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Abstract: Graph polynomials is one of the important research directions in mathematical chemistry.
The coefficients of some graph polynomials, such as matching polynomial and permanental polyno-
mial, are related to structural properties of graphs. The Hosoya index of a graph is the sum of the
absolute value of all coefficients for the matching polynomial. And the permanental sum of a graph
is the sum of the absolute value of all coefficients of the permanental polynomial. In this paper, we
characterize the second to sixth minimal Hosoya indices of all bicyclic graphs. Furthermore, using the
results, the second to sixth minimal permanental sums of all bicyclic graphs are also characterized.
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1. Introduction

Let G = (V(G), E(G)) be a graph. The vertex set and edge set of G are denoted by
V(G) = {v1, v2, ..., vn} and E(G) = {e1, e2, ..., em}, respectively. Denote by A(G) = (aij)n×n
the adjacency matrix of graph G which is a symmetric matrix such that aij = 1 if vertices vi
and vj are adjacent and 0 otherwise.

The permanent of matrix M = (aij)n×n is defined as

per(M) = ∑
∆

n

∏
i=1

ai∆(i),

here the sum is taken over all permutations ∆ of {1, 2, 3, 4, . . . , n − 1, n}. Computational
complexity is a branch of theoretical computer science. #P is the class of functions that
can be computed by counting TMs of polynomial time complexity. Valiant [1] proved that
calculating per(M) is #P-complete. For a more detailed explanation of #P-complete, we
refer readers to [2].

The permanental polynomial of G, denoted by π(G, x), is defined as

π(G, x) = per(xI − A(G)) =
n

∑
k=0

bk(G)xn−k,

here I denotes the n × n identity matrix. The permanental polynomial has been considered
widely in chemical literature [3–5]; interested readers can consult the sources for themselves.

Graph G is called a basic graph if each of its components is a cycle or an isolated edge.
For an integer r ≥ 1, assume that Sr(G) denotes the set of all basic subgraphs H of G on r
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vertices, and suppose that c(H) is the number of cycles in a graph H. Merris et al. [6] gave
the computing formula on the coefficients of π(G, x) as follows,

br(G) = (−1)r ∑
H∈Sr(G)

2c(H), 1 ≤ r ≤ n.

with b0(G) = 1.
The sum of |br(G)| is called the permanental sum of G, written as PS(G), and is ex-

pressed as follows:

PS(G) =
n

∑
r=0

|br(G)| = 1 +
n

∑
r=1

∑
H∈Sr(G)

2c(H).

Wu and So [7] introduced the matrix form expression for PS(G):

PS(G) = per(I + A(G)).

Combining Valiant’s results, we know that calculating PS(G) is #P-complete.
Tong [8] first investigated the permanental sum of a graph. Xie et al. [9] captured

a fullerene C50(D5h). Tong calculated the permanental sums of all 271 fullerenes in
C50. He pointed out that PS(C50(D5h)) attains the minimum among all 271 fullerenes.
And he also indicated that the permanental sum would be closely related to the stability
of molecular graphs. Recently, the permanental sums of graphs have received a lot of
attention from researchers. Wu and Lai [10] presented the basic properties of the perma-
nental sums of graphs. Li et al. [11] characterized the extremal hexagonal chains with
respect to permanental sums. Li and Wei [12] characterized the extremal octagonal chains
with respect to permanental sums. More results on permanental sums are available in
the literature [7,13,14].

r-matchings of G are r isolated edges with no shared endpoints in G. The number of
r-matchings in G is denoted by m(G, r). The matching polynomial of G, written as µ(G, x), is
expressed by

µ(G, x) = ∑
r≥0

(−1)rm(G, r)xn−2r.

Matching polynomials have been extensively studied; specifically, see the litera-
ture studies [15,16].

The sum of |m(G, r)| is called the Hosoya index of graph G, denoted by Z(G). And it is
expressed as follows,

Z(G) = ∑
r≥0

m(G, r).

An application of Z(G) was introduced in 1971 by the chemist Hosoya. And he used
the Hosoya index to describe the thermodynamic properties of saturated hydrocarbons.
For some related work on the Hosoya index, see [17,18].

Recently, the first author found an important relation between the permanental sum
and the Hosoya index as follows.

Theorem 1 ([19]). Assume that G is a graph. And suppose that C is the set whose elements G′ are
disjoint unions of cycles in G. Then

PS(G) = Z(G) + ∑
G′∈C

2c(G′)Z(G − G′),

here G − G′ is a graph obtained by deleting all vertices and edges of G′ in G.
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An important direction is to characterize the graphs with an extremal Hosoya index
and permanental sum in a given type of graph. A bicyclic graph G is a connected simple
graph of order n and size n + 1. Deng [20] determined the bicyclic graph with the smallest
Hosoya index. Wu and Das [21] characterized the bicyclic graphs with the smallest perma-
nental sum. In this article, our aim is to determine which bicyclic graphs have the second,
the third, the fourth, the fifth and the sixth minimal Hosoya indices and permanental sums.

This article is organized as follows. In Section 2, we introduce some preliminaries and
some lemmas on permanental sums and Hosoya indices. We characterize the second to
the sixth bicyclic graphs with the smallest Hosoya index in Section 3. In Section 4, using
the results in Section 3, we also determine the second to the sixth bicyclic graphs with the
smallest permanental sums. Finally, We summarize the main results of this article.

2. Some Preliminaries

Suppose that Bn is the collection of all bicyclic graphs of order n vertices. By the
construction of bicyclic graphs, we know that Bn consists of three classes of graphs: the
first class, written as B1

n, is the set of those graphs, each of which contains B1(p, q) as the
vertex-induced subgraph for some p and q, see Figure 1; the second class, written as B2

n,
is the collection of those, graphs each of which contains B2(p, q, r) as the vertex-induced
subgraph for some p, q and r, see Figure 1; the third class, written as B3

n, is the collection of
those graphs, each of which contains B3(p, q, r) as the vertex-induced subgraph for some p,
q and r, see Figure 1. Then, we know that Bn = B1

n ∪B2
n ∪B3

n.

Figure 1. Bicyclic graphs B1(p, q), B2(p, q, r) and B3(p, q, r).

Now, we present some graph transformations that do not increase the Hosoya indices
of graphs.

Definition 1. Suppose that uv ∈ E(G) and NG(u) = {v, w1, w2, . . . , ws}, where
d(wi) = 1(1 ≤ i ≤ s). Let G∗ = G − {uw1, uw2, . . . , uws} + {vw1, vw2, . . . , vws}, see
Figure 2. We say the transformation from G to G∗ in Figure 2 is of type I.

v
v

u

u

1
w

2
w

s
w

1
w

2
w

s
w

G
*

G

0
G

0
G

Figure 2. Graphs G and G∗.

Lemma 1 ([20]). Assume that G and G∗ are two graphs of order n defined in Definition 1. Then,
Z(G) > Z(G∗).

Definition 2. Assume that H, X and Y are three connected graphs. And assume that u, v are two
vertices of H, v

′
is a vertex of X and u

′
is a vertex of Y. Suppose that G is the graph obtained from

H, X, Y by splicing v with v
′

and u with u
′
, respectively. Assume that G∗

1 is the graph obtained
from H, X and Y by splicing vertices v, v

′
and u

′
. And suppose that G∗

2 is the graph obtained from
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H, X and Y by splicing vertices u, v
′

and u
′
; for the resulting graph, see Figure 3. We say the

transformation from G to G∗
i (i = 1, 2) in Figure 3 is of type II.

X

Y

v u

*

1
G

X Y

v u

G

Y

X

v u

*

2
G

HH H

Figure 3. Graphs G, G∗
1 and G∗

2 .

Lemma 2 ([20]). Assume that G, G∗
1 and G∗

2 are three graphs of order n defined in Definition 2.
Then, Z(G) > Z(G∗

1 ) and Z(G) > Z(G∗
2 ).

Definition 3. Assume that G is a graph of order n ≥ 7 obtained from a connected graph H ̸= P1
and a cycle Cq = u0u1 . . . uq−1u0(q ≥ 4) by splicing u0 with a vertex u of the graph H, see
Figure 4. Assume that G∗ is a graph obtained from G by a cycle length reduced by one and uq−1 is
added as a pendant. We say the transformation from G to G∗ in Figure 4 is of type III.

1
u

1
u

1qu
-

2qu
-

G *
G

qC 1qC
-

1qu
-

0
u u=

0
u u=

H H

Figure 4. Graphs G and G∗.

Lemma 3 ([22]). Suppose that G and G∗ are two graphs of order n defined in Definition 3. Then,
Z(G) > Z(G∗).

Definition 4. Assume that G is a graph of order n obtained by splicing the center of K1,k with
a vertex of degree 2 in B1(p, q); for the resulting graph, see Figure 5. And suppose that G∗ is a
graph of order n obtained by splicing the center of K1,k with the vertex of degree 4 in B1(p, q); for
the resulting graph, see Figure 5. We say the transformation from G to G∗ in Figure 5 is of type IV.

pC qC
pC

G
*

G

qC
{ {k k

Figure 5. Graphs G and G∗.

Lemma 4 ([23]). Assume that G and G∗ are two graphs on n vertices defined in Definition 4. Then,
Z(G) > Z(G∗).

Definition 5. Assume that G is a graph of order n obtained by splicing the center of K1,k with a
vertex of degree 2 in B3(p, q, r); the resulting graph is shown in Figure 6. And assume that G∗

is a graph of order n obtained by splicing the center of K1,k with a vertex of degree 3 in B3(p, q, r)
the resulting graph is shown in Figure 6. We say the transformation from G to G∗ in Figure 6 is
of type V.
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G
*

G

{k

{k

Figure 6. Graphs G and G∗.

Lemma 5 ([20]). Assume that G and G∗ are two graphs of order n defined in Definition 5. Then,
Z(G) > Z(G∗).

Definition 6. Assume that G is a graph of order n, and assume that Pk = x1x2 · · · xk(k ≥ 3) is a
path in G, dG(xi) = 2, i = 2, 3, . . . , k − 1; the resulting graph is shown in Figure 7. Suppose that
G∗ is a graph of order n obtained from G by deleting x2x3 and adding x1x3; the resulting graph is
shown in Figure 7. We say the transformation from G to G∗ in Figure 7 is of type VI.

1
x

2
x k

x
1

x
2

x k
x

G
*

G

3
x

0
G

0
G

Figure 7. Graphs G and G∗.

Lemma 6 ([24]). Suppose that G and G∗ are two graphs of order n defined in Definition 6. Then,
Z(G) > Z(G∗).

Finally, we introduce some results which are useful for showing the main theorems later.

Lemma 7 ([18]). The following identities hold:
(i) If G1, G2, ..., Gr are the connected components of a graph G, then Z(G) = ∏r

i=1 Z(Gi).
(ii) If w ∈ V(G), then Z(G) = Z(G − w) + ∑

u∈N(w)
Z(G − u − w).

(iii) If e = uw ∈ E(G), then Z(G) = Z(G − e) + Z(G − u − w).

Lemma 8 ( [10]). The following identities hold:
(i) Assume that G and H are two connected graphs. Then

PS(G ∪ H) = PS(G)PS(H).

(ii) Assume that uw is an edge of graph G and C(uw) is the set of cycles containing uw. Then

PS(G) = PS(G − uw) + PS(G − w − u) + 2 ∑
Ck∈C(uw)

PS(G − V(Ck)).

(iii) Assume that w is a vertex of G and C(w) is the set of cycles containing w. Then

PS(G) = PS(G − w) + ∑
u∈NG(w)

PS(G − w − u) + 2 ∑
Ck∈C(w)

PS(G − V(Ck)).

The Fibonacci number F(t) is defined by F(0) = 0, F(1) = 1 and F(t) = F(t− 1) + F(t− 2)
for t ≥ 2. Assume that D(3, n − 3) is a graph obtained from the disjoint union of a cycle C3
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and a path Pn−3 by splicing one end of Pn−3 with one of the vertices of C3. And assume
that S+

n is a graph obtained by linking two pendant vertices of star Sn.

Lemma 9 ([10]). Assume that G is a unicyclic graph of order n(≥ 5). Then

2n ≤ PS(G) ≤ 6Fn−2 + 2Fn−3,

here the left equality holds if and only if G ∼= S+
n , and the right equality holds if and only if

G ∼= D(3, n − 3).

Lemma 10 ([25]). Assume that G is a graph, and s, t ∈ V(G). And suppose that Gp,q is a graph
obtained from G by attaching p, q pendent vertices to s and t, respectively. Then

Z(Gp+i,q−i) < Z(Gp,q) for 1 ≤ i ≤ q; or Z(Gp−i,q+i) < Z(Gp,q) for 1 ≤ i ≤ p.

3. The Minimal Hosoya Indices of Bicyclics

Deng [20] considered the Hosoya indices of bicyclic graphs. He characterized a smaller
bound of Hosoya indices of bicyclic graphs.

Theorem 2 ([20]). Assume that G ∈ Bn is a bicyclic graph of order n. Then
(i) If G ∈ B1

n, then Z(G) ≥ 4n − 8; here the equality holds if and only if G ∼= B1
1(3, 3, n − 5); see

Figure 8 for B1
1(3, 3, n − 5).

(ii) If G ∈ B2
n, then Z(G) ≥ 8n − 28; here the equality holds if and only if G ∼= B1

2(3, 3, 0, n − 6);
see Figure 8 for B1

2(3, 3, 0, n − 6) .
(iii) If G ∈ B3

n, then Z(G) ≥ 3n − 4; here the equality holds if and only if G ∼= B1
3(1, 1, 0, n − 4);

see Figure 8 for B1
3(1, 1, 0, n − 4).

(iv) If G ∈ Bn, then Z(G) ≥ 3n − 4; here the equality holds if and only if G ∼= B1
3(1, 1, 0, n − 4).

Figure 8. Graphs B1
1(3, 3, n − 5), B1

2(3, 3, 0, n − 6) and B1
3(1, 1, 0, n − 4).

3.1. The Second Minimal Hosoya Index of G ∈ B1
n

Lemma 11. Assume that G ∈ B1
n \ B1

1(3, 3, n − 5) is the graph of order n ≥ 6. Assume that G
has the second minimal Hosoya index. Then, the construct of G is isomorphic to one of the graphs in
Figure 9.

Proof. By Theorem 2 and Lemmas 1–4, there exists the following fact. Assume G ∈ B1
n \

B1
1(3, 3, n − 5) with n vertices. Using multiple transformations I, II, III and IV introduced

in Definitions 1–4, respectively, the graph G is transformed into B1
1(3, 3, n − 5).That is, there

exists graph G(i) for 0 ≤ i ≤ l such that

G = G(0) → G(1) → G(2) → · · · → G(l−1) → G(l) = B1
1(3, 3, n − 5), (1)

here G(l−1) ̸= B1
1(3, 3, n − 5). Now, we determine the construct of G(l−1).

Assume G ≇ B1(p, q), and suppose that B1(s, t) denotes the vertex-induced subgraph
of G. In the first step, using multiple transformation I in Definition 1, all trees of the
verticesof B1(s, t) are turned into stars. This implies that some bicyclic graphs in B1

n are
changed into M1

1(n − 5), M2
1(s, t) or M3

1(n − 6). According to the above results, except
for all the graphs changed into M1

1(n − 5), M2
1(s, t) or M3

1(n − 6) in B1
n, using multiple
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transformations II (resp. IV) as in Definition 2 (resp. 4), these graphs are changed into
graphs obtained by attaching a star to the common vertex of Cs and Ct in B1(s, t). Using
multiple transformations III, these graphs are turned into B1

1(3, 3, n − 5). These imply
that the construct of G(l−1) is isomorphic to one of M1

1(n − 5), M2
1(s, t) and M3

1(n − 6).
Furthermore, by applying transformation I once, G is changed into B1

1(3, 3, n − 5). This
means that G(l−1) ∼= M4

1(s, t).
Assume G ∼= B1(p, q). Using multiple transformations III, these graphs are turned

into B1
1(3, 3, n − 5). This means that G(l−1) ∼= M3

1(n − 6).

Remark 1. In fact, by Theorem 2 and Lemmas 1–4, Lemma 11 is obviously valid. The following is
what we need to say concerning the process in which every graph in B1

n is changed into a graph in
Figure 9. The process may apply some graph transformations, and it is difficult to determine which
transformation to use first and which to use second.

Lemma 12. Each of the following holds.
(i) If s ≥ 1, t ≥ 1 and s + t + 5 = n ≥ 8, then Z(M2

1(s, t)) ≥ 6n − 18, where the equality holds
if and only if M2

1(s, t) ∼= M2
1(n − 6, 1).

(ii) If s ≥ 1, t ≥ 0 and s + t + 5 = n ≥ 8, then Z(M4
1(s, t)) ≥ 8n − 28 with equality holding if

and only if M4
1(s, t) ∼= M4

1(1, n − 7).
(iii) Z(M1

1(0, n − 5)) = 6n − 18 and Z(M3
1(n − 6)) = 6n − 16.

Figure 9. Graphs M1
1(0, n − 5), M2

1(s, t), M3
1(n − 6) and M4

1(s, t).

Proof. (i) By Lemma 10, we obtain that Z(M2
1(s, t)) ≥ Z(M2

1(n − 6, 1)) = 6n − 18 or
Z(M2

1(s, t)) ≥ Z(M2
1(1, n − 6)) = 8n − 32. This implies that Z(M2

1(s, t)) ≥ Z(M2
1

(n − 6, 1)) = 6n − 18.
(ii) Similarly, by Lemma 10, we obtain that Z(M4

1(s, t)) ≥ Z(M4
1(1, n − 7)) = 8n − 28

or Z(M4
1(s, t)) ≥ Z(M4

1(n − 6, 0)) = 12n − 56. This means that Z(M4
1(s, t)) ≥ Z(M4

1
(1, n − 7)) = 8n − 28.

(iii) By Lemma 7, a direct computation yields Z(M1
1(0, n − 5)) = 6n − 18 and Z(M3

1
(n − 6)) = 6n − 16.

Combining Theorem 2, Lemmas 11 and 12 and (1), it is easy to obtain the second
minimal Hosoya index of G ∈ B1

n as follows.

Theorem 3. Assume that G ∈ B1
n is a bicyclic graph of order n(≥ 8). Then

Z(G) ≥ 6n − 18 > 4n − 8

with equality holding if and only if G ∼= M1
1(0, n − 5) or G ∼= M2

1(n − 6, 1).

3.2. The Minimal Hosoya Indices of G ∈ B3
n

Similarly, by Theorem 2 and Lemmas 1, 2, 5 and 6, there exists the following fact.
Assume G ∈ B3

n \ B1
3(1, 1, 0, n − 4) on n vertices. With the multiple using transformations

I, II, V and VI, graph G is transformed into B1
3(1, 1, 0, n − 4). That is, there exists graph G(i)

for 0 ≤ i ≤ l such that

G = G(0) → G(1) → G(2) → · · · → G(l−2) → G(l−1) → G(l) = B1
3(1, 1, 0, n − 4), (2)
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here G(l−1) ̸= B1
3(1, 1, 0, n − 4). According to the above arguments, we can obtain a result

that is similar to Lemma 11 as follows.

Lemma 13. Assume that G ∈ B3
n \ B1

3(1, 1, 0, n − 4) is the graph of order n ≥ 5. Assume that G
has the second minimal Hosoya index. Then, the construct of G is isomorphic to one of the graphs
in Figure 10.

Proof. The proof is similar to the proof of Lemma 11. Let us omit this proof.

Figure 10. Graphs H1(n − 5), H2(s, t), H3(s, t), H4(s, t), H5(n − 5) and H6(n − 4).

Lemma 14. Assume that H2(s, t) is a graph on n = s + t + 4 vertices. If n ≥ 6, s ≥ 1, t ≥ 1 in
H2(s, t), then Z(H2(s, t)) ≥ 5n− 13 with equality holding if and only if H2(s, t) ∼= H2(n− 5, 1).

Proof. By Lemma 10, we obtain that Z(H2(s, t)) ≥ Z(H2(n − 5, 1)) = 5n − 13 or
Z(H2(s, t)) ≥ Z(H2(1, n − 5)) = 6n − 19. This implies that Z(H2(s, t)) ≥ Z(H2
(n − 5, 1)) = 5n − 13.

Lemma 15. Suppose that H3(s, t) is a graph of order n(= s + t + 5). If s ≥ 0, t ≥ 1
and n ≥ 6 in H3(s, t). Then, Z(H3(s, t)) ≥ 6n − 17 with equality holding if and only if
H3(s, t) ∼= H3(n − 6, 1).

Proof. Similarly, by Lemma 10, we obtain that Z(H3(s, t)) ≥ Z(H3(n − 6, 1)) = 6n − 17
or Z(H3(s, t)) ≥ Z(H3(0, n − 5)) = 8n − 29. This means that Z(H3(s, t)) ≥ Z(H3
(n − 6, 1)) = 6n − 17.

Lemma 16. Assume that H4(s, t) is a graph of order n(≥ 10). If 1 ≤ s ≤ t, then
4n − 9 = Z(H4(1, n − 5)) < 5n − 16 = Z(H4(2, n − 6)) < 6n − 25 = Z(H4(3, n − 7)) <
· · · Z(H4(s − 1, n − s − 5)) < Z(H4(s, n − s − 4)).

Proof. By Lemma 7, we obtain that H4(s, t) − H4(s + 1, t − 1) = t − s + 1 > 0. So
4n − 9 = Z(H4(1, n − 5)) < 5n − 16 = Z(H4(2, n − 6)) < 6n − 25 = Z(H4(3, n − 7)) <
· · · < Z(H4(s − 1, n − s − 5)) < Z(H4(s, n − s − 4)).

Theorem 4. Assume G ∈ B3
n \ B1

3(1, 1, 0, n − 4) on n ≥ 10 vertices. Then, Z(G) ≥ 4n − 9 >
3n − 4 with equality holding if and only if G ∼= H4(1, n − 5).

Proof. By Lemma 7, we obtain that Z(H1(n − 5)) = 4n − 7, Z(H5(n − 5)) = 5n − 12
and Z(H6(n − 4)) = 4n − 8. Combining Theorem 2, Lemmas 13–16, (2) and above argu-
ments, we obtain that 3n − 4 < 4n − 9 ≤ Z(G) with the equality holding if and only if
G ∼= H4(1, n − 5).

We determine the extremal bicyclic graphs with the third minimal Hosoya index in B3
n.

By (2), it can be known that the extremal bicyclic graphs with the third minimal Hosoya
index will be yielded in G(l−1) or G(l−2). By Lemmas 14–16, and the proof of Theorem 4,
it can be known that the minimum Hosoya indices in H2(s, t), H3(s, t) and H5(n − 5) are
more than 5n − 16, respectively. So, we anticipate the third minimal Hosoya index in B3

n
yields G(l−2) if G(l−1) is H1(n − 5), H4(s, t) or H6(n − 4). Thus, we determine the lower
bounds of the Hosoya indices of H1(n − 5), H4(s, t) and H6(n − 4) as follows.
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Similar to the proof of Lemma 11, by the reverse operations of I, II, V and VI, we
can obtain that the structures of the graphs G(l−2) if G(l−1) is H1(n − 5), and G(l−2) are
isomorphic to one of the graphs H1

1(s, t), H2
1(s, t), H3

1(s, t), H4
1(n − 6) and H5

1(n − 5),
see Figure 11.

Figure 11. Graphs H1
1(s, t), H2

1(s, t), H3
1(s, t), H4

1(n − 6) and H5
1(n − 5).

Lemma 17. Assume that H1
1(s, t) is a graph on n ≥ 7 vertices. If s ≥ 0, t ≥ 1 and s + t + 6 = n,

then Z(H1
1(s, t)) ≥ 8n − 26 with equality holding if and only if H1

1(s, t) ∼= H1
1(n − 7, 1).

Proof. By Lemma 10, we obtain that Z(H1
1(s, t)) ≥ Z(H1

1(0, n − 6)) = 13n − 61 or
Z(H1

1(s, t)) ≥ Z(H1
1(n − 7, 1)) = 8n − 26. This implies that Z(H1

1(s, t)) ≥ 8n − 26 with
equality holding if and only if H1

1(s, t) ∼= H1
1(n − 7, 1).

Lemma 18. Suppose that H2
1(s, t) is a graph on n ≥ 7 vertices. If s and t ≥ 1 and s + t + 5 = n,

then Z(H2
1(s, t)) ≥ 7n − 22 with equality holding if and only if H2

1(s, t) ∼= H2
1(n − 6, 1).

Proof. By Lemma 10, we know that Z(H2
1(s, t)) ≥ Z(H2

1(1, n − 6)) = 10n − 43 or
Z(H2

1(s, t)) ≥ Z(H2
1(n − 6, 1)) = 7n − 22. This means that Z(H2

1(s, t)) ≥ 7n − 22 with
equality holding if and only if H2

1(s, t) ∼= H2
1(n − 6, 1).

Lemma 19. Assume that H3
1(s, t) is a graph of order n(≥ 7). And suppose that 1 ≤ t ≤ s

and s + t + 5 = n. Then, 5n − 13 ≤ Z(H3
1(s, t)), where the equality holds if and only if

H3
1(s, t) ∼= H3

1(n − 6, 1).

Proof. By Lemma 7, we obtain that Z(H3
1(s, t))− Z(H3

1(s − 1, t + 1)) = t − s + 1 > 0. This
implies that 5n − 13 = Z(H3

1(1, n − 6)) < Z(H3
1(2, n − 7)) < · · · < Z(H3

1(s, t)).

Theorem 5. Assume that G is isomorphic to one of the graphs H1
1(s, t), H2

1(s, t), H3
1(s, t),

H4
1(n − 6) and H5

1(n − 5). Then, Z(G) ≥ 5n − 13, where the equality holds if and only if
G ∼= H3

1(n − 6, 1).

Proof. By Lemma 7, we have Z(H4
1(n − 6)) = 7n − 12 and Z(H5

1(n − 5)) = 7n − 22. Com-
bining Lemmas 17–19 and above arguments, we obtain that Z(G) ≥ Z(H3

1
(n − 6, 1)) = 5n − 13.

Similarly, by the reverse operations of I, II, V and VI, we obtain that the construct of
graphs G(l−2) if G(l−1) is H4(s, t), and G(l−2) are isomorphic to one of the graphs H1

4(s, t),
H2

4(s, t, u), H3
4(s, t, u), H4

4(s, t) and H5
4(s, t), see Figure 12.

Figure 12. Graphs H1
4(s, t), H2

4(s, t, u), H3
4(s, t, u), H4

4(s, t) and H5
4(s, t).
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Lemma 20. Assume that H2
4(s, t, u) is a graph of order n(≥ 8). If s + u + t + 4 = n, s ≥ 1,

t ≥ 1 and u ≥ 1, then Z(H2
4(s, t, u)) ≥ 7n − 25 with equality holding if and only if H2

4(s, t, u) ∼=
H2

4(1, n − 6, 1) or H2
4(n − 6, 1, 1).

Proof. Assume that two of s, t and u are equal to 1 in H2
4(s, t, u). By Lemma 7,

Z(H2
4(1, n − 6, 1)) = Z(H2

4(n − 6, 1, 1)) = 7n − 25 and Z(H2
4(1, 1, n − 6)) = 9n − 39. So,

Z(H2
4(s, t, u)) ≥ 7n − 25. Assume that at most one of s, t and u are equal to 1 in H2

4(s, t, u).
By Lemma 7, we obtain that Z(H2

4(s, t, u)) = 2n+ stu+ st+ 2su+ 2tu+ s+ t+ 2u. Suppose
that f (s, t, u) = 2n+ stu+ st+ 2su+ 2tu+ s+ t+ 2u− (7n− 25) = (st− 3)u+ (2u− 4)s+
2t(u − 2) + st + 5. If s = 1, u ≥ 2 and t ≥ 2, then f (s, t, u) = (t − 1)u + t(2u − 3) + 1 > 0.
If t = 1, u ≥ 2 and s ≥ 2, then f (s, t, u) = 3su − (3s + u) + 1 > 0. If u = 1, s ≥ 2
and t ≥ 2, then f (s, t, u) = 2[st − (s + t) + 1] > 0. Finally, if s ≥ 2, t ≥ 2 and
u ≥ 2, then f (s, t, u) = 2[st − (s + t) + 1] > 0. By the above arguments, we have
Z(H2

4(s, t, u)) > 7n − 25.

Lemma 21. Suppose that H3
4(s, t, u) is a graph on n(≥ 8) vertices. and assume s ≥ 1, t ≥ 1,

u ≥ 0 and s+ u+ t+ 5 = n in H3
4(s, t, u). Then, Z(H3

4(s, t, u)) ≥ 7n− 23 with equality holding
if and only if H3

4(s, t, u) ∼= H3
4(1, n − 6, 0).

Proof. Assume that u = 0, s ≥ 1 and t ≥ 1. By Lemma 10, we obtain that Z(H3
4(s, t, 0)) ≥

Z(H3
4(1, n− 6, 0)) = 7n− 23 or Z(H3

4(s, t, 0)) ≥ Z(H3
4(n− 6, 1, 0)) = 11n− 51. This implies

that Z(H3
4(s, t, 0)) ≥ 7n − 23. Suppose that s ≥ 1, t ≥ 1 and u ≥ 1. By Lemma 7, we obtain

that Z(H3
4(s, t, u)− (7n − 23) = 6 + n + tsu + 3su + 3ts + tu + 7s + 3t + 2u − (7n − 23) =

(s − 1)(3t + 1) + u(ts + 3s + t − 4) > 0. This means that Z(H3
4(s, t, u)) > 7n − 23.

Lemma 22. Suppose that H4
4(s, t) is a graph on n(≥ 6) vertices. and assume s ≥ 0, t ≥ 1

and s + t + 5 = n in H4
4(s, t). Then, Z(H4

4(s, t)) ≥ 5n − 12 with equality holding if and only
if H4

4(s, t) ∼= H4
4(0, n − 5).

Proof. By Lemma 10, we obtain that Z(H4
4(s, t)) ≥ Z(H4

4(0, n − 5)) = 5n − 12 or
Z(H4

4(s, t)) ≥ Z(H4
4(n − 6, 1)) = 7n − 24. This implies that Z(H4

4(s, t) ≥ 5n − 12, where
the equality holds if and only if H4

4(s, t) ∼= H4
4(0, n − 5).

Checking the constructs of H1
4(s, t) and H5

4(s, t), we know that H1
4(s, t) ∼= H3

1(s, t) and
H5

4(s, t) ∼= H2(s, t). So, combining Lemmas 14 and 19–22, we obtain the following theorem.

Theorem 6. Assume that G is isomorphic to one of the graphs H1
4(s, t), H2

4(s, t, u), H3
4(s, t, u),

H4
4(s, t) and H5

4(s, t). Then, Z(G) ≥ 5n − 13, where the equality holds if and only if
G ∼= H3

1(n − 6, 1) or G ∼= H2(n − 5, 1).

Similarly, by the reverse operations of I, II, V and VI, we can obtain that the structures
of the graphs G(l−2) if G(l−2) is H6(n − 4), and G(l−2) are isomorphic to one of the graphs
H1

6(t, u), H2
6(t, u), H3

6(t, u) and H4
6(n − 5), see Figure 13.

Figure 13. Graphs H1
6(t, u), H2

6(t, u), H3
6(t, u) and H4

6(n − 5).

Lemma 23. Assume that H2
6(t, u) is a graph on n ≥ 6 vertices. Suppose t ≥ u ≥ 1 and

u + t + 4 = n inH2
6(t, u). Then, Z(H2

6(t, u)) ≥ 6n − 18 with equality holding if and only if
H2

6(t, u) ∼= H2
6(n − 5, 1).
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Proof. By Lemma 7, we have Z(H2
6(t, u))− Z(H2

6(t + 1, u − 1)) = 2(t + 1 − u) > 0. This
implies that 6n − 18 = Z(H2

6(n − 5, 1)) ≤ Z(H2
6(t, u)).

Lemma 24. Assume that H3
6(t, u) is a graph on n ≥ 7 vertices. If t ≥ 0, u ≥ 1 and u + t + 5 = n,

then Z(H3
6(t, u)) ≥ 8n − 28 with equality holding if and only if H3

6(t, u) ∼= H3
6(n − 6, 1) or

H3
6(t, u) ∼= H3

6(0, n − 5).

Proof. By Lemma 10, we obtain that Z(H3
6(t, u)) ≥ Z(H3

6(0, n − 5)) = 8n − 28 or
Z(H3

6(s, t)) ≥ Z(H3
6(n − 6, 1)) = 8n − 28. This means that Z(H3

6(t, u)) ≥ 8n − 28.

Theorem 7. Assume that G is isomorphic to one of the graphs H1
6(t, u), H2

6(t, u), H3
6(t, u) and

H4
6(n − 5, t). Then, Z(G) ≥ 5n − 13, and the equality holds if and only if G ∼= H2(n − 5, 1).

Proof. Checking graph H1
6(t, u), we know that H1

6(t, u) ∼= H2(s, t). By Lemma 7, we obtain
that Z(H4

6(n − 5)) = 6n − 17. Combining Lemmas 14, 23 and 24 and the above argument,
we obtain that Z(G) ≥ 5n− 13, where the equality holds if and only if G ∼= H2(n− 5, 1).

As mentioned above, the third minimal Hosoya index of G in B3
n is yielded in G(l−1)

or G(l−2). By the proof of Theorem 4, Theorems 5–7, and Lemmas 14–16, we can obtain the
second fifth minimal Hosoya indices of all the graphs in B3

n. That is,

Theorem 8. Assume that G ∈ B3
n is a bicyclic graph of order n(≥ 13). Then Z(G) > 5n − 13 =

Z(H3
1(1, n − 6)) = Z(H2(n − 5, 1)) > 5n − 16 = Z(H4(2, n − 6)) > 4n − 7 = Z(H1

(n − 5)) > 4n − 8 = Z(H6(n − 4)) > 4n − 9 = Z(H4(1, n − 5)) > 3n − 4 = Z(B1
1(3, 3, 0,

n − 4)).

3.3. A Conclusion

Combining Theorems 2, 3 and 8, we can obtain the following results.

Theorem 9. Assume that G ∈ Bn is a bicyclic graph of order n(≥ 13). Then Z(G) > 5n − 13 =
Z(H3

1(1, n − 6)) = Z(H2(n − 5, 1)) > 5n − 16 = Z(H4(2, n − 6)) > 4n − 7 = Z(H1
(n − 5)) > 4n − 8 = Z(H6(n − 4)) = Z(B1

1(3, 3, n − 5)) > 4n − 9 = Z(H4(1, n − 5)) >
3n − 4 = Z(B1

3(1, 1, 0, n − 4)).

Remark 2. In this subsection, we provided the second to sixth minimal Hosoya indices of all bicyclic
graphs. Using the relevant methods, we can obtain more minimal Hosoya indices in Bn.

4. The Minimal Permanental Sums of Bicyclic Graphs

In this section, we use the result in Theorem 9 to characterize the second fifth perma-
nental sums in Bn.

Theorem 10 ([21]). Assume that G ∈ Bn = B1
n ∪ B2

n ∪ B3
n is a bicyclic graph on n(n ≥ 6)

vertices.
(i) If G ∈ B1

n, then PS(G) ≥ 4n; equality holds if and only if G ∼= B1
1(3, 3, n − 5).

(ii) If G ∈ B3
n, then PS(G) ≥ 3n + 2; equality holds if and only if G ∼= B1

3(1, 1, 0, n − 4).
(iii) If G ∈ Bn, then PS(G) ≥ 3n + 2; equality holds if and only if G ∼= B1

3(1, 1, 0, n − 4).

Theorem 11. Suppose that G ∈ B1
n \ B1

1(3, 3, n − 5) is a bicyclic graph of order n(≥ 7). Then,
PS(G) ≥ 6n − 8, where the equality holds if and only if G ∼= M2

1(n − 6, 1).

Proof. Assume G ∈ B1
n \ B1

1(3, 3, n − 5). By Theorems 1 and 3, and the structures of every
graph G in B1

n \ B1
1(3, 3, n − 5), we obtain that PS(G) ≥ 6n − 8, and the equality holds if

and only if G is isomorphic to one of the graphs M2
1(n − 6, 1) and M3

1(n − 6).
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Lemma 25. Assume that G = S+
s ∪ S+

t is a graph with n(= s + t) vertices. Then,
PS(G) ≥ 12n − 3 with equality holding if and only if G ∼= C3 ∪ S+

n−3.

Proof. Without loss of generality, assume s ≤ t. Suppose that H = S+
s−1 ∪ S+

t+1. By Lemma
9, we know that PS(H) − PS(G) = 4(s − 1)(1 + t) − 4st = 4(s − 1 − t) < 0. This im-
plies that the permanental sum of G attains the minimum value when G = C3 ∪ S+

n−3,
i.e., PS(G) ≥ 12n − 3 = PS(C3 ∪ S+

n−3).

Theorem 12. Assume that G ∈ B2
n is a bicyclic graph of order n ≥ 7. Then, PS(G) ≥ 12n − 32,

and equality holds if and only if G ∼= B1
2(3, 3, 0, n − 6).

Proof. Suppose that Us and Un−s are two unicyclic graphs of order s and size n− s. Assume
that u is a vertex of the cycle in Us, and suppose that v is a vertex of Un−s. Thus, any graph
G ∈ B2

n can be obtained by joining u and v. By Lemma 8, we have

PS(G) = PS(G − uv) + PS(G − {u, v}) = PS(Us)PS(Un−s) + PS(Us − u)PS(Un−s − v). (3)

Now we determine the minimum value of PS(G). By (3), PS(G) attains the min-
imum value if and only if PS(Us) × PS(Un−s) and PS(Us − u) × PS(Un−s − v) obtain
the minimum value, respectively. Checking the structure of Us − u and Un−s − v, we
know that PS(Us − u) ≥ 2 and PS(Un−s − v) ≥ 2. By Lemmas 8 and 25, we know that
PS(Us)PS(Un−s) attains the minimum value only when Us ∪ Un−s = C3 ∪ S+

n−3. This
implies that G has three possible constructs. That is, G obtained by a vertex of C3 joining
a pendant vertex (or the center, or a vertex of degree 2) of S+

n−s. The graphs are denoted
by B1

2(3, 3, 1, n − 7), B1
2(3, 3, 0, n − 6) (see Figure 8) and B2

2(3, 3, 0, n − 6). Direct calcula-
tion yields that PS(B1

2(3, 3, 0, n − 6)) = 12n − 32, PS(B2
2(3, 3, 0, n − 6)) = 14n − 44 and

PS(B1
2(3, 3, 1, n − 7)) = 16n − 52. Thus, PS(B1

2(3, 3, 0, n − 6)) < PS(B2
2(3, 3, 0, n − 6)) <

PS(B1
2(3, 3, 1, n − 7)). This completes the proof of Theorem 3.

Theorem 13. Assume that G ∈ B3
n is a bicyclic graph on n ≥ 13 vertices. Then

PS(G) > 5n − 7 = PS(H3
1(n − 6, 1)) > 5n − 10 = PS(H4(2, n − 6)) > 4n − 1 = PS(H1

(n − 5)) > 4n − 3 = PS(H4(1, n − 5)) > 3n + 2 = (B1
3(1, 1, 0, n − 4)).

Proof. Suppose that G ∈ B3
n. Checking the structures of graphs in B3

n, and by Lemma 8
and Theorems 1 and 8, we obtain that PS(H3

1(n − 6, 1)) = 5n − 7, PS(H4(2, n − 6)) =
5n − 10, PS(H1(n − 5)) = 4n − 1, PS(H4(1, n − 5)) = 4n − 3, (B1

3(1, 1, 0, n − 4)) = 3n + 2,
PS(H6(n− 4)) = 6n− 10 and PS(H2(n− 5, 1)) = 5n− 5. Again by PS(G) = Z(G)+ 2s(G),
we have PS(G) > 5n − 7 = PS(H3

1(n − 6, 1)) > 5n − 10 = PS(H4(2, n − 6)) > 4n − 1 =
PS(H1(n − 5)) > 4n − 3 = PS(H4(1, n − 5)) > 3n + 2 = (B1

3(1, 1, 0, n − 4)).

Combining Theorems 10–13, we can obtain the second to sixth minimal permanental
sums of bicyclic graphs. That is,

Theorem 14. Assume that G ∈ Bn is a bicyclic graph on n ≥ 13 vertices. Then
PS(G) > 5n − 7 = PS(H3

1(n − 6, 1)) > 5n − 10 = PS(H4(2, n − 6)) > 4n = PS(B1
1(3, 3,

n − 5)) > 4n − 1 = PS(H1(n − 5)) > 4n − 3 = PS(H4(1, n − 5)) > 3n + 2 = PS(B1
3(1, 1, 0,

n − 4)).

5. Conclusions

Wagner and Gutman [18] systematically summarized the research progress of Hosoya
indices, and they introduced the applications of Hosoya indices of graphs in chemistry.
As an important class of chemical molecular graph, bicyclic graphs have been widely
studied for their chemical properties [26–28]. In this article, we determine the second to
sixth minimal Hosoya indices among all bicyclic graphs. We use the results to determine
the second to sixth minimal permanental sums among all bicyclic graphs. Checking these
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results, we find that the extremal bicyclic graphs with minimal Hosoya indices and the
extremal graphs with minimal permanental sums are different. Furthermore, applying the
same method in this article, we can obtain more minimal Hosoya indices and permanental
sums among all bicyclic graphs.
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