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Abstract: The paper reveals some remarkable form-invariance features of the ‘Jacobi-reference’
canonical Sturm–Liouville equation (CSLE) in the particular case of the density function with the
simple pole at the origin. It is proven that the CSLE under consideration preserves its form under
the two second-order Darboux–Crum transformations (DCTs) with the seed functions represented
by specially chosen pairs of ‘basic’ quasi-rational solutions (q-RSs), i.e., such that their analytical
continuations do not have zeros in the complex plane. It is proven that both transformations generally
either increase or decrease by 2 the exponent difference (ExpDiff) for the mentioned pole while
keeping two other parameters unchanged. The change is more complicated in the latter case if the
ExpDiff for the pole of the original CSLE at the origin is smaller than 2. It was observed that the
DCTs in question do not preserve bound energy levels according to the conventional supersymmetry
(SUSY) rules. To understand this anomaly, we split the DCT in question into the two sequential
Darboux deformations of the Liouville potentials associated with the CSLEs of our interest. We
found that the first Darboux transformation turns the initial CSLE into the Heun equation written
in the canonical form while the second transformation brings us back to the canonical form of the
hypergeometric equation. It is shown that the first of these transformations necessarily places the
mentioned ExpDiff into the limit-circle (LC) range and then the second transformation keeps the pole
within the LC region, violating the conventional prescriptions of SUSY quantum mechanics.

Keywords: rational Sturm–Liouville equation; Liouville transformation; classical Jacobi polynomials;
form invariance; shape invariance; SUSY partners

MSC: 34B24

1. Introduction

Half a century ago, the author [1] constructed the two families of ‘implicit’ potentials
exactly solvable in terms of hypergeometric or confluent hypergeometric functions. Below
we refer to them as Jacobi-reference (JRef) and Laguerre-reference (LRef) potentials accord-
ingly, keeping in mind that they are quantized via classical Jacobi and classical Laguerre
polynomials, respectively, with degree-dependent indices.

The cited paper was later used by Cooper et al. [2] to demonstrate that the Darboux
transformation (DT) using the nodeless eigenfunction as the transformation function (TF)
converts the JRef potential into a completely different rational function referred to by
us [3–5] simply as ‘CGK potential’. This illustration implied that the exactly solvable po-
tential discovered in [1] is not shape-invariant, contrary to Gendenshtein’s [6] renowned
assertion that any exactly solvable potential must be shape-invariant. A thorough ex-
amination of the rational formulas derived in [2] revealed [3] that the ground-energy
eigenfunction has the ‘basic’ form

1ϕt,0[z]:= z1/2λ0;t,0+1/2(1 − z)1/2λ1;t,0+1/2 (0 < z < 1), (1)
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which assures that its analytical continuation into the complex plane remains finite at any
regular point of the JRef canonical Sturm–Liouville equation (CSLE) where the subscript
0 indicates that the corresponding ‘quasi-rational’ [7] solution (q-RS) is composed of the
Jacobi polynomial of degree 0. In following our early study [8] on DTs of centrifugal-
barrier potentials (published long before the birth of the supersymmetric (SUSY) quantum
mechanics [9–11]), we found it convenient to identify the four possible types of basic
solutions (1) by the letters t = a, b, c, and d; namely, the labels a and b are used to identify
principal Frobenius solutions (PFSs) near the lower and upper ends of the quantization
interval [0, 1], whereas the q-RS of type d diverges near both singular endpoints (types I, II,
and III in Quesne’s terms [12]). Alternatively, we will specify the type of the given q-RSs by
the double indices

+− ≡ a, −+ ≡ b, ++ ≡ c, −− ≡ d

specifying signs of the exponent parameters λ0;t,0 and λ1;t,0. For our purposes, a certain
advantage of the four-letter labeling comes from the fact that two q-RSs formed by Jacobi
polynomials with an identical positive degree m may be of the same type if the Sturm–
Liouville problem in question has less than m−1 eigenvalues. In this case, we mark the
q-RSs in the second sequence (not starting from one of the basic solutions) by prime. For
example, it will be shown in Section 2 that, in addition to the eigenfunctions, the radial
potential of our current interest has the distinguished pairs of q-RSs vanishing at the origin
which are labeled by us as |a , m) and |a′ , m), with the sequence |a , m) starting from the
basic solution |a , 0).

It was originally proven in [3] and then more scrupulously analyzed in [13] that the
ground-energy eigenfunction |c , 0) of the JRef CSLE is accompanied by three other basic
solutions |a , 0), |b , 0), and |d , 0) if the polynomial numerator of the density function

1ρ[z; T2] =
T2[z; zT]

4z2(1 − z)2 > 0 (2)

the so-called [3–5] ‘tangent polynomial’ (TP),

T2[z; zT] := a2(z − zT;1)(z − zT;2) (3)

with zT := zT;1, zT;2, has a positive discriminant. Excluding the simple-pole density function [14]

1ρ⋄[z] =
1

4z(1 − z)
> 0 (0 < z < 1) (4)

associated with the Darboux/Pöschl–Teller potential [15,16], we (for the reasons explained
in [13]) define the TP leading coefficient via the condition

T2[1; zT] = 1. (5)

Concurrently with [2], Rudyak and Zakhariev published their pioneering study [17]
on the so-called [18] ‘generalized’ DTs of the generic CSLE, which (for the reasons explained
in Section 5) are referred to below as the Liouville–Darboux transformations (LDTs). Our
analysis [3] of Rudyak and Zakhariev’s reciprocal formula for the TF of the companion
intertwining operator

∗
1ϕt,0[z] := 1ρ−1[z; T2]/1ϕt,0[z] (6)

then revealed that the resultant rational CSLE (RCSLE) may have new poles only at TP
zeros. Since the TP degree cannot exceed 2, the rational DT (RDT) of the JRef CSLE us-
ing each of the basic solutions (1) as its TF generally leads to the Fuchsian RCSLEs with
five regular singular points (including infinity). Their common remarkable feature (com-
pared with the general case examined in [19,20]) is that the eigenfunctions of the RCSLEs
constructed in such a way are expressible in terms of finite sequences of polynomials
referred to by us as ‘Jacobi-seed’ (JS) Heine polynomials, though it is worth mentioning
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that the coefficient functions of the first derivative in the corresponding Fuchsian equations
generally depend on the polynomial degree (in contrast with the standard definition of
Heine polynomials [21–23]).

If the TP has a zero at one and only one regular point of the JRef CSLE outside the
quantization interval [0, 1], then the constructed quartet of solvable RCSLEs turns into the
quartet of Heun equations written in the normal form [24] such that the associated potentials
of Heun class [25] are quantized by polynomials. Since at least one of the ‘exponent
parameters’ [24] depends on the polynomial degree, the given polynomial solutions of the
Heun equation are not the Heun polynomials in the conventional sense [26,27].

There are three types of TPs which fall into this category:

(i) Second-degree TP with one zero at the origin (radial JRef potential [28–34]);
(ii) Linear TP (LTP) [3,9];
(iii) Double-root TP (DRtTP) with zero discriminant [35,36].

In Ishkhanyan’s classification scheme [37], the corresponding Liouville potentials
represent the Lemieux–Bose potentials [38] of types (1, 1/2, −1/2), (1, 1, −1/2), and (1,
1, −1) with z1 = 1, z2 = 0 under some additional constraints allowing one to express the
eigenfunctions in terms of polynomial solutions of the Heun equation.

Since the TP discriminants for the instances (i) and (ii) are positive, there are four
basic solutions in both cases. However, as already proven for the radial Heun-reference
(HRef) potentials in [34] and explicitly demonstrated below for the LTP with a negative
zero, this quartet of exactly solvable HRef potentials can be split into sibling pairs such that
the potentials in each pair are interrelated by two sequential LDTs. As a consequence, we
have only two sibling Lemieux–Bose potentials for both instances (i) and (ii).

On the other hand, each of the two exponents specifying the basic solutions (1) is
determined by roots of the cubic polynomials for the DRtTP [36], contrary to the general
case [13] with each exponent determined by one of the four real roots of the corresponding
quartic equations. (It has been proven in [13] that there is a unique way to relate each root
of one quartic equation to the corresponding root of the second equation.) As a result,
there are only three basic solutions for the instance (iii), and therefore, the quartet of the
sibling SUSY partners solvable by polynomial solutions of the Heun equation collapses
into a triplet.

The main purpose of this paper is to demonstrate that the double shape invariance of
the Liouville potentials associated with the instances (i) and (ii) is the intrinsic feature of the
given CSLE rather than the potential itself. It is a natural extension of our approach [39] to
translationally shape-invariant (TSI) potentials of groups A and B [40], where we introduced
the concept of the translationally form-invariant (TFI) rational CSLEs (RCSLEs). In the
particular case of the JRef CSLE, the TPs in question have the following form:

T2[z; aK; κ, K − κ] := zκ(z − 1)K−κ (2κ ≥ K = 0, 1, 2). (7)

It was demonstrated that the two TSI potentials, namely, Morse and hyperbolic Pöschl–
Teller (h-PT) potentials, can be alternatively included either in Group A or Group B de-
pending on the choice of the TFI CSLE for their rational representation. Specifically, the
h-PT potential can be included either in Group B or Group A by choosing κ = K = 1 [1] or
alternatively (κ = 1, K = 2) performing the Liouville transformation [41–44] of the CSLE
with single-pole density (4) on the infinite interval [1, ∞), as originally suggested in [45,46]
and then broadly adopted in the physical literature in following the renowned review [47]
by Cooper et al. and their textbook [48].

In Section 2, we extend our results for the radial JRef potential [33] to the instance (ii) by
extending the corresponding JRef CSLE to the positive semi-axis. Depending on the location
of the TP zero

zT(κ) = 1 − 1/κ (8)
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outside of the interval [0, 1],

zT(κ) > 1 if κ < 0 or zT(κ) < 0 if 0 < κ < 1

and the density function

1 ρ
→
(z; κ) =

κz + 1 − κ

4|z|(1 − z)2 > 0 (9)

remains positive either on the interval (−∞, 1) or on the positive semi-axis (0, ∞).
It has been demonstrated in [33] that there are four infinite sequences of q-RSs unam-

biguously specified by the roots of two quadratic equations with positive discriminants.
The range of the definition for these q-RSs is now extended to the infinite intervals (−∞, 0)
and (1, ∞).

In Section 3, we again group the four basic solutions into the two pairs chosen in
such a way that the two solutions from the given pair are specified by the roots of the
same quadratic equation. We then use the paired basic solutions as seed functions for the
second-order Darboux–Crum [49] transformation (DCT) making use of Schnizer and Leeb’s
general formula [18,50] for the Darboux–Crum transforms (DC
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s
of the principal Frobenius solution (PFS) can be represented as the first-order differential
expressions for the hypergeometric series in question. In Section 3, we explicitly confirm
these differential expressions using the renowned contiguous formulas for hypergeometric
functions. While our analysis of these differential equations in [33] was focused mostly
on the DCT increasing the ExpDiff for the pole at the origin, here we treat both DCTs in
a parallel way as far as the ExpDiff in question is larger than 2. On the other hand, if its
value is smaller than 2, then the DCT generally decreasing the ExpDiff by 2 converts the
given PFS into a non-principal FS of the transformed CSLE. This anomaly constitutes one
of the most interesting results of this paper.

In Section 4, we formulate the Dirichlet problem with the boundary conditions im-
posed at the ends of the finite interval [0, 1] and show that the DCT decreasing the ExpDiff
by 2 does not preserve the existent energy spectrum if the value of the ExpDiff is smaller
than 2, in violation of the conventional rules of SUSY quantum mechanics [47,48].

In Section 5, we decompose the second-order DCTs under consideration into
two sequential LDTs and then examine the action of the first LDT on the JRef CSLE. It
is proven that (as stated above) these LDTs result in the four Heun equations written in
their canonical form. It turns out that each CSLE constructed in such a way also preserves
its form under two sequential LDTs and, as a result, the quartet of HRef CSLEs can be split
into the two pairs such that the CSLEs in each pair differ only by the values of the ExpDiff
for the pole at the origin.
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In Section 6, we finally reveal the source of the mentioned anomaly for smaller-than-2
values of the mentioned ExpDiff. It is shown that the LDTs of our interest either decrease
or increase this ExpDiff by 1. If the value of the ExpDiff lies between 1 and 2 (i.e., if the
pole of the initial JRef CSLE at the origin is the limit point (LP) singularity), then the LDT
decreasing the ExpDiff by 1 brings the ExpDiff of our interest into the limit circle (LC)
region of the HRef CSLE, while keeping it within the LC region if the original value of
this ExpDiff is smaller than 1. As a result, the pole of the resultant HRef CSLE at the
origin is necessarily within the LC region. The second LDT then keeps this pole within the
LC region. On the other hand, it has been proven by the author in a separate article [53]
that the LDTs keeping the ExpDiff within the LC range violate the conventional rules of
SUSY quantum mechanics (see [14,54] for more examples). As a direct consequence of this
anomaly, the second-order DCT in question brings us to the JRef CSLE with a completely
different energy spectrum if the initial value of the ExpDiff under consideration is smaller
than 2.

2. Radical Formulas for Energies of q-RSs in Special Case of Density Function with
Simple Pole at Origin

Regardless of the choice of the density function, the reference polynomial fraction
(RefPF) of the JRef CSLE [13]{

d2

dz2 + 1Io[z ; λo,µo] + ε 1 ρ
→
(z; κ)

}
1Φ[z ; λo,µo; κ; ε] = 0 (10)

has the following common form:

1Io[z ; λo,µo] =
1 − λ2

o

4z2(1 − z)
+

1

4(1 − z)2 +
µ2

o
4z(1 − z)

(11)

Here, the energy measurement point is chosen via the requirement that the character-
istic exponents (ChExps) for the pole of CSLE (10) at z = 1 are both real iff ε < 0. In this
paper, we restrict our discussion solely to the JRef CSLE with the density function (9).

It is crucial that the TP of our interest vanishes at z = 0 and, as a result, the ExpDiff for
the pole of the CSLE at the origin becomes energy-independent. Setting

ϑ [z; λ, Ξ] := |z|1/2(λ+1)|1 − z|1/2(Ξ+1) (12)

and restricting our analysis solely to negative energies, we can represent the corresponding
Frobenius solutions (FSs) near the poles at 0 and 1 for an arbitrary negative energy ε as

1Φ±
0 [z; λo,µo; κ; ε] = ϑ [z;±λo,−

√
−ε]×

F [α(±λo,µo; κ;−
√
−ε) ,β(±λo,µo; κ;−

√
−ε); 1 ± λo; z]

(−1 < z < 0 or 0 < z < 1)
(13)

and

1Φ±
1 [z; λo,µo; κ; ε] = ϑ [z;−λo,±

√
−ε]×

F [α(−λo,µo; κ;±
√
−ε) ,β(−λo,µo; κ;±

√
−ε); 1 ±

√
−ε; 1 − z]

(0 < z < 1 or 1 < z < 2)
(14)

respectively. By definition, α(λ,µo; κ; Ξ) and β(λ,µo; κ; Ξ) are two roots of the indicial
equation

X2 − (λ+ Ξ + 1 )X + 1/4(λ + Ξ + 1)2 − µ2(µo; κΞ2) = 0 (15)

with
|Ξ| :=

√
|ε| (16)
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and
µ(µo; κΞ2) :=

√
µ2

o + κΞ2 (17)

standing for the ExpDiff for the pole of the CSLE at infinity; i.e., by definition,

α(λ,µo; κ; Ξ) + β(λ,µo; κ; Ξ) = λ+ Ξ + 1. (18)

Also [1]
β(λ,µo; κ; Ξ)− α(λ,µo; κ; Ξ) = µ(µo; κΞ2) > 0 (19)

Combining (18) and (19) gives

α(λ,µo; κ; Ξ) = 1/2[λ+ Ξ + 1 − µ(µo; κΞ2)], (20)

β(λ,µo; κ; Ξ) = 1/2[λ+ Ξ + 1 + µ(µo; κΞ2)] (21)

and therefore,

α(λ,µo; κ; Ξ)β(λ,µo; κ; Ξ) = 1/4[(λ + Ξ + 1)2 − µ2(µo; κΞ2)] (22)

in agreement with (15).
If

α(±λo,µo; κ; Ξ±,υ,m) = −m (23)

then both FSs (13) and (14) at the energies

ε±,υ,m = −Ξ2
±,υ,m (24)

become quasi-rational:

1Φ±
0 [z; λo,µo; κ; ε+,υ,m] = 1ϕ

±
υ,m[z; λo,µo; κ] := ϑ [z;±λo, Ξ+,υ,m]×

F [−m ,±λo + Ξ±,υ,m + m + 1; 1 ± λo; z],
(25)

where m stands for an arbitrary nonnegative integer and the index υ = ± will be specified
below.

Making use of (18.5.7) in [24],

F[−m, λ+ Ξ + m + 1, λ+ 1; z] =
(−1)mm!
⟨λ+ 1⟩m

P(Ξ,λ)
m (2z − 1), (26)

we can then represent the q-RSs in question as

1ϕ
±
υ,m[z; λo,µo; κ] =

(−1)mm!
⟨1 ± λo⟩m

ϑ [z;±λo, Ξ±,υ,m]P(Ξ±,υ,m , ±λo)
m (2z − 1) (27)

Combining (18)–(20) and (23), we come to the following pair of the quadratic equations:

[Ξ±,υ,m ± λo + 2m + 1]2 = µ2
o + κΞ2

±,υ,m (28)

Setting Ξ±,υ,m ≡ λυ,m(±λo,µo; κ) and re-writing the quadratic Equation (28) in the
standard form

(1 − κ) λ2
υ,m(±λo,µo; κ) + 2(±λo + 2m + 1)λυ,m(±λo,µo; κ) +

(±λo + 2m + 1)2 − µ2
o = 0

(29)

we find that their roots are given by the radical formulas

λυ,m(λ,µo; κ) =
[

υ1/2

√
∆m(λ,µo; κ)− λ− 2m − 1

]
/(1 − κ) (υ = ±) (30)
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with the positive discriminant

∆m(±λo,µo; κ) = 4 [κ (2m + 1 ± λo)
2 + (1 − κ )µ2

o] (31)

for 0 ≤ κ ≤ 1.
We therefore proved the following:

Theorem 1. CSLE (10) with the density function (9) has four infinite sequences of q-RSs (29)
unambiguously specified by roots (30) of two quadratic Equation (29), if the corresponding TP has a
negative root (0 < κ <1).

On the contrary, all four sequences of the q-RSs (27) are finite if the non-zero TP root
is larger than 1 (κ < 0); namely, the number of the q-RSs in each pair of the sequences
(λ = ±λo) is equal to

m±
max =

⌈
1/2

√
1 − 1 /κµo − 1/2(1 ± λo)

⌉
(32)

Since both quadratic Equation (29) have positive leading coefficients, we conclude that
each equation has two real roots of the opposite sign iff

0 ≤ 2m < µo − λo − 1. (33)

Below, we refer to the q-RSs (27) simply as |±,υ,m) with the label υ specifying the sign
of the Jacobi index (30) as far as the polynomial degrees restricted by the constraint (33). This
is the range of the polynomial degrees where the type of the q-RS can be unambiguously
specified by the label t = a, b, c, or d mentioned in the Introduction. (In particular, this is
true for the quartet of the basic solutions |t,0) assuming that the potential has the discrete
energy spectrum.) For larger m values, the q-RSs |++,m) diverge at z = 1, and therefore,
we mark them as |a′,m). Similarly, if each quadratic equation has a positive free term then
the q-RSs |−+,m) diverge at both 0 and 1, and therefore, we refer to them as |d′,m).

3. Double-Step Form Invariance of JRef CSLE (10)

Let us now consider the double-step DCT using a pair of basic seed functions

1ϕυ,0[z;±λo, Ξ±,υ,0] := 1ϕ
±
υ,0[z; λo,µo; κ]

= |z|1/2±1/2λo |1 − z|1/2+1/2λυ,0(±λo,µo;κ).
(34)

The RefPF for the transformed CSLE{
d2

dz2 + Io[z; λo,µo; κ|±,+, 0;±,−, 0] + ε 1ρ[z; TK]
}
×

1Φ[z; λo,µo; TK; ε|±,+, 0;±,−, 0] = 0
(35)

can be represented in the standard way [18]

Io[z; λo,µo; κ|±,+, 0;±,−, 0] = Io[z; ±λo,µo]+

2
√

1 ρ
→
[z; κ]

d
dz

ld 1W[z; ±λo,µo; κ]√
1 ρ
→
[z; κ]

(36)

where

1W[z; λ,µo; κ] ≡ W
{

1ϕ+,0[z; λ,µo; κ], 1ϕ−,0[z; λ,µo; κ]
}

(37)
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Substituting (34) into (37) shows that the Wronskian of the selected pair of the basic
solutions is given by the simple formula

1W[z; λ,µo; κ] =
λ−,0(λ,µo; κ)− λ+,0(λ,µo; κ)

2(z − 1)
]×

1ϕ+,0[z; λ,µo; κ] 1ϕ−,0[z; λ,µo; κ],
(38)

which represents the core of our derivation. Combining it with the general formula for the
derivative of the Wronskian of two solutions of the generic CSLE

1

•
W[z; λ,µo; κ] =

∣∣∣∣∣ 1ϕ+,0[z; λ,µo; κ] 1ϕ−,0[z; λ,µo; κ]

1

••
ϕ+,0[z; λ,µo; κ] 1

••
ϕ−,0[z; λ,µo; κ]

∣∣∣∣∣
= [ε+,0(λ,µo; κ)− ε−,0(λ,µo; κ)] 1 ρ

→
[z; κ]×

(39)

1ϕ+,0[z; λ,µo; κ] 1ϕ−,0[z; λ,µo; κ] (40)

one can represent the logarithmic derivative of Wronskian (38) as

ld 1W[z; λ,µo; κ] = [λ+,0(λ,µo; κ) + λ−,0(λ,µo; κ)]
κ [z − zT(κ)]

2z(z − 1)
(41)

where we also made use of (24) to express the energy difference in terms of the ExpDiffs for
the pole at z = 1:

ευ,0 (±λo,µo; κ) := ε±,υ,0 (λo,µo; κ) ≡ −λ2
υ,0(±λo,µo; κ) (42)

By definition, λ±,0(λ,µo; κ) are two roots of quadratic Equation (29) with ±λo replaced
by λ, and therefore,

λ+,0(λ,µo; κ) + λ−,0(λ,µo; κ) =
2(λ+ 1)
κ− 1

(43)

We can consequently re-write (41) as

ld1W[z; λ,µo; κ] =
λ+ 1
zT(κ)

× z − zT(κ)

z(z − 1)
(44)

Consequently,

•
ld 1W[z; λ,µo; κ] =

λ+ 1
zT(κ)

×
{

1
z(z − 1)

− z − zT(k)
z2(z − 1)

− z − zT(k)

z(z − 1)2

}
(45)

Representing the second summand in (36) in the rational form

2
√

1 ρ
→
[z; κ]

d
dz

ld 1W[z; ±λo,µo; κ]√
1 ρ
→
[z; κ]

= 2
•
ld 1W[z; ±λo,µo; κ]

−ld 1 ρ
→
[z; κ] ld 1W[z; ±λo,µo; κ],

(46)

taking into account that

ld 1 ρ
→
(z; κ) =

1
z − zT(κ)

− 1
z
− 2

z − 1
(47)

and substituting (44), (45), and (47) into the right-hand side of (46) then gives

Io[z; λo,µo; κ|±,+, 0;±,−, 0] = 1Io[z ; λo,µo] +
1 ± λo

z2(z − 1)
= Io[z; |λo ± 2|,µo].

(48)
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Note that representing the summand (46) in its rational form makes the derivation
applicable for the whole real axis, in contrast with [33], where our analysis was artificially
restricted to the finite interval 0 < z < 1. This modification of the arguments also helped
the author to eliminate an erroneous shift [33] in the energy measurement point for the
transformed potential in the original version of (48).

Note that the DCT decreasing the ExpDiff for the pole at the origin in general changes
it for 2 − λo if 0 < λo < 2. This results in the anomaly which makes the latter region very
special. We shall come back to the discussion of this anomaly in the next section.

We thus proved the following:

Theorem 2. Putting aside the mentioned anomaly, the DCTs using the pairs of the basic seed
functions ±,+, 0 and ±,−, 0 preserve the form of the given JRef CSLE while changing by 2 the
ExpDiff for its pole at the origin.

The derived Formula (48) constitutes the cornerstone of this paper. It allows us to
assert that the DCTs in question generate the first-order differential expressions in the space
of hypergeometric series provided that the CWs [49] are replaced by the corresponding
KDs [51] as outlined in the Introduction. In the next section, we directly confirm these
expressions taking advantage of the renowned contiguous relations.

4. Dirichlet Problem for the Finite Quantization Interval [0, 1]

Our next step is to investigate the spectral problem for the SLE defined on the finite
interval (0, 1). The analysis of the supplementary spectral problems on the infinite intervals
(−∞, 0) and (1, ∞) was postponed for a separate publication. As outlined in Section 7 below,
the Liouville transformation on the finite interval results in the Schrödinger equation with
the radial potential [28–31,54] while its counterparts on the infinite intervals lead to the
Schrödinger equation with the LTP potential on the line [3,13].

To formulate the Sturm–Liouville problem of our interest we introduce the so-called [53]
‘prime’ SLE
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o o 1 o o
d d[z] q[z , [z; ] [z; , ; ; ] 0
dz dz

 − ;λ μ ]+ ε κ λ μ κ ε =/ /
 

Ψ//wρ   (49)

By definition, it is obtained from the JRef CSLE (10) by the gauge transformation 

1
2o o o o[z; , ; ; ] [z] [z; , ; ; ]−λ μ κ ε = Φ λ μ κ ε/Ψ/ ρ  (50)

chosen in such a way that the ChExps of the Frobenius solutions of SLE (49) near each 
singular endpoint have exactly the same absolute value but opposite signs. Note that the 
weight function for SLE (49) has the form 

1 1[z; ] : [z; ] [z ]κ = κ //  ρw ρ   (51)

regardless of the particular choice of the leading coefficient function [z]./ρ  In our case, 
we choose [5,53] 

[z] z(1 z) .= −/ρ   (52)

It has been demonstrated in [5] that the free term 

o
o o o o

1 1q z; , ] [z] I z; , ]
4z 4(1 z)

[ [λ μ = − λ μ + +// −
ρ  (53)

has the simple poles in the finite plane, and therefore, the corresponding indicial equa-
tions do not have linear terms. The latter requirement ensures [5] that the sum of the 
ChExps for both singular ends of the interval (0, 1) is equal to 0, as asserted. 

We thus affirm that the PFSs in question are unambiguously selected by the Dirichlet 
boundary conditions (DBCs): 

Ko
z

[z; ; ; ] 0 ( 0,1).
→

Λ ε = =Ψ/ 


Tlim  (54)

(49)

By definition, it is obtained from the JRef CSLE (10) by the gauge transformation
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regardless of the particular choice of the leading coefficient function ρ[z]. In our case, we
choose [5,53]
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By definition, it is obtained from the JRef CSLE (10) by the gauge transformation 

1
2o o o o[z; , ; ; ] [z] [z; , ; ; ]−λ μ κ ε = Φ λ μ κ ε/Ψ/ ρ  (50)

chosen in such a way that the ChExps of the Frobenius solutions of SLE (49) near each 
singular endpoint have exactly the same absolute value but opposite signs. Note that the 
weight function for SLE (49) has the form 

1 1[z; ] : [z; ] [z ]κ = κ //  ρw ρ   (51)

regardless of the particular choice of the leading coefficient function [z]./ρ  In our case, 
we choose [5,53] 

[z] z(1 z) .= −/ρ   (52)

It has been demonstrated in [5] that the free term 

o
o o o o

1 1q z; , ] [z] I z; , ]
4z 4(1 z)

[ [λ μ = − λ μ + +// −
ρ  (53)

has the simple poles in the finite plane, and therefore, the corresponding indicial equa-
tions do not have linear terms. The latter requirement ensures [5] that the sum of the 
ChExps for both singular ends of the interval (0, 1) is equal to 0, as asserted. 

We thus affirm that the PFSs in question are unambiguously selected by the Dirichlet 
boundary conditions (DBCs): 

Ko
z

[z; ; ; ] 0 ( 0,1).
→

Λ ε = =Ψ/ 


Tlim  (54)

(53)

has the simple poles in the finite plane, and therefore, the corresponding indicial equations
do not have linear terms. The latter requirement ensures [5] that the sum of the ChExps for
both singular ends of the interval (0, 1) is equal to 0, as asserted.

We thus affirm that the PFSs in question are unambiguously selected by the Dirichlet
boundary conditions (DBCs):
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One of the advantages of formulating the spectral problem in such a form is that we
can automatically adopt the rigorous theorems proven in [55] for the generic SLE solved
under the DBCs.

Prime SLE (49) has two infinite sequences of quasi-rational PFSs near the origin:
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Let us now apply the second-order DCTs discussed in Section 3 to the PFS in the
pair (13). Making use of Schulze-Halberg’s [56] general formula for solutions of the generic
CSLE undergoing an arbitrary DCT, we can represent the DC
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s of the PFS marked by a
superscript ‘+’ in {13) as follows:

1Φ+
0 [z; λo,µo; κ; ε|±,+, 0;±,−, 0] :=

W
{

1ϕ+,0[z; λ,µo; κ], 1ϕ−,0[z; λ,µo; κ], 1Φ+
0 [z; λo,µo; κ; ε]

}
1 ρ
→
[z; κ] 1W[z; λ,µo; κ]

, (60)

Converting the CW to the KD gives

W
{

1ϕ+,0[z; λ,µo; κ], 1ϕ−,0[z; λ,µo; κ], 1Φ+
0 [z; λ,µo; κ; ε]

}
=

− 1 ρ
→
[z; κ] 1K[z; λ,µo; κ; ε], (61)

where

1K[z; λ,µo; κ; ε] :=∣∣∣∣∣∣∣
1ϕ+,0[z; λ,µo; κ] 1ϕ−,0[z; λ,µo; κ] 1Φ[z; λo,µo; κ; ε]

1

•
ϕ+,0[z; λ,µo; κ] 1

•
ϕ−,0[z; λ,µo; κ] 1

•
Φ[z; λo,µo; κ; ε]

ε+,0(λ,µo; κ)1ϕ+,0[z; λ,µo; κ] ε−,0(λ,µo; κ)1ϕ−,0[z; λ,µo; κ] ε 1Φ[z; λo,µo; κ; ε]

∣∣∣∣∣∣∣
= 1ϕ+,0[z; λ,µo; κ] 1ϕ−,0[z; λ,µo; κ]×∣∣∣∣∣∣∣

1 1 1Φ[z; λo,µo; κ; ε]

ld1ϕ+,0[z; λ,µo; κ] ld1ϕ−,0[z; λ,µo; κ] 1

•
Φ[z; λo,µo; κ; ε]

−λ2
+,0(λ,µo; κ) −λ2

−,0(λ,µo; κ) ε 1Φ[z; λo,µo; κ; ε]

∣∣∣∣∣∣∣.
(62)
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Note that the density function disappeared from the denominator of the fraction

1Φ[z; λo,µo; κ; ε|±,+, 0;±,−, 0] = 1K[z;±λo,µo; κ; ε]

1W[z; ±λo,µo; κ]
(63)

This is one of the additional advantages of the KD representation compared with the
Crum formula. It directly follows from (38) and (62) that fraction (63) does not have a pole
at the TP zero zT(κ) as expected from the fact that RefPF (36) is regular at this point.

Making use of (38) and introducing the first-order differential operator

1D{λ,µo; κ; ε} :=
2

λ−,0(λ,µo; κ)− λ+,0(λ,µo; κ)
z(z − 1)∣∣∣∣∣∣∣∣

1 1 1

ld1ϕ+,0[z; λ,µo; κ] ld1ϕ−,0[z; ±λo,µo; κ]
d
dz

−λ2
+,0(λ,µo; κ) λ2

−,0(λ,µo; κ) ε

∣∣∣∣∣∣∣∣
(64)

we can represent the solution (63) of RCSLE (35) as follows:

1Φ0[z; λo,µo; κ; ε|±,+, 0;±,−, 0] = z−1
1D{λo,µo; κ; ε}1Φ0[z; λ,µo; κ; ε]. (65)

Let us formally represent the solution (60) as

1Φ0[z; λo,µo; κ; ε|±,+, 0;±,−, 0] = z1/2(λo−1)(1 − z)1/2 (−
√
−ε+1)×

1F0[z; λo,µo; κ; ε|±,+, 0;±,−, 0] (0 < z < 1),
(66)

where

1F0[z; λo,µo; κ; ε|±,+, 0;±,−, 0] := 1D±
0
{
λo,µo; κ;−

√
−ε

}
×

F [α(λo,µo; κ;−
√
−ε) ,β(λo,µo; κ;−

√
−ε); λo + 1; z] (0 < z < 1),

(67)

with the corresponding first-order differential operators defined as follows:

1D+
0 {λo,µo; κ; Ξ} :=

z

∣∣∣∣∣∣
1 0 1

λ+,0(λo,µo; κ) 1 Ξ + 2(z − 1) d
dz

−λ2
+,0(λo,µo;κ) 2(λo+1)/(1−κ) −Ξ2

∣∣∣∣∣∣ (68)

and

1D−
0 {λo,µo; κ; Ξ} =

=

∣∣∣∣∣∣∣
1 0 1

λ+,0(−λo,µo; κ)z z Ξ z + 2(z − 1)
(
λo + z d

dz

)
−λ2

+,0(−λo,µo; κ) 2(1 − λo)/(1 − κ) −Ξ2

∣∣∣∣∣∣∣
(69)

bearing in mind that

λ+,0(λ,µo; κ) + λ−,0(λ,µo; κ) = 2(λ+ 1)/(κ− 1). (70)

We will refer to functions (67) and to the first-order differential operator (68) or (69) as
the ‘Darboux–Crum–Krein transforms’ (DCK
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intervals (−∞, 0) and (1, ∞).  

In Section 3, we again group the four basic solutions into the two pairs chosen in such 
a way that the two solutions from the given pair are specified by the roots of the same 
quadratic equation. We then use the paired basic solutions as seed functions for the 
second-order Darboux–Crum [49] transformation (DCT) making use of Schnizer and 
Leeb’s general formula [18,50] for the Darboux–Crum transforms (DC T s) of the generic 
CSLE. It was proven that the only effect of both second-order DCTs on the JRef CSLE is 
either the increase or decrease in the exponent difference (ExpDiff) for the pole at the 
origin by 2.  

It is worth mentioning in this connection that the reference to Krein’s paper [51] in 
[17,50] was obviously an overkill. The distinction between the Crum Wronskian (CW) [49] 
and the Krein determinant (KD) [51] arises only for the CW of more than two seed 
functions, and Leeb never discussed the solutions of the ‘double-step’ SLEs which indeed 
require the computation of the CW of three seed functions.  

To our knowledge, the rigorous extension of the notion of the KDs to the theory of 
the DCTs of CSLEs was first formulated in our works [52,53]. It was shown that the CW of 
seed solutions of a CSLE and the corresponding KD differ by either a half-integer or 
integer power of the density function. As expected, this factor disappears for the 
Schrödinger equation since the density function is identically equal to 1. The distinctive 
feature of the KDs is that they, in contrast with the CWs, are formed only by the seed 
functions and their first derivatives. In Section 3, we explicitly replace the CW of three 
seed functions with the corresponding KD to avoid the computation of the second 
derivative of the hypergeometric series under consideration. 

After the CWs of three seed functions have been replaced with the KDs, the DCTs of 
the principal Frobenius solution (PFS) can be represented as the first-order differential 
expressions for the hypergeometric series in question. In Section 3, we explicitly confirm 
these differential expressions using the renowned contiguous formulas for 
hypergeometric functions. While our analysis of these differential equations in [33] was 
focused mostly on the DCT increasing the ExpDiff for the pole at the origin, here we treat 

s) of the hypergeometric functions and as
the ‘DCK’ generators, respectively.

Theorem 3. DCK generators (68) or (69) respectively increase or decrease by 1 the first two
parameters of the hypergeometric function on the right-hand side of (66) while respectively increasing
or decreasing by 2 the third parameter.
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Proof of Theorem 3. Let us first present the explicit expressions for the coefficient functions
of the DCK generators (68) and (69). Namely, again taking into account that we deal with
the two roots (30) of quadratic Equation (29), coupled with (17), one finds

(1 − κ) 1D+
0 {λ,µo; κ; Ξ} = zΛ2(Ξ; λ,µo; κ) + 4(λ+ 1)z(1 − z)

d
dz

(71)

and

(1 − κ) 1D−
0 {λo,µo; κ; Ξ} = Λ2(Ξ;−λo,µo; κ) + 4(1 − λo)(1 − z)

(
λo + z

d
dz

)
, (72)

where the quadratic polynomial in Ξ is defined as follows:

Λ2(Ξ; λ,µo; κ) := (1 − κ)[Ξ − λ+,0(λ,µo; κ)]× [Ξ − λ−,0(λ,µo; κ)] (73)

≡ µ2(µo; κΞ2)− (Ξ + λ+ 1)2. (74)

Making use of (18) and (22) with λ = λo gives

Λ2(Ξ; λo,µo; κ) = −4α(λo,µo; κ; Ξ)β(λo,µo; κ; Ξ) (75)

On the other hand, setting λ = −λo in (43) and λ = λo in (18) shows that the resultant
value of quadratic polynomial (74) is related to (75) via the simple shift

Λ2(Ξ;−λo,µo; κ) = Λ2(Ξ; λo,µo; κ) + 4λo(Ξ + 1). (76)

Substituting (75) into the latter relation gives

Λ2(Ξ;−λo,µo; κ) = −4[α(λo,µo; κ; Ξ)− λo ]× [β(λo,µo; κ; Ξ)− λo]. (77)

Our next step is to explicitly confirm that the DCK
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of the hypergeometric function
generated by operator (68) has the double zero at the origin as expected from the fact that
the DCT in question increases by 2 the ExpDiff for this pole of the CSLE while keeping the
parameter µo unchanged. First bearing in mind that

(λo + 1)(α+ β− λo − 1) = αβ− (λo + 1 − α)(λo + 1 − β) (78)

we represent contiguous relation (13) in §33 in [57] as

(λo + 1)(1 − z) d
dz F (α ,β; λo + 1; z) = αβF (α ,β; λo + 1; z)−

(α − λo − 1)(β− λo − 1)[F(α,β; λo + 1; z)− F (α ,β; λo + 2; z)] (|z| < 1).
(79)

Also note that making use of contiguous relation (9) in the cited monograph(
λo + z

d
dz

)
F(α,β; λo + 1; z) = λoF(α,β; λo; z) (|z| < 1) (80)

coupled with the conventional formula for the derivative of the hypergeometric function

d
dz

F (α ,β; λo + 2; z) =
αβ

λo + 2
F (α+ 1 ,β+ 1; λo + 3; z) (|z| < 1) (81)

one can re-write the difference between the hypergeometric functions in the second term in
the right-hand of (79) as

F(α,β; λo + 1; z)− F(α,β; λo + 2; z) = αβ
(λo+1)(λo+2)z F(α+ 1 ,β+ 1; λo + 3; z)

(|z| < 1).
(82)
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Consequently, function (67) for the DCT in question takes the form

1F0[z; λo,µo; κ; ε|+,+, 0;+,−, 0] = [(λo −
√
|ε| + 1)

2 − µ2(µo; κ|ε|)]×

[α(λo,µo; κ;−
√
|ε|)− λo − 1]× [β(λo,µo; κ;−

√
|ε|)− λo − 1]

(κ− 1)(λo + 1)(λo + 2)
×

z2F
(
α(λo,µo; κ;−

√
|ε|) + 1 ,β(λo,µo; κ;−

√
|ε|) + 1; λo + 3; z

)
(0 < z < 1)

(83)

which completes the proof of Theorem 3 for DCK generator (68).
Coming back to DCK generator (69), let us show that

(λo − 1)(1 − z)
(
λo + z d

dz

)
F(α ,β; λo + 1; z) = λo(λo − 1)F(α − 1,β− 1; λo − 1; z)−

(λo − α)(λo − β)z F(α ,β; λo + 1; z) (|z| < 1).
(84)

and therefore, function (67) for the DCT in question takes the form

1F0[z; λo,µo; κ; ε|−,+, 0;−,−, 0] =
4λo(λo − 1)

κ− 1
×

F
(
α(−λo,µo; κ;−

√
|ε|)− 1 ,β(−λo,µo; κ;−

√
|ε|)− 1; λo − 1; z

)
(0 < z < 1)

(85)

as anticipated. Indeed, making use of contiguous relation (9) in §33 in [57], one finds(
λo + z

d
dz

)
F(α,β; λo + 1; z) = λoF(α ,β; λo; z) (|z| < 1); (86)

while decreasing λo by 1 in (81) and substituting the resultant expression into contiguous
relation (13) in the same paragraph of [57] brings us to another contiguous relation

αβ(1 − z)F (α+ 1 ,β+ 1; λo + 2; z) = αβF (α ,β; λo + 1; z)−

(α − λo − 1)(β− λo − 1)[F(α,β; λo + 1; z)− F (α ,β; λo + 2; z)] (|z| < 1).
(87)

not listed in [57]. Taking into account that

(λo + 1)(α+ β− λo − 1) = αβ− (λo + 1 − α)(λo + 1 − β) (88)

we can then re-write (87) as

(1 − z)F (α+ 1 ,β+ 1; λo + 2; z) = F(α,β; λo + 1; z)−
(λo + 1 − α)(λo + 1 − β)

αβ
[F(α,β; λo + 1; z)− F(α,β; λo + 2; z)] (|z| < 1).

(89)

Substituting (82) in the right-hand side of (89) and replacing α+ 1 ,β+ 1, and λo + 2
with α,β, and λo, respectively, we finally come to the sought-for contiguous relation

λo(λo − 1)(1 − z)F(α,β; λo; z) = λo(λo − 1)F(α− 1,β− 1; λo − 1; z)−

(λo − α)(λo − β)z F(α,β; λo + 1; z) (|z| < 1),
(90)

which, coupled with (88), brings us back to (85). This completes the proof of Theorem 3 for
the second DCK generator (69). □

Combining (66), (67), (83), and (85) we come to the conclusion that the functions
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with 2oλ >  in the latter case, are the solutions of the prime SLEs 

(91)

and
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Again, note that the solution (92) infinitely grows near the origin if 0 2o< λ < . We 
shall come back to this puzzling issue in Section 6. 

Note that all the results were obtained by us with no reference to the Liouville trans-
formations leading to quantum-mechanical applications. To be able to apply the devel-
oped formalism to quantum-mechanical problems, one simply needs to convert the 

RefJ  CSLE to the radial Schrödinger equation by the Liouville transformation on the 
finite interval [0, 1] as thoroughly elaborated in [33]. 
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To understand the source behind the anomalous behavior of the solution (92) in the 

region 0 2o< λ <  , let us decompose the given second-order DCTs into two sequential 
LDTs. 

Let o[z; ; ]τ Λφ T  be a nodeless solution of the generic CSLE 

2
o

o o2
d I [z; ; ] [z; ] [z; ; ; ] 0
dz

τ
  + Λ + ε Φ Λ ε = 
  

T T Tρ  (96)

at an energy o( ; )τ Λε T . We define the LDT of CSLE with the TF, o[z; ; ]τ Λφ T , as the 
CSLE with the solution 

1
2o o[z; ; ] [z; ] / [z; ; ]−

τ τΛ = Λφ φT T Tρ*  (97)

at the same energy. As originally pointed out by Rudjak and Zakhariev [17], the zero-
energy free term of the resultant CSLE has the form 
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where the so-called [53] ‘universal correction’ is defined via the following generic formula [18]: 

d [ ]1[ ] : [ ]2 d [ ]
f{f } f
f

ld ηη = η
η η

J . (99)

In [4], we identified this transformation as the following three-step operation: 
(i) The Liouville transformation of the generic CSLE to the Schrödinger equation by the 

change in variable z(x; )T determined up to a constant shift by the following first-
order ordinary differential equation (ODE): 

(93)

satisfying the DBCs
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Again, note that the solution (92) infinitely grows near the origin if 0 2o< λ < . We 
shall come back to this puzzling issue in Section 6. 

Note that all the results were obtained by us with no reference to the Liouville trans-
formations leading to quantum-mechanical applications. To be able to apply the devel-
oped formalism to quantum-mechanical problems, one simply needs to convert the 

RefJ  CSLE to the radial Schrödinger equation by the Liouville transformation on the 
finite interval [0, 1] as thoroughly elaborated in [33]. 
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In [4], we identified this transformation as the following three-step operation: 
(i) The Liouville transformation of the generic CSLE to the Schrödinger equation by the 

change in variable z(x; )T determined up to a constant shift by the following first-
order ordinary differential equation (ODE): 
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Again, note that the solution (92) infinitely grows near the origin if 0 < λo < 2. We
shall come back to this puzzling issue in Section 6.

Note that all the results were obtained by us with no reference to the Liouville trans-
formations leading to quantum-mechanical applications. To be able to apply the developed
formalism to quantum-mechanical problems, one simply needs to convert the JRef CSLE to
the radial Schrödinger equation by the Liouville transformation on the finite interval [0, 1]
as thoroughly elaborated in [33].

5. Decomposition of Second-Order DCT into Two Sequential LDTs

To understand the source behind the anomalous behavior of the solution (92) in the re-
gion 0 < λo < 2, let us decompose the given second-order DCTs into two sequential LDTs.

Let ϕτ [z; Λo; T] be a nodeless solution of the generic CSLE{
d2

dz2 + Io[z; Λo; T] + ερ[z; T]

}
Φτ [z; Λo; T; ε] = 0 (96)

at an energy ετ(Λo; T). We define the LD
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the principal Frobenius solution (PFS) can be represented as the first-order differential 
expressions for the hypergeometric series in question. In Section 3, we explicitly confirm 
these differential expressions using the renowned contiguous formulas for 
hypergeometric functions. While our analysis of these differential equations in [33] was 
focused mostly on the DCT increasing the ExpDiff for the pole at the origin, here we treat 

of CSLE with the TF, ϕτ [z; Λo; T], as the CSLE
with the solution

∗ϕτ [z; Λo; T] = ρ−1/2 [z; T]/ϕτ [z; Λo; T] (97)
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at the same energy. As originally pointed out by Rudjak and Zakhariev [17], the zero-energy
free term of the resultant CSLE has the form
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order ordinary differential equation (ODE): 
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In [4], we identified this transformation as the following three-step operation:

(i) The Liouville transformation of the generic CSLE to the Schrödinger equation by
the change in variable z(x; T) determined up to a constant shift by the following
first-order ordinary differential equation (ODE):

dx
dz

= 1ρ
1/2[z; T]; (100)

(ii) The Darboux deformation of the Liouville potential with the TF

χτ [z(x; T); Λo; T) =
1√

z′(x; T)
ϕτ [z(x; T); Λo; T]; (101)

(iii) The reverse Liouville transformation of the Schrödinger equation with the deformed
potential to the new CSLE with the original density function ρ [z; T].

It should be stressed that our definition of the LDT is given with no relation to the
corresponding Darboux deformation of the associated Liouville potential. However, the
mentioned interrelationship between the LDTs of the generic CSLE and conventional DTs
of the Schrödinger equation makes it easier to apply our scrupulous mathematical analysis
of some remarkable features of the LDTs to the one-dimensional SUSY quantum mechanics.
We shall come back to the discussion of this dualism between the two approaches in
Section 7.

Let us now consider the four LDTs using the basic solutions (34) as their TFs. These
LDTs formally result in the quartet of the new exactly solvable CSLEs which have the
quasi-rational functions

∗
1ϕυ,0[z;±λo,µo; κ] =

2√
|κz + 1 − κ|

|z|∓1/2λo |1 − z|1/2−1/2λυ,0(±λo,µo;κ) (102)

as their solutions. An examination of these functions reveals [34] that these SLEs must
have the form of Fuchsian equations with five poles (including the pole at infinity). It is
crucial that the positions of the two poles outside of the interval [0, 1] are independent
of the parameters specifying the JRef PF. We thus come to the following Heun equations
written in the canonical form{

d2

dz2 + 1Io[z; λo ± 1,µo; κ|±, υ, 0] + ε 1 ρ
→
(z; κ)

}
×

1Φ[z; λo ± 1,µo; κ; ε|±, υ, 0] = 0,
(103)

with

1Io[z; λo ± 1,µo; κ|±, υ, 0] = 1Io[z; λo ± 1,µo; κ]− 3

4[z − zT(κ)]
2 +

3
4z(z − 1)

+
1 ± λo + (1 − κ)[λυ,0(±λo,µo; κ)− 2] + 1

2κz(z − 1)[z − zT(κ)]
.

(104)
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Theorem 4. The quartet of the PFs (104) can be split into two pairs such that the RefPFs in each
pair represent the same HRef CSLE form-invariant under two sequential LDTs.

Proof of Theorem 4. Let us first re-write (104) as

1Io[z; λo ± 1,µo; κ|±, υ, 0] = 1Io[z; λo ± 1,µo; κ]− 3

4[z − z
→T

(κ)]2
+

3
4z(z − 1)

+
υ
√

∆0(±λo,µo; κ)/2 + 2κ− 1
2κz(z − 1)[z − zT(κ)]

,

(105)

where
∆0(±λo,µo; κ) = 4 [κ (λo ± 1)2 + (1 − κ )µ2

o] (106)

is the discriminant of the quadratic Equation (29) for m = 0. Setting ∗λo := λo + 1 gives

1Io[z; ∗λo,µo; κ|+, υ, 0] =

1Io[z; ∗λo,µo; κ]− 3

4[z − z
→T

(κ)]2
+

3
4z(z − 1)

+
υ
√

κ ∗ λ2
o + (1 − κ )µ2

o + 2κ− 1

2κz(z − 1)[z − zT(κ)]

(107)

and

1Io[z; ∗λo,µo; κ|−, υ, 0] = 1Io[z; ∗λo − 2,µo; κ|+, υ, 0]. (108)

The derived expression confirms one of the most important results of this paper:
the two sequential LDTs with the TFs ∗

1ϕυ,0[z; ∗λo − 1,µo; κ] and 1ϕυ,0[z; 1 − ∗λo,µo; κ]
accordingly decrease by 2 the ExpDiff ∗λo > 2 for the pole of the HRef CSLE at the origin
while keeping two other parameters µo and κ unchanged. □

It should be stressed that Theorem 4 fails if the ExpDiff for the pole of the HRef CSLE
at the origin lies between 0 and 2. We shall come back to the discussion of this issue in
Section 6.

6. Breakup of SUSY Rules for Radial Potential with Centrifugal Barrier in LC Range

As pointed out at the end of Section 4, the solution (92) is not the PFS of the cor-
responding RCSLE (35) near the origin if λo < 2. This is the direct consequence of the
fact that one of the two sequential LDTs necessarily converts the given LC region of the
given RCSLE into the LC region of the transformed RCSLE if both TFs are represented by
non-principal solutions near the origin.

Let us start from the instance 1 < λo< 2. Under this restriction, the LDT of JRef CSLE
(10) with the TF 1ϕυ,0[z; λo,µo; κ] places the given spectral problem into the LC region of
the HRef CSLE (35) with the ExpDiff of our interest, ∗λo = λo − 1, lying between 0 and 1
while the second LDT with the TF ∗

1ϕυ,0[z; 2 − λo,µo;κ] keeps this ExpDiff within the LC
region, changing its original value λo for 2 − λo, with the absolute value smaller than 1. As
proven in [53], the LDTs of such a kind result in the violation of the conventional rules of
SUSY quantum mechanics. On the contrary, the DTs using the PFSs as their TFs always
convert the LC region outside of the LC region of the transformed CSLE.

If λo lies in the LC range of the JRef CSLE (10), i.e., if 0 < λo < 1, then the LDT with the
TF 1ϕυ,0[z; λo,µo; κ] keeps the ExpDiff within the LC region of the HRef CSLE, ∗λo = 1− λo,
while the second LDT with the TF ∗

1ϕυ,0[z; λo,µo; κ] converts the latter region into the LC
region of the JRef CSLE (10), bringing the ExpDiff back to its original value λo < 1. Each
LDT results in the violation of the conventional rules of SUSY quantum mechanics.

In particular, the solutions (92) at the energies ε = εcn(λo,µo; κ),
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In this case, the LDT with the TF ∗

1ϕυ,0[z; ∗λo − 1,µo; κ] places the given spectral problem
into the LC region of the JRef CSLE (10), 0 < λo < 1, and the next LDT with the TF

1ϕυ,0[z;−λo,µo; κ] keeps the CSLE within the LC region.
If 1 < λo < 2, then the ExpDiff ∗λo = λo − 1 of the HRef CSLE obtained from the

JRef CSLE by the LDT with the TF 1ϕυ,0[z;−λo,µo; κ] lies within its LC range: 0 < ∗λo < 1.
However, it remains unclear whether there exists any LDT which would place the given
spectral problem into the LC region of the JRef CSLE.

7. Discussion

Before proceeding to the examination of the presented results, let us remind the
reader how our advancements [53] in the singular Sturm–Liouville theory are related to
the renowned recipes of SUSY quantum mechanics. First, the gauge transformation
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termed in [53] as the ‘algebraic’ Schrödinger equation. Note that both the leading coefficient
function and weight for this SLE are represented by the square roots of positive rational
functions, whereas the rational function

V [z; λo,µo; κ] = − 1 ρ
→

−1[z; κ] Io[z; λo,µo] − 1/2Schw
{

1 ρ
→

−1/2[z; κ]
}

(115)

coincides with the quantum-mechanical potential expressed in terms of the variable z, with
the change in variable r[z] defined by the ODE

dr
dz

=

√
κ+ (1 − κ)/z

2(1 − z)
(116)

on the interval [0, 1) with the boundary condition r[0] = 0. The so-called [53] ‘Schwarzian’

Schw{f[z]} = f[z]
••
f [z]− 1/2(

•
f[z])

2
(117)

turns into the conventional Schwarzian derivative [41] if we set

f[z] = 1 ρ
→

−1/2[z; κ]. (118)

It has been shown in [33] that the Schwarzian (118) for the density function (9) has the
following rational form:

Schw
{

1 ρ
→

−1/2(z; κ)
}

= − 3(1 − z)2

2z(κz + 1 − κ)
− 2

κz + 1 − κ
+

2κ (1 − z)

(κz + 1 − κ)2

− κ (1 − z)2

2(κz + 1 − κ)2 − 5κ(1 − κ) (1 − z)2

2(κz + 1 − κ)3

(119)

As outlined in Section 5, the LDT of the generic CSLE with a TF ϕτ [z; λo,µo; κ] is
defined by us in such a way that the DT with the TF
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(0, 1) which results in the radial Schrödinger equation. Alternatively, this transformation 

(120)

converts the potential (116) into the Liouville potential of the transformed CSLE:

V [z; λo,µo; κ|τ] = − 1 ρ
→

−1[z; κ] Io[z; λo,µo|τ] − 1/2Schw
{

1 ρ
→

−1/2[z; κ]
}

. (121)

This trivial interrelationship between the two techniques allows one to easily imple-
ment the new mathematical scheme in quantum-mechanical applications when necessary.

In this paper, we focused solely on the Liouville transformation on the finite interval
(0, 1) which results in the radial Schrödinger equation. Alternatively, this transformation
can be performed on the infinite interval (−∞, 0) or (1, ∞) which results in the Schrödinger
equation on the line. The corresponding change in variable x[z] is obtained by integrating
the ODE

dx
dz

=

√
|κ+ (1 − κ)/z|

2|z − 1| (122)

either from −∞ to 0 or from 1 to ∞. It directly follows from the arguments presented in
Section 3 that the resultant Liouville potentials on the line must be double-step shape-
invariant.

Note that the reciprocal transformation

z
˜
(x) = z−1(x) (123)
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satisfies the ODE

dx
dz

˜

= − 1
z2

dx
dz

=

√
κ+ (1 − κ)z

˜

2z
˜
(1 − z

˜
)

(0 < z
˜
< 1) (124)

associated with the LTP density function

1ρ
˜
(z

˜
; κ) =

κ+ (1 − κ)z
˜

4z
˜
2(1 − z

˜
)2 > 0 (0 < z

˜
< 1) (125)

if 0 < κ < 1. It can be easily verified that one comes to a similar LTP density function

1ρ
˜
(z

˜
; κ) =

1 − κ− z
˜

4z
˜
2(1 − z

˜
)2 > 0 (0 < z

˜
< 1) (126)

by using the variable

z
˜
(x) =

z(x)
z(x)− 1

(127)

if κ < 0. We infer that the LTP potential on the line [13] must be also double-step shape-
invariant regardless of the position of the zero of the first-degree polynomial in the numer-
ator of the density function (126) or (127).

The very important element of our approach is the concept of the ‘prime’ SLE chosen
in such a way that the two ChExps for the poles at the endpoints differ only by sign. As
a result, the energy spectrum of the given Sturm–Liouville problem can be obtained by
solving the prime SLE under the DBCs. This in turn allows one to take advantage of
the rigorous theorems proven in [55] for eigenfunctions of the generic SLE solved under
the DBCs.

It has been explicitly demonstrated that the JRef CSLE in the particular case of the
density function with the simple pole at the origin has two pairs of quasi-rational solutions
such that their analytical continuations do not have zeros at any regular point of the
complex plane. It is essential that the absolute values of ChExps for the pole at the origin
coincide for all four ‘basic’ solutions which can be thereby grouped into the pairs via
the requirement that the paired solutions share the same characteristic exponent for the
mentioned singular endpoint. Each pair of the basic solutions was then used as seed
functions for the second-order DCT on the positive semi-axis. It is proven that both
transformations simply shift by 2 the ExpDiff for the pole of the CSLE at the origin while
keeping two other parameters unchanged.

In Section 5, we decomposed the second-order DCT into two sequential DTs. The two
separate Liouville transformations on the finite interval (0, 1) and on the infinite interval (1,
inf) then result in the supplementary pair of double-step shape-invariant potentials defined
on the positive semi-axis and on the real axis, respectively, and solvable by polynomial
solutions of the Heun equation.

In theory, the quantization can be also performed on the infinite interval (−∞, zT)
and on the finite interval [zT, 0). In this sense, the classification of the Lemieux–Bose
potentials suggested in [37] is inconclusive. It is not sufficient to simply specify the order
of the TP zeros—one must also indicate which poles are selected as the endpoints for the
quantization interval.

In this paper, we focused mostly on the HRef CSLEs associated with the ‘radial’
CGK potential and its ‘surviving’ SUSY sibling exactly solvable by polynomial solutions
of the Heun equation. (Remember that CGK potential [2] generally has the three SUSY
siblings [3–5], but the two pairs of these sibling potentials merge into the pair of the double-
step shape-invariant potentials in the limiting case of the TP vanishing at the origin.) One
can extend the arguments presented in Section 5 to prove the double-step shape invariance
of the CGK potential in the LTP limit and its (‘surviving’) shape-invariant SUSY sibling also
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exactly solvable by polynomial solutions of the Heun equation (regardless of the position
of the TP zero outside the interval [0, 1]).

Our analysis [53] of the solutions of two prime SLEs related by an LDT allowed the
author to conclude that conventional rules of SUSY quantum mechanics fail in the LC
regions of the corresponding Liouville potentials iff the DLT in question converts one region
into the other (see [8,54] for some examples). In particular, this happens if the ExpDiff
for the poles of the JRef CSLE (10) or the two HRef CSLEs (35) at the common singular
endpoint z = 0 is smaller than 2 and, as a result, at least one of the sequential LDTs turns the
centrifugal barrier of the radial rational potential into the infinitely deep well. If the second
DT turns the well back into the centrifugal barrier, then the barrier height is necessarily
within the LC range.

8. Conclusions

As stressed at the end of Section 3, the major results of this study are based on Theorem
2 asserting that the two second-order DCTs under consideration preserve the form of the
CSLE, only changing the ExpDiff for its pole at the origin (putting aside the anomalous
case mentioned in the theorem). It is essential that the derivation of the core Formula (48)
was performed using only logarithmic derivatives of the rational density function (9), not
the derivative of its square root as in [33]. As a result, the theorem is automatically applied
to all three quantization intervals (−∞, 0), (0, 1), and (1, ∞). The Liouville transformations
performed on these intervals then lead to the three different quantum-mechanical potentials
shape-invariant under the DCTs in question.

As the direct corollary of Theorem 2, we conclude that the mentioned second-order
DCTs generate the first-order differential expressions in the space of hypergeometric func-
tions after the CWs [49] are replaced by the KDs [51]. Using the conventional contiguous
relations for hypergeometric series, we explicitly confirmed the predicted differential
equations for the PFSs near the origin.

The mentioned anomalous case presents a remarkable example of the breakup of the
conventional rules of SUSY quantum mechanics for DCTs between the LP and LC regions.
The source of this anomaly was explained by decomposing the corresponding second-order
DCT into the two sequential LDTs and demonstrating that the first LDT places the ExpDiff
into the LC range while the second LDT keeps its value within the same range. As it has
been proven in [53], the LDT keeping the given spectral problem within the LC region
necessarily violates the conventional SUSY rules.

This paper also has much more general implications than the brief outline of its results
presented above. It presents a very specific illustration of the recently advanced SUSY
theory of the so-called [4] ‘Gauss-reference’ (GRef) potentials representing the Liouville
potentials for either two Fuchsian RCSLEs with three second-order poles (including infinity)
or the confluent RCSLE with a single pole in the finite plane (commonly placed at the
origin). We refer to these three Liouville potentials [1,43] as ‘Jacobi-reference’ (JRef), ‘Routh-
reference’ (RRef) and ‘Laguerre-reference’ (LRef) CSLE, where the terms ‘JRef’ and ‘LRef’
have a slightly different meaning compared with their simplistic definition in the Introduc-
tion. Namely, we refer to the RCSLE as ‘JRef’, ‘RRef’ or ‘LRef’ if it has q-RSs composed of
(‘generalized’ [58]) Jacobi, Routh [59–62], or (‘generalized’ [63]) Laguerre polynomials. The
difference between the two definitions comes from the fact that the RRef CSLE is quantized
in terms of finite orthogonal sequences of Romanovski/pseudo-Jacobi [64–66] polynomials
(‘Romanovski–Routh’ [60–62] polynomials in our terms), while the eigenfunctions of the
JRef and LRef CSLEs are composed of infinite sequences of classical Jacobi and classical
Laguerre polynomials (with the polynomial indices generally dependent on the polynomial
degrees in all the three cases).

From our perspective, the concept of the LDTs advanced in [4,53,61,62] provides the
rigorous mathematical grounds for SUSY quantum mechanics of the rational potentials
under consideration. In [39], we showed that the GRef Liouville potentials are shape-
invariant in Gendenshtein’s sense [6] iff the corresponding RCSLEs preserve their form
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under the LDTs using the basic solutions as the TFs. In this paper, we extend the concept of
form-invariant RCSLEs to the JRef CSLE (10) with the density function (9). As mentioned
in the previous section, the Liouville transformation can be independently performed on
the three distinguished quantization intervals (0, 1), (−∞, 0), and (1, ∞), which brings us
to the three Liouville potentials: the radial potential discussed here and two branches of
the LTP potential on the line which turned out to be shape-invariant under the action of
the second-order DCTs using the pairs of the basic solutions as the seed functions. The
only effect of these DCTs on the CSLE under consideration is that they shift by 2 the
translational shape-invariance parameter represented by the ExpDiff for the pole of the
CSLE at the origin.

As discussed in [4,53], a similar technique can be advanced for the rational SUSY
partners of the LRef potentials [1,67]. By analogy with the three families of the HRef
potentials mentioned in the Introduction, there are three families of their confluent counter-
parts (c-HRef potentials) obtained by the ‘basic’ LDTs of the three LRef potentials:

(i) Radial LRef potential [28,29,54,68];
(ii) Confluent LTP potential with the parabolic barrier at infinity [67];
(iii) DRtTP LRef potential on the line [69] transformable to its rational form by the Lambert

W-function [70].

Again, we selected the latter potentials via the requirement that the corresponding TP
has a single zero outside the interval [0, 1]. Each family of the c-HRef potentials constructed
in such a way represents conditionally exactly solvable reductions of the confluent Lemieux–
Bose potentials [38,71,72] with the eigenfunctions expressible in terms of the polynomial
solutions of the confluent Heun equation.

By analogy with the two double-step form-invariant JRef potentials discussed here, we
expect that both the radial LRef potential and parabolic-barrier potential well are double-
step shape-invariant under two sequential LDTs with the ‘basic’ TFs (i.e., with no zeros at
the regular points after being analytically continued into the complex plane).

One of our top priorities will be to re-examine the latest study by Lévai [73] on the
solvable-by-polynomials potentials of the confluent Heun class [25], keeping in mind the
progress achieved in our recent studies [4,53,54,67,74] not mentioned in the paper.

We hope that the presented sketch of possible extensions of our analysis of the exactly
solvable Fuchsian SLEs to their confluent counterparts helps the reader to realize the full
might and comprehensiveness of our approach to the SUSY theory of rational potentials.
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ExpDiff exponent difference
FS Frobenius solution
HRe Heun-reference
JRef Jacobi-reference
JS Jacobi-seed
KD Krein determinant
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LDT Liouville–Darboux transformation
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LRef Laguerre-reference
PFS principal Frobenius solution
q-RS quasi-rational solution
RCSLE rational CSLE
RRef Routh-reference
TF transformation function
TP tangent polynomial
SUSY supersymmetric
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