +
(

432(a + 1)2 − 288 (2a + 1)
)

b4
0 T

+

√((
16b6

0 + (432(a + 1)2 − 288(2a + 1)) b4
0 T
)2 − 4b6

0
(
4b2

0 + 24(2a + 1) T
)3
))1/3)

+
24/3b2

0
(
b2

0 + 6 (2a + 1) T
)

3(2a + 1)

(
16b6

0 +
(

432(a + 1)2 − 288 (2a + 1)
)

b4
0 T

+

√((
16b6

0 + (432(a + 1)2 − 288(2a + 1)) b4
0 T
)2 − 4b6

0
(
4b2

0 + 24(2a + 1) T
)3
))−1/3)]1/2]−1]1/2

, (52)
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where (δ1, δ2) = (±1, ±1). By putting Equations (43b) and (43c) together and then
by substituting Equations (43a) and (52), we find as a solution:

F(T) =
4 F′(0)

b2
0

e−δ b0 r(T) (a + 1 + δ b0 r(T))
2a2
a+1−1 [r(T)]

2+3a−a2
a+1

×
[
−

α
[(

3a − a2 + 2
)

r−2(T)− b2
0
]

(1 + α)[(a + 1) r−1(T) + δ b0]

(
r−1(T) + δ b0

)
r−2(T)

− (a + 1)
(1 + α)

r−4(T)− a r−4(T)− δ b0 (a + 1) r−3(T)

]
, (53)

where r(T) is Equation (52).
3. b = −1 case: Equation (44) will be as follows:

0 =

(
b2

0 T
2

+ 2 a + 1

)
+ 2δ b0 (1 + a) r−1 + b2

0 r−2,

⇒ r−1(T) = − δ (a + 1)
b0

±
√

a2

b2
0
− T

2
(54)

By putting Equations (43b) and (43c) together and then by substituting Equations (43a)
and (54), we find the following:

F(T) =
4 F′(0)

b2
0

[r(T)]a+1 [(a + 1) r(T) + δ b0]
− 2a2+a+1

a+1 exp
(

δ b0

r(T)

)

×
[
−

α
[
a(1 − a) r2(T)− b2

0
]
(r(T) + δ b0)

(1 + α)[(a + 1) r3(T) + δ b0 r2(T)]
+

(1 − a)
(1 + α)

− (a + 2)

− δ b0 (a + 1) r−1(T)

]
, (55)

where r(T) is Equation (54).
4. b = −2 case: Equation (44) will be as follows:

0 =b2
0 +

(
b2

0 T
2

+ 2δ b0 (1 + a)

)
r2 + (2 a + 1) r4,

⇒ r(T) = ± 1
2
√

2a + 1

√
δ2 b0

√
16a2 + 8δ (a + 1) b0 T + b2

0 T2 − 4δ b0(a + 1)− b2
0 T. (56)

Then, we will set the positive r(T) case and δ2 = ±1. By putting Equations (43b)
and (43c) together and then by substituting Equations (43a) and (56), we find
the following:

F(T) =
4 F′(0)

b2
0

[
α
[(

a2 + 1
)

r4(T) + b2
0
] [

r2(T) + δ b0
]

(1 + α) r2(T) [(a + 1) r2(T) + δ b0]
− (a + 2α)

(1 + α)
r2(T)

− (a + 1)
[
r2(T) + δ b0

]][
(a + 1)r2(T) + b0 + δ

]− (a2+a+1)
(a+1) r(a+1)(T) exp

(
δ b0

2 r2(T)

)
, (57)

where r(T) is Equation (56).
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3.2.4. a = −1 Case Solutions

For solving a = −1 specific cases, Equation (44) will simplify as follows:

0 =
b2

0 T
2

+ b2
0 r−2 − r−2−2b. (58)

Then, Equations (43a)–(43e) and (43e) will be simplified as follows:

F′(T) =F′(0) exp
[
− δ

b0

∫
dr
(

2 r−b−1 + b2
0rb−1

)]
(59a)

κ ρ =
2 F′(T)

b2
0 (1 + α)

[
δ

b0

[
2 r−b−1 + b2

0 rb−1
] [

r−2b−1 + δ b0 r−b−1
]
+ (b − 1) r−2b−2

]
, (59b)

κ ρ =− F(T)
2

+
2 F′(T)

b2
0

[
δ

b0

[
2 r−b−1 + b2

0 rb−1
] [

r−2b−1 + δ b0 r−b−1
]
+ b r−2b−2

]
, (59c)

ρ =ρ1 r
(1+α)

α , (59d)

where ρ1 = ρ0 a
(1+α)

α
0 is a constant.

From Equation (58), there are several new subcases arising and leading to new F(T)
solutions for Equations (59a)–(59c). These subcases are as follows:

1. b = 0: Equation (58) becomes the following:

0 =
b2

0 T
2

+
(

b2
0 − 1

)
r−2.

r−2(T) =

(
b2

0
2
(
1 − b2

0
)) T (60)

By putting together Equations (59b) and (59c) and then by substituting Equations (59a)
and (60), we obtain a power-law F(T) solution:

F(T) =

[
4F′(0)

b2
0(1 + α)

(
b2

0
2
(
1 − b2

0
))1+ δ

b0

(
1+

b2
0
2

)[
δα
(

2 + b2
0

)
(1 + δ b0) + b0

]]
T

1+ δ
b0

(
1+

b2
0
2

)

=F2 T
1+ δ

b0

(
1+

b2
0
2

)
, (61)

where F2 is a constant. Equation (61) is a pure power-law solution and this is similar
to the Bahamonde–Camci solution [20].

2. b = 1
2 : Equation (58) becomes the following:

0 =
b2

0 T
2

+ b2
0 r−2 − r−3,

⇒ r−1(T) =
1
3

[
b2

0 +
22/3 b4

0[
33/2

√
27b4

0 T2 + 8b8
0 T + 27b2

0 T + 4b6
0

]1/3

+

[
33/2

√
27b4

0 T2 + 8b8
0 T + 27b2

0 T + 4b6
0

]1/3

22/3

]
. (62)

By putting Equations (59b) and (59c) together, and then by substituting Equations (59a)
and (62), we find the following:
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F(T) =
4 F′(0)

b2
0

[
δ α

b0(1 + α)

(
2 r−1(T) + b2

0

) (
r−

1
2 (T) + δ b0

)
r−2(T) +

(2 + α)

2(1 + α)
r−3(T)

]

× exp
[

2δ

b0

(
2 r−

1
2 (T)− b2

0r
1
2 (T)

)]
, (63)

where r−1(T) is Equation (62).
3. b = − 1

2 : Equation (58) becomes the following:

0 =r−2 − 1
b2

0
r−1 +

T
2

⇒ r−1(T) =
1

2b2
0

[
1 + δ1

√
1 − 2 b4

0 T
]

(64)

where δ1 = ±1. By putting Equations (59b) and (59c) together, and then by substitut-
ing Equations (59a) and (64), we obtain the following:

F(T) =
F′(0)

(1 + α) b4
0

exp

[√2
[
−3 + δ1

√
1 − 2 b4

0 T
]

[
1 + δ1

√
1 − 2 b4

0 T
]1/2

] [
1 + δ1

√
1 − 2 b4

0 T
]1/2

×
[(

2 + α

[
4 + δ1

√
1 − 2 b4

0 T
])[

1 + δ1

√
1 − 2 b4

0 T
]1/2

+
√

2α

[
5 + δ1

√
1 − 2 b4

0 T
]]

. (65)

4. b = 1, Equation (58) becomes the following:

0 =r−4 − b2
0 r−2 −

b2
0 T
2

⇒ r−2(T) =
b2

0
2

[
1 + δ1

√
1 +

2 T
b2

0

]
. (66)

where δ1 = ±1. By putting Equations (59b) and (59c) together, and then by substitut-
ing Equations (59a) and (66), we obtain the following:

F(T) =F′(0) b2
0 exp

[
+δ1

√
2
√

1 + 2 T
b2

0[
1 + δ1

√
1 + 2 T

b2
0

]1/2

][
1 + δ1

√
1 +

2 T
b2

0

]

×
[

1 + δ1

√
1 +

2 T
b2

0
+

α

[
2 + δ1

√
1 + 2 T

b2
0

]
(1 + α)

[
√

2

[
1 + δ1

√
1 +

2 T
b2

0

]1/2

+ 2

]]
. (67)

5. b = −1: Equation (58) becomes the following:

0 =
b2

0 T
2

+ b2
0 r−2 − 1,

⇒ r−1(T) = δ1

√
1
b2

0
− T

2
, (68)
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where T ≤ 2
b2

0
. By putting Equations (59b) and (59c) together, and then by substituting

Equations (59a) and (68), we obtain the following:

F(T) =
4 F′(0)

b2
0

[
δ α

b0(1 + α)

(
2 + b2

0 r−2(T)
)
(r(T) + δ b0) +

(1 − α)

(1 + α)

]

× exp
[
− δ

b0

(
2 r(T)− b2

0r−1(T)
)]

, (69)

where r(T) is Equation (68).
6. b = − 3

2 : Equation (58) becomes the following:

0 =r−3 +
T
2

r−1 − 1
b2

0
,

⇒ r−1(T) =
1

62/3b2
0

[√
6b4

0

√
b4

0 T3 + 54 + 18b4
0

]1/3

−
b2

0 T
61/3

[√
6b4

0

√
b4

0 T3 + 54 + 18b4
0

]−1/3
. (70)

By putting Equations (59b) and (59c) together, and then by substituting
Equations (59a) and (70), we obtain the following:

F(T) =
4 F′(0)

b2
0

[
δ α

b0(1 + α)

(
2 + b2

0 r−3(T)
)(

r
3
2 (T) + δ b0

)
r(T) +

r(T)(2 − 3α)

2(1 + α)

]

× exp
[
− 2δ

3b0

(
2 r

3
2 (T)− b2

0r−
3
2 (T)

)]
, (71)

where r(T) is Equation (70).
7. b = 2: Equation (58) becomes the following:

0 =
b2

0 T
2

+ b2
0 r−2 − r−6,

⇒ r−1(T) = δ1

[
22/3 b2

0
31/3

[√
3b2

0

√
27 T2 − 16b2

0 + 9b2
0 T
]− 1

3

+
1

62/3

[√
3b2

0

√
27 T2 − 16b2

0 + 9b2
0 T
] 1

3
] 1

2

, (72)

where δ1 = ±1. By putting Equations (59b) and (59c) together, and then by substitut-
ing Equations (59a) and (72), we obtain the following:

F(T) =
4 F′(0)

b2
0

[
α δ

b0(1 + α)

(
2 + b2

0 r4(T)
)(

r−2(T) + δ b0

)
r−6(T) +

(1 + 2α)

(1 + α)
r−6(T)

]

× exp
[
− δ

2b0

(
−2 r−2(T) + b2

0r2(T)
)]

, (73)

where r(T) is Equation (72).
8. b = −2: Equation (58) becomes the following:

0 =
b2

0 T
2

r2 + b2
0 − r4,

⇒ r(T) =
δ2

2

√
b2

0 T + δ1 b0

√
b2

0 T2 + 16. (74)
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By putting Equations (59b) and (59c) together, and then by substituting Equations (59a)
and (74), we obtain the following:

F(T) =
4 F′(0)

b2
0

[
α δ

b0(1 + α)

(
2 + b2

0 r−4(T)
) (

r2(T) + δ b0

)
r2(T) +

(1 − 2α)

(1 + α)
r2(T)

]

× exp
[
− δ

2b0

(
2 r2(T)− b2

0r−2(T)
)]

, (75)

where r(T) is Equation (74).
9. b = 3: Equation (58) becomes the following:

0 =
b2

0 T
2

+ b2
0 r−2 − r−8,

⇒ r−2(T) =

δ1

2

[
b0

3√2 32/3

(√
3
√

32T3 + 27b2
0 + 9b0

)1/3

− 2b0
3

√
2
3

T
(√

3
√

32T3 + 27b2
0 + 9b0

)−1/3
]1/2

+
δ2

2

[
2b0

3

√
2
3

T
(√

3
√

32T3 + 27b2
0 + 9b0

)−1/3

+ 2δ1 b2
0

[
b0

3√2 32/3

(√
3
√

32T3 + 27b2
0 + 9b0

)1/3

− 2b0
3

√
2
3

T
(√

3
√

32T3 + 27b2
0 + 9b0

)−1/3
]−1/2

− b0
3√2 32/3

(√
3
√

32T3 + 27b2
0 + 9b0

)1/3
]1/2

, (76)

where (δ1, δ2) = (±1, ±1). By putting Equations (59b) and (59c) together, and then
by substituting Equations (59a) and (76), we obtain the following:

F(T) =
4 F′(0)

b2
0

[
α δ

b0(1 + α)

(
2 + b2

0 r6(T)
)(

r−3(T) + δ b0

)
r−8(T) +

(1 + 3α)

(1 + α)
r−8(T)

]

× exp
[
− δ

3b0

(
−2 r−3(T) + b2

0r3(T)
)]

, (77)

where r(T) is Equation (76).

3.2.5. a = − 1
2 Case Solutions

For solving a = − 1
2 specific cases, Equation (44) will simplify as follows:

0 =
b0 T

2
+ b0 r−2 + δ r−2−b. (78)

Equations (43a)–(43c) and (43e) become the following:

F′(T) =F′(0) exp

∫ dr

[(
2b−1

4

)
r−2b − b2

0

]
[

1
2 r1−2b + δ b0 r1−b

]
 (79a)

κ ρ =
2 F′(T)

b2
0 (1 + α)

−
[(

2b−1
4

)
r−2b − b2

0

]
[

1
2 r1−2b + δ b0 r1−b

] [r−2b−1 + δ b0 r−b−1

]
+ (b − 1

2
) r−2b−2

, (79b)

κ ρ =− F(T)
2

+
2 F′(T)

b2
0

[
−

[(
2b−1

4

)
r−2b − b2

0

]
[

1
2 r1−2b + δ b0 r(1−b)

] [r−2b−1 + δ b0 r−b−1

]
+ (b − 1

2
) r−2b−2

− δ b0

2
r−b−2

]
, (79c)

ρ =ρ1 r
(1+α)

2α (79d)

where ρ1 = ρ0 a
(1+α)

2α
0 = constant.
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The possible cases are:

1. b = 0 case: Equation (78) becomes the following:

0 =
b0 T

2
+ (b0 + δ) r−2,

⇒ r−1(T) =

√
b0

2(b0 + δ)

√
−T. (80)

By putting Equations (79b) and (79c) together, and then substituting Equations (79a)
and (80) inside, we obtain the following:

F(T) =
4 F′(0)

b2
0

(
b0

2(b0 + δ)

)1+
( 1

4 +b2
0)

(1+2δ b0)

[
α
(

1
4 + b2

0

)
(1 + δ b0)

(1 + α)
(

1
2 + δ b0

) − α

2(1 + α)
− δ b0

2

]

× (−T)
1+

( 1
4 +b2

0)
(1+2δ b0) ,

=F3 (−T)
1+

( 1
4 +b2

0)
(1+2δ b0) , (81)

where F3 is a constant. Once again, we have a pure power-law solution as in ref. [20].
2. b = 1 case: Equation (78) becomes more simple as follows:

0 =
δ b0 T

2
+ δ b0 r−2 + r−3,

⇒ r−1(T) =
1
3

[
− δ b0 +

22/3 b2
0

3

√
−4δ b3

0 + 3
√

3
√

27b2
0 T2 + 8b4

0 T − 27δ b0 T

+
1

22/3
3

√
−4δ b3

0 + 3
√

3
√

27b2
0 T2 + 8b4

0 T − 27δ b0 T

]
. (82)

Equation (82) leads to only one real solution for r−1(T). By putting Equations (79b)
and (79c) together, and then substituting Equations (79a) and (82) inside, we obtain
the following:

F(T) =
4 F′(0)

b2
0

exp[−δ b0 r(T)]

[
− α

(1 + α)

(
r−1(T)

2
− δ b0

)(
r−1(T) + δ b0

)
r−3/2(T)

+
α

(1 + α)

r−7/2(T)
2

− δ b0
r−5/2(T)

2

]
, (83)

where r(T) is described by Equation (82).
3. b = −1 case: Equation (78) becomes the following:

0 =
b0 T

2
+ b0 r−2 + δ r−1,

⇒ r−1(T) = − δ

2b0
±
√

1
4b2

0
− T

2
. (84)

By putting Equations (79b) and (79c) together, and then substituting Equations (79a)
and (84) inside, we obtain the following:
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F(T) =
4 F′(0)

b2
0

[
α
( 3

4 r2(T) + b2
0
)
(r(T) + δ b0)

r2(T)(1 + α)
(

r(T)
2 + δ b0

) − 3α

2(1 + α)
− δ b0

2 r(T)

]√
r(T) exp

(
δ b0
r(T)

)
(2δ b0 + r(T))2 , (85)

where r(T) is described by Equation (84).
4. b = 2 case: Equation (78) becomes the following:

0 =
δ b0 T

2
+ δ b0 r−2 + r−4,

⇒ r−1(T) = δ2

√√√√− δ b0

2
+ δ1

√
b2

0
4
− δ b0 T

2
. (86)

By putting Equations (79b) and (79c) together, and then substituting Equations (79a)
and (86) inside, we obtain the following:

F(T) =
4 F′(0)

b2
0

[
−

α
( 3

4 − b2
0 r4(T)

)(
1 + δ b0r2(T)

)
(1 + α)

(
1
2 + δ b0 r2(T)

) +
3α

2(1 + α)
− δ b0r2(T)

2

]

×
r−

9
2 (T) exp

(
− δ b0 r2(T)

2

)
√

1 + 2δ b0 r2(T)
, (87)

where r(T) is described by Equation (86).
5. b = −2 case: Equation (78) will simplify as follows:

0 =b0 +

(
b0 T

2
+ δ

)
r2,

⇒ r(T) = ±
√

2b0√
−b0 T − 2δ

, (88)

where b0 T + 2δ < 0. By putting Equations (79b) and (79c) together, and then substi-
tuting Equations (79a) and (88) inside, we obtain the following:

F(T) =
4 F′(0) exp

(
δ b0

2 r2(T)

)
b2

0 (r
2(T) + 2δ b0)

3/2

[
α
[ 5

4 r4(T) + b2
0
] [

r2(T) + δ b0
]

(1 + α)r3/2(T)
[

1
2 r2(T) + δ b0

] − 5α r5/2(T)
2(1 + α)

− δ b0

2
r1/2(T)

]
, (89)

where r(T) is Equation (88).
6. b = −3 case: Equation (78) becomes the following:

0 =r3 +
δb0 T

2
r2 + δb0,

⇒ r(T) =
1
6

[[
−108δ b0 − δ b3

0 T3 + 63/2 b0

√
54 + b2

0 T3
]1/3

+ b2
0 T2

[
−108δ b0 − δ b3

0 T3 + 63/2 b0

√
54 + b2

0 T3
]−1/3

− δ b0 T

]
. (90)

By putting Equations (79b) and (79c) together, and then substituting Equations (79a)
and (90) inside, we obtain the following:
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F(T) =
4 F′(0)

b2
0

[
α
( 7

4 r6(T) + b2
0
)(

r3(T) + δ b0
)

(1 + α)r3(T)
(

r3(T)
2 + δ b0

) − 7α r3(T)
2(1 + α)

− δ b0

2

]
r

3
2 (T) exp

(
δ b0

3 r3(T)

)
(2δ b0 + r3(T))

4
3

, (91)

where r(T) is described by Equation (90).
7. b = 4 case: Equation (78) becomes the following:

0 =
b0 T

2
+ b0 r−2 + δ r−6,

⇒ r−1(T) =δ1

[
1

6
2
3

[√
3 b0

√
16δb0 + 27 T2 − 9δ b0 T

] 1
3

− δ b0 2
2
3

3
1
3

[√
3 b0

√
16δb0 + 27 T2 − 9δ b0 T

]− 1
3

] 1
2

, (92)

where δ1 = ±1. By putting Equations (79b) and (79c) together, and then substituting
Equations (79a) and (92) inside, we obtain the following:

F(T) =
4 F′(0)

b2
0

[
−

α
( 7

4 − b2
0 r8(T)

)(
1 + δ b0r4(T)

)
(1 + α)r4(T)

(
1
2 + δ b0 r4(T)

) +
7α

2(1 + α) r4(T)
− δ b0

2

]

×
r−

5
2 (T) exp

(
− δ b0 r4(T)

4

)
(1 + 2δ b0 r4(T))

3
4

, (93)

where r(T) is described by Equation (92).
8. b = −4 case: Equation (78) becomes the following:

0 =r4 +
δ b0 T

2
r2 + δ b0,

⇒ r(T) = δ2

√√√√− δ b0 T
4

+ δ1

√
b2

0 T2

16
− δ b0. (94)

By putting Equations (79b) and (79c) together, and then substituting Equations (79a)
and (94) inside, we obtain the following:

F(T) =
4 F′(0)

b2
0

[
α
( 9

4 r8(T) + b2
0
)(

r4(T) + δ b0
)

(1 + α)r5(T)
(

r4(T)
2 + δ b0

) − 9α r3(T)
2(1 + α)

− δ b0

2

]
r

7
2 (T) exp

(
δ b0

4 r4(T)

)
(2δ b0 + r4(T))

5
4

, (95)

where r(T) is described by Equation (94).
9. b = 6 case: Equation (78) becomes the following:
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0 =
b0 T

2
+ b0 r−2 + δ r−8,

⇒ r−2(T) =
δ1

2

[
2 3

√
2
3

b0 T
(

9δ b2
0 +

√
3 b0

√
27b2

0 − 32δ b0 T3
)−1/3

+
δ

3
√

2 32/3

(
9δ b2

0 +
√

3 b0

√
27b2

0 − 32δ b0 T3
)1/3

]1/2

+
δ2

2

[
− 2 3

√
2
3

b0 T
(

9δ b2
0 +

√
3 b0

√
27b2

0 − 32δ b0 T3
)−1/3

− δ δ2

2b0

[
2 3

√
2
3

b0 T
(

9δ b2
0 +

√
3 b0

√
27b2

0 − 32δ b0 T3
)−1/3

+
δ

3
√

2 32/3

(
9δ b2

0 +
√

3 b0

√
27b2

0 − 32δ b0 T3
)1/3

]−1/2

− δ
3
√

232/3

(
9δ b2

0 +
√

3 b0

√
27b2

0 − 32δ b0 T3
)1/3

]1/2

, (96)

where the possible solutions are (δ1, δ2) = (±1, ±1). By putting Equations (79b)
and (79c) together, and then substituting Equations (79a) and (96) inside, we obtain
the following:

F(T) =
4 F′(0)

b2
0

[
−

α
(

11
4 r−12(T)− b2

0

)
(1 + α)

(
1
2 r−6(T) + δ b0

) (r−6(T) + δ b0

)
+

11α

2(1 + α)
r−12(T)− δ b0

2
r−6(T)

]

× r
7
2 (T)

(2δ b0 r6(T) + 1)
5
6

exp
(
− δ b0

6
r6(T)

)
, (97)

where r(T) is described by Equation (96).
10. b = −6 case: Equation (78) becomes the following:

0 =r6 +
δ b0 T

2
r2 + δ b0,

⇒ r2(T) =

[√
6 b0

√
δ b0 T3 + 54 − 18δ b0

]2/3
− 3

√
6 δ b0 T

62/3
[√

6 b0
√

δ b0 T3 + 54 − 18δ b0

]1/3 (98)

By putting Equations (79b) and (79c) together, and then substituting Equations (79a)
and (98) inside, we obtain the following:

F(T) =
4 F′(0)

b2
0

[
α
(

13
4 r12(T) + b2

0

)
r6(T)(1 + α)

(
1
2 r6(T) + δ b0

) (r6(T) + δ b0

)
− 13α

2(1 + α)
r6(T)− δ b0

2

]

× exp
(

δ b0

6 r6(T)

)
r9/2(T)

(2δ b0 + r6(T))
7
6

, (99)

where r(T) is described by Equation (98).



Axioms 2024, 13, 333 23 of 38

11. b = −8 case: Equation (78) becomes the following:

0 =r8 +
δ b0 T

2
r2 + δ b0,

⇒ r2(T) =
δ1

2

[
8δ b0

3
√

3

(√
3b0

√
27b2

0 T4 − 4096δ b0 + 9b2
0 T2

)−1/3

+
1

2 · 32/3

(√
3b0

√
27b2

0 T4 − 4096δ b0 + 9b2
0 T2

)1/3
]1/2

+
δ2

2

[
− 8δ b0

3
√

3

(√
3b0

√
27b2

0 T4 − 4096δ b0 + 9b2
0 T2

)−1/3

− δ1δ b0 T

[
8δ b0

3
√

3

(√
3b0

√
27b2

0 T4 − 4096δ b0 + 9b2
0 T2

)−1/3

+
1

2 · 32/3

(√
3b0

√
27b2

0 T4 − 4096δ b0 + 9b2
0 T2

)1/3
]−1/2

− 1
2 · 32/3

(√
3b0

√
27b2

0 T4 − 4096δ b0 + 9b2
0 T2

)1/3
]1/2

(100)

By putting Equations (79b) and (79c) together, and then substituting Equations (79a)
and (100) inside, we obtain the following:

F(T) =
4 F′(0)

b2
0

[
α
(

17
4 r16(T) + b2

0

)
r8(T)(1 + α)

(
1
2 r8(T) + δ b0

) (r8(T) + δ b0

)
− 17α

2(1 + α)
r8(T)− δ b0

2

]

× exp
(

δ b0

8 r8(T)

)
r13/2(T)

(2δ b0 + r8(T))
9
8

, (101)

where r(T) is described by Equation (100).

In this section, all these previous non-power-law teleparallel F(T) solutions are new.
We may also use several different coframe ansatz leading to additional new F(T) solutions.
Equation (24) power-law ansatz based F(T) solutions are sufficient for the current paper’s
aims and purposes. We may study several specific cases such as radiation fluids α = 1

3
to name an example [33,34]. We are also able to study the physical properties of possible
singularities arising from each new previous F(T) solution. Even if there are numerous
new and more complex singularities in these previous F(T) solutions, they may lead to
some possible black hole solutions (point-like or not) and/or matter absorbing points. This
task is beyond the aims of the paper and might be for potential future works.

4. Dust Perfect Fluid Solutions (α = 0)

This specific case arises from P(r) = 0 and ρ(r) ̸= 0 consideration. By setting α = 0
inside Equation (17), the conservation law becomes the following:

A′
1(r) = 0. (102)
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We require that A1(r) = a0 = constant. Then, Equation (14a) remains unchanged, but
Equations (19a) and (19b) will be simplified:

κ ρ =2 F′(T)
[
−
(

g1(r)
k1(r)

)
k2(r) + g2(r)

]
, (103a)

κ ρ =− F(T)
2

+ 2 F′(T)
[
−
(

g1(r)
k1(r)

)
k2(r) + g3(r)

]
. (103b)

By combining Equations (103a) and (103b) and substituting Equations (A1b) and (A1c) FE
components, we will obtain a simplified relation for F(T(r)) as follows:

F(T(r)) =4 F′(T(r)) [g3(r)− g2(r)],

=−
4 F′(T(r)) A′

3
A2 A2

3

(
A′

3 + δ A2
)
. (104)

Equation (14a) becomes the following:

F′(T) =F′(0) exp

[ ∫
dr
[
−A2 A3 A′′

3 + A2 A′2
3 + A′

2 A3 A′
3 − A3

2
]

A2 A3
(

A′
3 + δ A2

) ]
, (105)

Equation (21) for the torsion scalar becomes the following:

T(r) = −2
(

δ

A3
+

A′
3

A2 A3

)2

. (106)

As for previous cases, we will apply the A3 = r coordinate set. The A3 = c0 = constant
coordinate leads to constant torsion scalar and GR solutions, which is not relevant for the
current purpose.

For the A3 = r coordinate system, Equations (104)–(106) become the following:

F(T) =− 4 F′(T)
A2

2 r2 (1 + δ A2), (107a)

F′(T) =F′(0)
r A2

(1 + δ A2)
exp

[
− δ

∫
dr

A2

r

]
, (107b)

T =T(r) = − 2
A2

2 r2 (1 + δ A2)
2. (107c)

By substituting Equation (107b) into Equation (107a), we find the following:

F(T) =− 4 F′(0)
r A2

exp

[
− δ

∫
dr

A2

r

]
, (108)

The best way for solving Equations (107b)–(108) is by a power-law solution ansatz as
A2(r) = b0 rb. Note also that, by setting A2(r) =

(
1 − k r2)−1/2 for static Robertson–Walker
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spacetimes, we obtain that F(T) will be linear and this is a GR solution.
Equations (107b)–(108) become the following:

F(T) =− 4 F′(0)
b0 rb+1 exp

[
− δ b0

b
rb

]
, (109a)

F′(T) =
F′(0) b0 rb+1(
1 + δ b0 rb

) exp

[
− δ b0

b
rb

]
= −

b2
0 r2(b+1)

4
(
1 + δ b0 rb

) F(T), (109b)

T(r) =− 2
b2

0 r2(b+1)

(
1 + δ b0 rb

)2
, (109c)

where b ̸= 0. The case b = 0 is the simple static cosmological spacetime and this case
may be considered as a special case. By substituting Equations (109a) and (109c) into
Equation (109b), we obtain the simplified DE to solve for F(T) in a cosmological dust fluid
where b ̸= 0:

T F′(T) =

(
1 + δ b0 rb(T)

)
2

F(T). (110)

By using Equation (103a) and then substituting Equations (110) and (A3), we find the
fluid density:

ρ(T) =
F(T)

κ b2
0 (−T)

r−2b−2(T)
(

1 + δ b0 rb(T)
)2(

1 − δ b0 rb(T)
)

, (111)

where F(T) is given by Equation (110) solutions. We will solve Equation (110) for some
values of b. For pure F(T) solutions, we need to find from Equation (109c) the characteristic
equation and then solve for r(T):

0 = rb+1 −
√
− 2

T
rb − δ

b0

√
− 2

T
. (112)

There are some specific values of b leading to an analytic r(T) function and then to an
F(T) solution:

1. b = 0: For this simple case of cosmological spacetime, Equation (112) becomes the
following:

r2(T) = −
(

1 +
δ

b0

)2 2
T

. (113)

Equations (107a)–(107c) for A2 = b0 will be summarized by Equation (110):

T F′(T) =
(1 + δ b0)

2
F(T) (114)

We solve Equation (114) and obtain as a solution for a flat dust fluid:

F(T) =F0 T
1+δ b0

2 , (115)

where b0 ̸= ±δ for a teleparallel solution (i.e., b0 = δ leads to GR solutions). Once
again, we obtain a pure power-law solution as in ref. [18] for general X4 similarity
(here ρ = ρ(r) without any other constraint). By using Equation (111), setting b = 0
and substituting Equation (115), the fluid density ρ(T) is as follows:

ρ(T) =
F0

2κ
(1 − δ b0) T

δ b0+1
2 . (116)
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Equation (116) is again a power-law function of T as usual. If b0 = δ, we find that
ρ(T) = 0 for F(T) = F0 T.

2. b = 1: Equation (112) becomes the following:

0 = r2 −
√
− 2

T
r − δ

b0

√
− 2

T
,

⇒ r(T) =
1√

(−2T)

[
1 + δ1

√
1 +

2δ

b0

√
(−2T)

]
, (117)

where δ1 = ±1. Then, Equation (110) becomes the following:

T F′(T) =
F(T)

2

[
1 +

δ b0√
(−2T)

[
1 + δ1

√
1 +

2δ

b0

√
(−2T)

]]
. (118)

The solution of Equation (118) is as follows:

F(T) =F0
√
−T

1 −
√

1 + 2
√

2δ
b0

√
−T

1 +
√

1 + 2
√

2δ
b0

√
−T

δ1

exp

[
− δ b0√

2
√
−T

(
1 + δ1

√
1 +

2δ

b0

√
(−2T)

)]
, (119)

where T ≤ 0. The fluid density ρ(T) will be the following from Equation (111):

ρ(T) =
4F0 (−T)3/2

b2
0κ
[
1 + δ1

√
1 + 2δ

b0

√
(−2T)

]4

[
1 +

δ b0√
(−2T)

[
1 + δ1

√
1 +

2δ

b0

√
(−2T)

]]2

×
[

1 − δ b0√
(−2T)

[
1 + δ1

√
1 +

2δ

b0

√
(−2T)

]] 1 −
√

1 + 2
√

2δ
b0

√
−T

1 +
√

1 + 2
√

2δ
b0

√
−T

δ1

× exp

[
− δ b0√

2
√
−T

[
1 + δ1

√
1 +

2δ

b0

√
(−2T)

]]
. (120)

3. b = −1: Equation (112) becomes the following:

0 = 1 −
√
− 2

T
r−1 − δ

b0

√
− 2

T
.

⇒ r−1(T) =

√
−T

2
− δ

b0
. (121)

Equations (110) becomes a simple DE:

dF
d(−T)

=
δb0

2
√

2
(−T)−1/2 F(T). (122)

The solution of Equation (122) is as follows:

F(T) =F1 exp
[

δb0√
2

√
−T
]

, (123)

where T ≤ 0 and F1 is an integration constant. The fluid density ρ(T) will be the
following from Equation (111):

ρ(T) =
F1

κ

[
1 − δb0

√
−T

2
√

2

]
exp

[
δb0√

2

√
−T
]

. (124)
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4. b = −2: Equation (112) becomes the following:

0 = r−1 −
√
− 2

T
r−2 − δ

b0

√
− 2

T
,

⇒ r−1(T) =

√
−T

8
+ δ1

√
−T

8
− δ

b0
, (125)

where T ≤ 0 and δ1 = ±1. Equation (110) will be a DE and the solution is as follows:

F(T) =F2 exp

[
− δ b0

8
T

(
1 + δ1

√
1 +

8δ

b0 T

)]1 −
√

1 + 8δ
b0 T

1 +
√

1 + 8δ
b0 T


δ1
2

, (126)

where F2 is an integration constant. The fluid density ρ(T) will be the following from
Equation (111):

ρ(T) =
8F2

κ b2
0 T2

(
1 + δ1

√
1 +

8δ

b0 T

)−21 − δ b0
8

T

(
1 + δ1

√
1 +

8δ

b0 T

)22 1 −
√

1 + 8δ
b0 T

1 +
√

1 + 8δ
b0 T


δ1
2

×

1 +
δ b0

8
T

(
1 + δ1

√
1 +

8δ

b0 T

)2 exp

[
− δ b0

8
T

(
1 + δ1

√
1 +

8δ

b0 T

)]
. (127)

5. b = {2, 3, −3, −4}: We can in principle find analytic r(T) solutions to the Equation (112)
characteristic equation. However, these r(T) cannot lead to solvable and well-defined F(T)
solutions and this explains the limited number of possible power-law ansatz analytical
F(T) solutions for dust fluids.

All these teleparallel F(T) solutions found in this section are all new. We may also
use several other possible ansatz for finding further new F(T) solutions as for Section 3.
However, we only used in this section power-law ansatz as defined by Equation (24) with
a = 0 (because of Equation (102)) and solved for several new and interesting F(T) solutions
all useful for many types of astrophysical or cosmological dust fluids. We may still study
and look in detail for singularities and their related physical characteristics in potential
future works as for Section 3 solutions. We can also find some point-like singularity
solutions and/or matter absorbing singularities in these new F(T) solutions.

5. Non-Linear Perfect Fluid Solutions

Another class of non-vacuum solutions assumes an EoS P(r) = α ρ(r) + β ρw(r) with
−1 < α ≤ 1, w > 1 where it is often assumed that β ρw−1(r) ≪ α. The second term of this
EoS can describe non-linear dissipating terms. Equation (15) will simplify as follows:

(ln A1)
′ +

[
α + β w ρw−1]

[(1 + α)ρ + β ρw]
ρ′ = 0. (128)

The general solution is as follows:

A1(r) = A1(0)
[
(1 + α)ρ1−w + β

][ α
(1+α)(w−1)−

w
w−1

]
ρ−w (129)
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We need to set the FEs for a power-w fluid density EoS and then solve for new F(T) solutions.
We will have that Equations (14a) and (21) remain unchanged and then Equations (16b)
and (16c) will be as follows:

(1 + α) (κρ) + κ1−w β (κρ)w =2 F′(T)
[
− g1(r)

k1(r)
k2(r) + g2(r)

]
, (130a)

κ ρ =− F(T)
2

+ 2 F′(T)
[
− g1(r)

k1(r)
k2(r) + g3(r)

]
. (130b)

By putting Equations (130a) and (130b) together, we find the unified equation linking F(T)
and F′(T):

(1 + α)

[
− F(T)

2
+ 2 F′(T)

[
− g1(r)

k1(r)
k2(r) + g3(r)

]]

+ κ1−w β

[
− F(T)

2
+ 2 F′(T)

[
− g1(r)

k1(r)
k2(r) + g3(r)

]]w

= 2 F′(T)
[
− g1(r)

k1(r)
k2(r) + g2(r)

]
. (131)

There are in principle several possible ansatz for solving the system governed by
Equations (14a), (21), (130b) and (131), completed by the Equation (129) conservation law
solution. We will present some possible solvable solutions.

5.1. A3 = Constant Power-Law Solutions

By using Equation (24) ansatz and setting A3 = c0 = constant, we will solve
Equations (16a), (26d), (129), (130a) and (130b):

F′(T) = F′(0) exp

∫ dr

[
(a(1 − a + b)) r−2b−2 −

(
b0
c0

)2
]

[
a r−2b−1 + δ

(
b0
c0

)
r−b
]

, (132a)

(1 + α) (κρ) + κ1−w β (κρ)w = − 2δ

b0 c0
F′(T)

[[(a(1 − a + b)) r−2b−2 −
(

b0
c0

)2
]

[
a r−b−1 + δ

(
b0
c0

)] ]
, (132b)

κ ρ = − F(T)
2

− 2δ

b0 c0
F′(T)

[[(a(1 − a + b)) r−2b−2 −
(

b0
c0

)2
]

[
a r−b−1 + δ

(
b0
c0

)] + a r−b−1

]
, (132c)

T(r) = − 2
c2

0
− 4δa

b0 c0
r−(b+1), (132d)

ã0 ra =
[
(1 + α)ρ1−w + β

][ α
(1+α)(w−1)−

w
w−1

]
ρ−w, (132e)

where ã0 is a constant from conservation laws. From Equation (132d), a = 0 and/or b = −1
lead to GR solutions (because of the constant torsion scalar). For all other cases, we isolate
r(T) from Equation (132d):

r(T) =
(
− 4δa

b0 c0

) 1
b+1
(

T +
2
c2

0

)− 1
b+1

,

dr =− r(T)
(b + 1)

dT(
T + 2

c2
0

) , (133)

where b ̸= −1. Then, Equations (132a)–(132c) become the following:
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F′(T) = F′(0)
(
−c2

0

)1− a
(b+1)

(
2 − c2

0 T
) 2a

(b+1)−1(
2 + c2

0 T
)− a

(b+1) exp

[
4a

(b + 1)
(
2 + c2

0 T
)] (134a)

(1 + α) (κρ) + κ1−w β (κρ)w =
F′(T)

2

[( b+1
a − 1

)(
T + 2

c2
0

)2
− 16

c4
0(

T − 2
c2

0

) ]
, (134b)

κ ρ = − F(T)
2

+
F′(T)

2

[( b+1
a − 1

)(
T + 2

c2
0

)2
− 16

c4
0(

T − 2
c2

0

) +

(
T +

2
c2

0

)]
. (134c)

By putting Equations (134b) and (134c) together, we obtain the following:

[
− F(T) + F′(T)

(
T +

2
c2

0

)]
+ α

[
− F(T) + F′(T)

[( b+1
a − 1

)(
T + 2

c2
0

)2
− 16

c4
0(

T − 2
c2

0

) +

(
T +

2
c2

0

)]]

+
β

(2κ)w−1

[
− F(T) + F′(T)

[( b+1
a − 1

)(
T + 2

c2
0

)2
− 16

c4
0(

T − 2
c2

0

) +

(
T +

2
c2

0

)]]w

= 0, (135)

where F(T) ̸= F′(T)
(

T + 2
c2

0

)
. Otherwise, we obtain a linear F(T) leading to GR solutions.

Equation (135) can also be written in the following form:[
− F(T) + F′(T)

(
T +

2
c2

0

)]
+ α G1

(
T, F(T), F′(T)

)
+

β

(2κ)w−1

[
G1
(
T, F(T), F′(T)

)]w
= 0, (136)

where the function G1(T, F(T), F′(T)) is

G1
(
T, F(T), F′(T)

)
= −F(T) + F′(T)

[( b+1
a − 1

)(
T + 2

c2
0

)2
− 16

c4
0(

T − 2
c2

0

) +

(
T +

2
c2

0

)]
. (137)

We may solve Equation (136) describing a polynomial of degree w only for w = 2, 3 and 4,
because G1 is linear in F(T) and F′(T). For w = 2, we obtain as a solution to Equation (136)
the following:

F(T)− F′(T)

[( b+1
a − 1

)(
T + 2

c2
0

)2
− 16

c4
0(

T − 2
c2

0

) +

(
T +

2
c2

0

)]

=
α κ

β

1 − δ2

√√√√1 +
2β

α2κ

(
F(T)− F′(T)

(
T +

2
c2

0

)) (138)

Equation (138) is difficult to solve for an exact solution because of the square root to the
r.h.s. But if we use the approximation β ≪ α for a slightly non-linear fluid approximation,
then Equation (138) will simplify and becomes a linear DE:
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(α + δ2)

(
T − 2

c2
0

)
[(

α
(

b+1
a

)
+ δ2

)
T2 + 4α

c2
0

(
b+1

a − 1
)

T + 4
c4

0

(
α
(

b+1
a − 6

)
− δ2

)] =
F′(T)[

F(T)− α2 κ(1−δ2)
β(α+δ2)

] . (139)

The general solution of Equation (139) is as follows:

F(T) =
α2 κ(1 − δ2)

β(α + δ2)
+

[
F(0)− α2 κ(1 − δ2)

β(α + δ2)

]

×
[
(4α(b + 1 − 6a)− 4aα2) +

(
4α c2

0(b + 1 − a)
)

T +
(

c4
0 (a δ2 + α (b + 1))

)
T2
] (α+δ2) a

2(δ2 a+α(1+b))

× exp

[
(α + δ2)

√
a(α(a − 2(b + 1))− a δ2)

(δ2 a + α(1 + b))
√

6aα δ2 + a + α2(a + 4(b + 1))

× tanh−1

(
2α(a − b − 1)− c2

0(aδ2 + α(b + 1)) T

2
√

a
√

6aα δ2 + a + α2(a + 4(b + 1))

)]
. (140)

For δ2 = +1, the solution will be the same as a linear perfect fluid which is solved in
Section 3. The most interesting case is δ2 = −1 where Equation (140) becomes the following:

F(T) =
2α2 κ

β(α − 1)
+

[
F(0)− 2α2 κ

β(α − 1)

]
×
[
(4α(b + 1 − 6a) + 4a) +

(
4α c2

0(b + 1 − a)
)

T +
(

c4
0 (−a + α (b + 1))

)
T2
] (α−1) a

2(−a+α(1+b))

× exp

[
(α − 1)

√
a(α(a − 2(b + 1)) + a)

(−a + α(1 + b))
√
−6aα + a + α2(a + 4(b + 1))

× tanh−1

(
2α(a − b − 1)− c2

0(−a + α(b + 1)) T

2
√

a
√
−6aα + a + α2(a + 4(b + 1))

)]
(141)

where α ̸= 1. We found in Equation (141) a real quadratic new F(T) solution for a weak
correction in ρ2 to the linear and isotropic perfect fluid. We can proceed to the same exercise
for w = 3 and w = 4 corrections; we will just obtain a slightly different F(T) solution in
both cases.

5.2. A3 = r Power-Law Solutions
By using the Equation (24) ansatz and setting A3 = r as the coordinate choice, we will

solve (16a), (42), (129), (130a) and (130b):

F′(T) = F′(0) exp

[∫
dr
[(

2a − a2 + ab + b + 1
)

r−2b − b2
0
][

(a + 1) r2(1−b)−1 + δ b0 r(1−b)
] ]

, (142a)

(1 + α) (κρ) + κ1−w β (κρ)w =
2
b2

0
F′(T)

[
−
[(

2a − a2 + ab + b + 1
)

r−2b − b2
0
][

(a + 1) r2(1−b)−1 + δ b0 r(1−b)
] [

r−2b−1 + δ b0 r−b−1

]

+ (a + b) r−2b−2

]
, (142b)

κ ρ = − F(T)
2

+
2
b2

0
F′(T)

[
−
[(

2a − a2 + ab + b + 1
)

r−2b − b2
0
][

(a + 1) r2(1−b)−1 + δ b0 r(1−b)
] [

r−2b−1 + δ b0 r−b−1

]

+

[
(−a + b − 1) r−2b−2 − δ b0 (a + 1) r−b−2

]]
, (142c)

T(r) = − 2
b2

0

[
b2

0 r−2 + 2δ b0 (1 + a) r−2−b + (2 a + 1) r−2−2b
]
. (142d)

ã0 ra =
[
(1 + α)ρ1−w + β

][ α
(1+α)(w−1)−

w
w−1

]
ρ−w (142e)
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Because we are still looking for new F(T) solutions, we need as in all previous cases to
isolate r(T) from Equation (142d) leading to the following characteristic equation:

0 =
b2

0 T
2

+ b2
0 r−2 + 2δ b0 (1 + a) r−2−b + (2 a + 1) r−2−2b. (143)

As in the Section 3.2, there are three classes of solution according to a:

1. General case (a ̸=
{
−1, − 1

2
}

): We can solve Equation (143) for b = {0, 1, −1, −2}
leading to an r(T) solution in each case. Then, we have to solve for each of the
four values of b Equations (142a)–(142c) (the FEs) with respect to Equation (129)
(conservation laws). As a relevant case, we will solve the b = 0 subcase for comparison
with the perfect and dust fluid solutions. First, Equation (142e) for the conservation
law remains invariant and Equation (143) will be as follows:

0 =
b2

0 T
2

r2 +
(

b2
0 + 2δ b0 (1 + a) + 2 a + 1

)
,

⇒ r2(T) =
2
(
b2

0 + 2δ b0 (1 + a) + 2 a + 1
)

b2
0 (−T)

, (144)

where T ≤ 0 and δ1 = ±1. Equations (142a)–(142c) will simplify as follows:

F′(−T) = −F′(0)

[
2
(
b2

0 + 2δ b0 (1 + a) + 2 a + 1
)

b2
0

] (2a−a2+1−b2
0)

2(a+1+δ b0)

(−T)
− (2a−a2+1−b2

0)
2(a+1+δ b0) , (145a)

(1 + α)(κρ) + κ1−w β (κρ)w =
(−T) F′(T)(

b2
0 + 2δ b0 (1 + a) + 2 a + 1

) [− (
2a − a2 + 1 − b2

0
)

(a + 1 + δ b0)
(1 + δ b0) + a

]
, (145b)

κ ρ = − F(T)
2

+
(1 + δ b0) (−T) F′(T)(

b2
0 + 2δ b0 (1 + a) + 2 a + 1

)[− (
2a − a2 + 1 − b2

0
)

(a + 1 + δ b0)
− (a + 1)

]
. (145c)

By substituting Equation (145c) into Equation (145b) and by expressing F and F′ in
terms of (−T), we obtain a DE for a pure F(T) solution as a characteristic algebraic
equation with F′(−T) expressed by Equation (145a). This expression for w = 2 and
its solution will be expressed as follows:

0 =G2(F(−T),−T) +
κ(1 + α)

β
G(F(−T),−T)− C(−T),

⇒ G(F(−T),−T) = −κ(1 + α)

2β
− δ1

√(
κ(1 + α)

2β

)2
+ C(−T) (146)

where δ1 = ±1 and

G(F(−T),−T) =− F(−T)
2

− (1 + δ b0)F′(0)(
b2

0 + 2δ b0 (1 + a) + 2 a + 1
)[(2a − a2 + 1 − b2

0
)

(a + 1 + δ b0)
+ (a + 1)

]

×
[

2
(
b2

0 + 2δ b0 (1 + a) + 2 a + 1
)

b2
0

] (2a−a2+1−b2
0)

2(a+1+δ b0)

(−T)
1− (2a−a2+1−b2

0)
2(a+1+δ b0) , (147a)

C(−T) =− κF′(0)
β
(
b2

0 + 2δ b0 (1 + a) + 2 a + 1
) [(2a − a2 + 1 − b2

0
)

(a + 1 + δ b0)
(1 + δ b0)− a

]

×
[

2
(
b2

0 + 2δ b0 (1 + a) + 2 a + 1
)

b2
0

] (2a−a2+1−b2
0)

2(a+1+δ b0)

(−T)
1− (2a−a2+1−b2

0)
2(a+1+δ b0) (147b)
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The Equation (146) solution will be as follows for F(−T):

F(−T) =
κ(1 + α)

β
− 2(1 + δ b0)F′(0)(

b2
0 + 2δ b0 (1 + a) + 2 a + 1

)[(2a − a2 + 1 − b2
0
)

(a + 1 + δ b0)
+ (a + 1)

]

×
[

2
(
b2

0 + 2δ b0 (1 + a) + 2 a + 1
)

b2
0

] (2a−a2+1−b2
0)

2(a+1+δ b0)

(−T)
1− (2a−a2+1−b2

0)
2(a+1+δ b0)

+ δ1

[(
κ(1 + α)

β

)2
− 4κF′(0)

β
(
b2

0 + 2δ b0 (1 + a) + 2 a + 1
)

×
[(

2a − a2 + 1 − b2
0
)

(a + 1 + δ b0)
(1 + δ b0)− a

]

×
[

2
(
b2

0 + 2δ b0 (1 + a) + 2 a + 1
)

b2
0

] (2a−a2+1−b2
0)

2(a+1+δ b0)

(−T)
1− (2a−a2+1−b2

0)
2(a+1+δ b0)

]1/2

(148)

As expected, Equation (148) describes a complex non-linear perfect cosmological
fluid teleparallel F(T) solution. Here is a proof that non-linear fluids can lead to
relevant solutions.

2. a = b = 0 special case: Equation (143) becomes the following:

0 =
b2

0 T
2

+ (1 + δ b0)
2 r−2,

⇒ r−2(T) = −
b2

0 T

2(1 + δ b0)
2 (149)

By substituting Equation (142c) into Equation (142b) and then by putting Equation (142a)
inside, we find an algebraic equation:

0 =

(
− F(T)

2
+ F′(0)

 (−2)
1−δ b0

2 (α (2 − δ b0) + 1)

(1 + α)b1−δ b0
0 (1 + δ b0)

δ b0

 T
(1+δ b0)

2

)

+
κ1−w β

(1 + α)

(
− F(T)

2
+ F′(0)

 (−2)
1−δ b0

2 (2 − δ b0)

b1−δ b0
0 (1 + δ b0)

δ b0

 T
(1+δ b0)

2

)w

, (150)

Equation (150) is a degree w polynomial equation in terms of F(T) and it is solvable
for w = 2, 3 and 4. For w = 2, Equation (150) is the following with simplifications:

0 =

(
β

2κ(1 + α)

)
F(T)2 +

(
β F′(0)

κ(1 + α)

 (−2)
3−δ b0

2 (2 − δ b0)

b1−δ b0
0 (1 + δ b0)

δ b0

 T
(1+δ b0)

2 − 1

)
F(T)

+

(
β F′(0)2

2κ(1 + α)

 (−2)
3−δ b0

2 (2 − δ b0)

b1−δ b0
0 (1 + δ b0)

δ b0

2

T1+δ b0 − F′(0)

 (−2)
3−δ b0

2 (α (2 − δ b0) + 1)

(1 + α)b1−δ b0
0 (1 + δ b0)

δ b0

 T
(1+δ b0)

2

)
, (151)
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The general solution is as follows:

F(T) =
κ(1 + α)

β

[
1 −

 β F′(0)(−2)
3−δ b0

2 (2 − δ b0)

κ(1 + α)b1−δ b0
0 (1 + δ b0)

δ b0

 T
(1+δ b0)

2

+ δ2

√√√√√1 +

 β F′(0)(−2)
5−δ b0

2 (1 − δ b0)

κ(1 + α)2b1−δ b0
0 (1 + δ b0)

δ b0

 T
(1+δ b0)

2

]
. (152)

Equation (152) is a new teleparallel F(T) solution and this function is not an approxi-
mated form. Hence, for a flat teleparallel spacetime, there is a non-trivial F(T) solution
which is not a pure power-law solution.

3. a = −1 case: Equation (143) will simplify as follows:

0 =
b2

0 T
2

+ b2
0 r−2 − r−2−2b. (153)

Then, we can solve Equation (153) for b =
{

0, 1
2 , − 1

2 , 1, −1, − 3
2 , 2, −2, 3

}
as in

Section 3.2. After that, Equations (142a)–(142e) become the following for a = −1:

F′(T) = F′(0) exp
[
− δ

b0 b

(
−2 r−b(T) + b2

0 rb(T)
)]

b ̸= 0, (154a)

= F′(0) [r(T)]
−

δ(2+b2
0)

b0 b = 0, (154b)

(1 + α) (κρ) + κ1−w β (κρ)w =
2
b2

0
F′(T)

[(
2 r−2b + b2

0

)
δ b0

(
r−b + δ b0

)
r−2 + (b − 1) r−2b−2

]
, (154c)

κ ρ =− F(T)
2

+
2
b2

0
F′(T)

[(
2 r−2b + b2

0

)
δ b0

(
r−b + δ b0

)
r−2 + b r−2b−2

]
, (154d)

ã0

r
=
[
(1 + α)ρ1−w + β

][ α
(1+α)(w−1)−

w
w−1

]
ρ−w (154e)

We will only solve Equations (154b)–(154e) for the b = 0 subcase solution. Equation (154e)
remains unchanged and Equation (153) becomes the following:

r−2(T) =
b2

0
2
(
1 − b2

0
) T. (155)

By substituting Equation (154d) and then Equation (154b) into Equation (154c) for
b = 0 and w = 2, we will obtain the algebraic equation in the Equation (146) form.
(We only change terms in −T for T terms!) The solution of this new Equation (146)
will be as follows:

F(T) =
2F′(0)

(
2 + b2

0
)

δ b0(1 − δb0)

[
b2

0
2
(
1 − b2

0
)]

δ(2+b2
0)

2b0

T1+
δ(2+b2

0)
2b0 +

κ(1 + α)

β

+ δ1

[(
κ(1 + α)

β

)2
− 4κ F′(0)

β

[
b2

0
2
(
1 − b2

0
)]

δ(2+b2
0)

2b0
[ (

2 + b2
0
)

δ b0(1 − δ b0)
− 1(

1 − b2
0
)] T1+

δ(2+b2
0)

2b0

]1/2

(156)
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4. a = − 1
2 case: Equation (143) will simplify as follows:

0 =
b0 T

2
+ b0 r−2 + δ r−2−b. (157)

We can solve Equation (157) for b = {0, 1, −1, 2, −2, −3, 4, −4, 6, −6, −8} as in
Section 3.2. Then, Equations (142a)–(142e) become the following for a = − 1

2 :

F′(T) = F′(0) exp

∫ dr

[(
− 1

4 + b
2

)
r−2b − b2

0

]
[

1
2 r1−2b + δ b0 r1−b

]
, (158a)

(1 + α) (κρ) + κ1−w β (κρ)w =
2
b2

0
F′(T)

[[( 1
4 − b

2

)
r−2b + b2

0

]
r2
(

r−b

2 + δ b0

) (
r−b + δ b0

)
+

(
b − 1

2

)
r−2b−2

]
, (158b)

κ ρ = − F(T)
2

+
2
b2

0
F′(T)

[[( 1
4 − b

2

)
r−2b + b2

0

]
r2
(

r−b

2 + δ b0

) (
r−b + δ b0

)
+

(
b − 1

2

)
r−2b−2 − δ b0

2
r−b−2

]
, (158c)

ã0√
r
=
[
(1 + α)ρ1−w + β

][ α
(1+α)(w−1)−

w
w−1

]
ρ−w (158d)

We will again solve Equations (158a)–(158d) only for the b = 0 subcase solution.
Equation (158d) remains unchanged and Equation (157) becomes the following:

r−2(T) =
δ b0

2(1 + δ b0)
(−T). (159)

By substituting Equation (158c) and then Equation (158a) into Equation (158b) for
b = 0 and by setting w = 2, we obtain another quadratic equation in Equation (146)
form. The solution of this relation will be as follows:

F(T) =
2δ F′(0)

b0

[ ( 1
4 + b2

0

)
(

1
2 + δ b0

) − 1
2

][
δ b0

2(1 + δ b0)

] ( 1
4 +b2

0)
(1+2δ b0)

(−T)
1+

( 1
4 +b2

0)
(1+2δ b0) +

κ(1 + α)

β

− δ1

[(
κ(1 + α)

β

)2
+

4κ δ F′(0)
β b0

[ ( 1
4 + b2

0

)
(

1
2 + δ b0

) − 1
2(1 + δ b0)

][
δ b0

2(1 + δ b0)

] ( 1
4 +b2

0)
(1+2δ b0)

× (−T)
1+

( 1
4 +b2

0)
(1+2δ b0)

]1/2

(160)

All these previous b = 0 teleparallel F(T) solutions are expressing some possible
cosmological spacetime geometries. In the recent literature, there are some simple pure
power-law F(T) ∼ (−T)k, logarithmic F(T) ∼ ln(−T) or F(T) ∼ (−T)k ln(−T) leading to
some stable solutions [2,19,36]. In addition, we can carry out the same type of development
for all b ̸= 0 subcases and we may find some more complex non-linear fluid F(T) solutions.
As for Sections 3 and 4, some of these new solutions may lead to some black hole and/or
matter absorbing singularity solutions by the end of this process. But in this current section,
all necessary FEs and conservation laws are there for further investigation in this way.

6. Discussion and Conclusions

In this paper, we first solved conservation laws and FEs and then found in Sections 3–5
dozens of new teleparallel F(T) solutions in static spherically symmetric spacetimes for
perfect fluids. These new F(T) solutions are products of exponential, power, quotients
and some mixtures of these types of expression. In some of these new F(T) solutions,
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we found some new singularities which arise to point-like discontinuity or undefined
F(T) functions. In Section 3.1, we found new teleparallel F(T) solutions for the constant
A3 where we used a power-law ansatz in Section 3.1.1 and a special ansatz defined by
an A2 = constant (i.e., b = 0 set as in ref. [18]) and an exponential A1 component in
Section 3.1.2. This A1 component generalizes the power-law ansatz by a summation of
an infinite number of integer power-law terms. By this approach, we found the same
singularities as in Section 3.1.1 and an additional singularity arising from the new ansatz.

For the rest of the paper (Sections 3.2–5.2), we used a power-law ansatz approach to
find new F(T) solutions by choosing an A3 = r coordinate system. If A3 ≡ constant, then
we found for slightly quadratic perfect fluid approximation (β ≪ α and w = 2) some new
approximated F(T) solutions as shown by Equations (140) and (141) in Section 5.1. The
solutions found in Section 5.2 for non-linear perfect fluids (in particular w = 2) are usually
generalizing the power-law F(T) found in Sections 3.2.2–3.2.5 for b = 0 and are exact. We
can easily make the same assumptions for b ̸= 0 cases for generalizing Section 3.2 new
solutions. In addition, the new F(T) solutions in Section 4 for cosmological dust fluids
(α = 0) should be useful for studying some cosmological models with baryonic matter [34].

Then, we look for non-perfect fluid F(T) solutions, but we will have at least to add
supplementary terms to the Equation (11) definition of energy momentum. We will at
least have to add some factors such as viscosity and any fluid imperfections. Equation (11)
characterizes an ideal fluid without any viscosity or imperfection where the pressure and
the density are directly linked by an EoS. But this assumption of Equation (11) cannot
necessarily be performed for non-perfect fluids because of these additional physical factors.
Several works may be carried out in the future, but we can expect more complex F(T)
solutions than those found in this paper.

For astrophysical and cosmological applications, a detailed analysis for each F(T)
solution obtained will be necessary for determining the stability conditions and their phys-
ical processes. There are several recent works on this type of study (see [34,36–43] and
references within). They sometimes replace the fluid by a scalar field source in some of
these studies [37,39]. In addition, we should also study the physical processes around
the singularities for each F(T) solution in some future works. We can also work with
electromagnetic energy-momentum sources for new classes of F(T) solutions and for possi-
ble “electromagnetic” BH horizons, but new F(T) solutions will be necessary [21,24–27].
The teleparallel F(T) solutions obtained in this paper can also be used as conditions for
dynamical cosmological models. These solutions can be used for (r, t)-coordinates-based
F(T) solutions in some astrophysical and cosmological problems. In addition, there are in
this paper many teleparallel F(T) solutions for solving these physical problems and there
are necessary ingredients for a complete cosmological analysis.

To proceed further in this approach, there are some ongoing developments concerning
Kantowski–Sachs spacetime solutions in teleparallel F(T) gravity where we look for general,
fluid and other solutions (see [18] and references within). There are some possible works
on axially symmetric teleparallel F(T) geometries allowing solving more astrophysical
problems with teleparallel gravity [44,45]. Another possible work is looking for teleparallel
F(T, B)-type geometries. All these possibilities deserve serious and tactful considerations.
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GR General Relativity
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Appendix A. Field Equation Components

This appendix is for presenting the exact FE components found in ref. [18]. There
are general, constant A3 and A3 = r power-law ansatz FE components for the current
paper’s purposes.

Appendix A.1. General Components

g1

k1
=

[
− A2 A2

3 A′′
1 − A1 A2 A3 A′′

3 + A1 A2 A′2
3 + (A1 A2)

′ A3 A′
3 + A2

3 A′
1 A′

2 − A1 A3
2

]
[
A1 A2 A3 A′

3 + A2 A2
3 A′

1 + δ A1 A2
2 A3

] (A1a)

g2 =
1

A1 A3
2 A3

[
− A1 A2 A′′

3 + (A1 A2)
′ A′

3

]
(A1b)

g3 =
1

A1 A3
2 A2

3

[
− A1 A2 A3 A′′

3 − A1 A2 A′2
3 − A2 A3 A′

3 A′
1 − δ A1 A2

2 A′
3 + A1 A3 A′

2 A′
3 − δ A2

2 A3 A′
1

]
, (A1c)

k2 =k3 =
1

A2
2 A3

[
A′

3 + δ A2
]

(A1d)

Appendix A.2. A3 = c0 = Constant Power-Law Components

Equations (A1a)–(A1d) with Equations (24) power-laws ansatz are as follows:

g1

k1
=

[
(a(1 − a + b)) r−2b−2 −

(
b0
c0

)2
]

[
a r−2b−1 + δ

(
b0
c0

)
r−b
] , g2 = 0, g3 = −

(
δ a

b0 c0

)
r−b−1, k2 = k3 =

(
δ

b0 c0

)
r−b. (A2)

Appendix A.3. A3 = r Power-Law Components

Equations (A1a)–(A1d) with Equations (24) power-laws ansatz are as follows:

g1

k1
=

[(
2a − a2 + ab + b + 1

)
r−2b − b2

0

]
[
(a + 1) r2(1−b)−1 + δ b0 r(1−b)

] , g2 =
(a + b)

b2
0

r−2b−2,

g3 =
1
b2

0

[
(−a + b − 1) r−2b−2 − δ b0 (a + 1) r−b−2

]
, k2 = k3 =

1
b2

0

[
r−2b−1 + δ b0 r−b−1

]
. (A3)

References
1. Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity, An Introduction; Springer: Berlin/Heidelberg, Germany, 2013. Available online:

https://link.springer.com/book/10.1007/978-94-007-5143-9 (accessed on 16 May 2024 ).
2. Bahamonde, S.; Dialektopoulos, K.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.;

Di Valentino, E.; Teleparallel Gravity: From Theory to Cosmology. Rep. Prog. Phys. 2023, 86, 026901. [CrossRef]
3. Krssak, M.; van den Hoogen, R.; Pereira, J.; Boehmer, C.; Coley, A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant

Approach. Class. Quantum Gravity 2019, 36, 183001. [CrossRef]

https://link.springer.com/book/10.1007/978-94-007-5143-9
http://doi.org/10.1088/1361-6633/ac9cef
http://dx.doi.org/10.1088/1361-6382/ab2e1f


Axioms 2024, 13, 333 37 of 38

4. Chinea, F. Symmetries in tetrad theories. Class. Quantum Gravity 1988, 5, 135. [CrossRef]
5. Estabrook, F.; Wahlquist, H. Moving frame formulations of 4-geometries having isometries. Class. Quantum Gravity 1996, 13, 1333.

[CrossRef]
6. Papadopoulos, G.; Grammenos, T. Locally homogeneous spaces, induced Killing vector fields and applications to Bianchi

prototypes. J. Math. Phys. 2012, 53, 072502. [CrossRef]
7. Olver, P. Equivalence, Invariants and Symmetry; Cambridge University Press: Cambridge, UK, 1995. Available online: https:

//books.google.ca/books/about/Equivalence_Invariants_and_Symmetry.html?id=YuTzf61HILAC&redir_esc=y (accessed on 16
May 2024).

8. McNutt, D.D.; Coley, A.A.; van den Hoogen, R.J. A frame based approach to computing symmetries with non-trivial isotropy
groups. J. Math. Phys. 2023, 64, 032503. [CrossRef]

9. Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflation. Phys. Rev. 2007, 75, 084031. [CrossRef]
10. Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Phys. Rev. 2008, 78, 124019. [CrossRef]
11. Linder, E. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. 2010, 81, 127301; Erratum: Phys. Rev. 2010,

82, 109902. [CrossRef]
12. Lucas, T.G.; Obukhov, Y.; Pereira, J.G. Regularizing role of teleparallelism. Phys. Rev. 2009, 80, 064043. [CrossRef]
13. Krssak, M.; Pereira, J.G. Spin Connection and Renormalization of Teleparallel Action. Eur. Phys. J. 2015, 75, 519. [CrossRef]
14. Golovnev, A.; Guzman, M.-J. Approaches to spherically symmetric solutions in f (T)-gravity. Universe 2021, 7, 121. [CrossRef]
15. Golovnev, A. Issues of Lorentz-invariance in f (T)-gravity and calculations for spherically symmetric solutions. Class. Quantum

Gravity 2021, 38, 197001. [CrossRef]
16. Golovnev, A.; Guzman, M.-J. Bianchi identities in f (T)-gravity: Paving the way to confrontation with astrophysics. Phys. Lett.

2020, 810, 135806. [CrossRef]
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