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Abstract: Unit distributions, exhibiting inherent symmetrical properties, have been extensively stud-
ied across various fields. A significant challenge in these studies, particularly evident in parameter
estimations, is the existence and uniqueness of estimators. Often, it is challenging to demonstrate
the existence of a unique estimator. The major issue with maximum likelihood and other estimator-
finding methods that use iterative methods is that they need an initial value to reach the solution.
This dependency on initial values can lead to local extremes that fail to represent the global ex-
tremities, highlighting a lack of symmetry in solution robustness. This study applies a very simple,
and unique, estimation method for unit Weibull and unit Burr XII distributions that both attain the
global maximum value. Therefore, we can conclude that the findings from the obtained propositions
demonstrate that both the maximum likelihood and graphical methods are symmetrically similar. In
addition, three real-world data applications are made to show that the method works efficiently.

Keywords: unitary distribution; graphical method; Cauchy–Schwarz inequality; simulation; data analysis

1. Introduction

Various unit distributions have been applied to model real-world data, specifically
in the unit interval, such as percentages and ratios across multiple disciplines, including
biological research, mortality and recovery statistics, economics, health, risk assessments,
and meteorology. The beta and Kumaraswamy distributions often come to mind when
modeling and analyzing data from these areas (see [1,2]). Nevertheless, these traditional
models might not always suffice, leading to significant challenges in precise data analysis.
This underscores the increasing focus on unitary model studies found in the academic
literature. Typically, well-known continuous distributions are modified to create unit
distributions. The benefit of these unit distributions lies in their ability to enhance the
flexibility of the original distribution across the unit interval without introducing additional
parameters. For this purpose, many proposed unit distributions, such as unit gamma [3],
log-xgamma [4], unit inverse Gaussian [5], unit Gompertz [6], unit Birnbaum–Saunders [7],
unit half-normal [8], unit exponential probability [9], and unit upper truncated Weibull [10],
have been proposed recently in the literature. In these studies, the performance of the unit
distributions is examined based on parameter estimation and practical data applications.
However, most importantly, the existence and uniqueness of the estimators is a major issue
in these studies based on parameter estimations using mathematical analysis techniques,
because a local or global maximum value can be discovered dependent on the initial value
in iterative approaches, such as Newton–Raphson used for parameter estimations.
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The maximum likelihood (ML) method is known to perform better in parameter
estimation compared to other estimation methods (e.g., method of moments and least
squares). The literature has addressed the existence and uniqueness of ML estimators in
complete samples (refer to [11,12]). Initially, the existence and uniqueness of ML estimators
for the Weibull distribution in both complete and censored samples were investigated
by Balakrishnan and Kateri [13]. The existence and uniqueness of the ML parameter
estimators for the general class of exponential distributions were the main topics of Ghitany
et al. [14]. Nagatsuka and Balakrishnan [15] analyzed the existence and uniqueness of ML
estimation for a three-parameter Weibull distribution, specifically in Type II right-censored
samples. The Birnbaum–Saunders distribution’s ML estimators for Type I, Type II, and
hybrid censored samples were thoroughly examined by Balakrishnan and Zhu [16].

The ML estimators of the model parameters are obtained by solving likelihood equa-
tions. The likelihood equations cannot be solved generally. In this case, some numerical
(iterative) methods, such as Newton–Raphson, should be applied to obtain ML estimators.
The numerical methods have some difficulties in understanding the structure of equa-
tions. That is, the numerical methods do not give any information about the existence and
uniqueness of the likelihood equations. However, the graphical method can be helpful
to overcome this problem. Motivated by the graphical method studied by Balakrishnan
and Kateri [13], we study the existence and uniqueness of ML estimators for the unit
Weibull and unit Burr XII distributions. Through mathematical analysis, we investigate
the conditions under which these estimators exist and are unique. Indeed, the graphical
method plays a significant role in determining the ML estimator of the shape parameter
for the mentioned distributions. Additionally, a numerical analysis was conducted to
illustrate the existence, uniqueness, and outcomes of ML estimators. This approach not
only ensures symmetry with analytical methods but also enhances the reliability of the
findings. Furthermore, this work is the first to apply this method to unit distributions.

The article’s remaining sections are arranged as follows: In Sections 2 and 3, parameter
estimation is obtained for the unit Weibull and unit Burr XII using the ML and graphical
methods. Furthermore, mathematical analysis is utilized in the proofs of obtained proposi-
tions for both methods. Section 4 presents the performances and iteration times (in seconds)
of the graphical method compared to the ML method through a Monte Carlo simulation
study. Section 5 demonstrates the uniqueness of the ML on three real-world datasets using
the graphical method. Section 6 summarizes the paper and highlights the obtained results.

2. Estimation of Parameters for the Unit Weibull Distribution
2.1. The Maximum Likelihood Method

Recently, Mazucheli et al. [17] introduced a probability distribution known as the unit
Weibull (UW) distribution, which is supported on the unit interval. The UW distribution’s
probability density function (pdf) and cumulative distribution function (cdf) are provided,
respectively, by

F(x; α, β) = exp
[
(−α(− log(x))β

]
, (1)

f (x; α, β) =
1
x

αβ(− log(x))β−1 exp
[
(−α(− log(x))β

]
, (2)

0 < x < 1, α > 0, β > 0, where α and β are the scale and shape parameters, respectively.
Consider n independent and identically random variables (X1, . . . , Xn) from the UW distri-
bution, with x1, . . . , xn representing their observations. Then, thanks to Equation (2), the
corresponding log-likelihood function is obtained as

ℓ(α, β) = n log(α) + n log(β)−
n

∑
i=1

log(xi) + (β − 1)
n

∑
i=1

log(− log(xi))− α
n

∑
i=1

(− log(xi))
β.
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For the complete sample case, the score equations are

∂ℓ(α, β)

∂α
=

n
α
−

n

∑
i=1

(− log(xi))
β, (3)

and

∂ℓ(α, β)

∂β
=

n
β
+

n

∑
i=1

log(− log(xi))− α
n

∑
i=1

(− log(xi))
β log(− log(xi)). (4)

The parameters α and β can be estimated by numerically solving Equations (3) and (4).
These equations require a numerical method for their vectorial solution. For example, the
Newton–Raphson method can be utilized via the “nlm package” in R programming to
drive the ML estimators. Considering the other parameters are known, we concentrate on
the presence and uniqueness of each ML estimator of the UW distribution parameters in
the following results; for more information, refer to Popović et al. [18].

Proposition 1. From Equation (3), let f1(α, β) = ∂ℓ(α, β)/∂α. Then, there exists a solution to
solve f1(α, β) = 0 for α ∈ (0, ∞), and the solution is unique.

Proof. We have

f1(α, β) =
n
α
−

n

∑
i=1

(− log(xi))
β.

The limiting values of f1(α, β) as α → 0 and α → ∞ are attained in the manner
described as follows: limα→0 f1(α, β) = ∞ and limα→∞ f1(α, β) = −∞ < 0. Consequently,
at least one root exists, say α̂ ∈ (0, ∞). To illustrate the uniqueness, we must demonstrate
that ∂ f1(α, β)/∂α < 0; that is, ∂ f1(α, β)/∂α = −n/α2 < 0. Because of this, there exists a
solution for f1(α, β) = 0, and the root α̂ is unique.

Proposition 2. From Equation (4), let f2(α, β) = ∂ℓ(α, β)/∂β and S1 = − n
β2 − α ∑n

i=1(− log

(xi))
β log(− log(xi))

2. Consequently, there exists a solution to f2(α, β) = 0 for β ∈ (0, ∞), and
the solution is unique when x > 1/e.

Proof. We have

f2(α, β) =
n
β
+

n

∑
i=1

log(− log(xi))− α
n

∑
i=1

(− log(xi))
β log(− log(xi)).

The limiting values of f2(α, β) as β → 0 and β → ∞ are obtained as follows: lim
β→0 f2(α, β) = ∞ and lim β→∞ f2(α, β) = log(− log(x)) < 0 for x > 1/e. Consequently, at
least one root exists, say β̂ ∈ (0, ∞). To illustrate the uniqueness, we must demonstrate that
∂ f2(α, β)/∂β < 0; that is,

− n
β2 − α

n

∑
i=1

>0︷ ︸︸ ︷
(− log(xi))

β

>0︷ ︸︸ ︷
log(− log(xi))

2 < 0,

hence, S1 < 0. For that reason, there exists a solution for f2(α, β) = 0, and the root β̂ is
unique.

2.2. The Graphical Method

The numerical methods do not give any information about the existence and unique-
ness of the likelihood equations. However, the graphical method can be helpful to overcome
this problem. The graphical method studied by Balakrishnan and Kateri [13] is used to
obtain ML estimators and their existing uniqueness for the UW distribution. However,



Symmetry 2024, 16, 610 4 of 17

since there is uncertainty about the uniqueness of this solution, the estimation of the α
parameter (α̂) with the help of Equation (3) is given below depending on the β parameter:

α̂ =
n

∑n
i=1(− log(xi))

β
(5)

and if Equation (5) is substituted in Equation (4), the following Equation (6) is obtained:

n
β
−
(

n

∑n
i=1(− log(xi))

β

)
n

∑
i=1

(− log(xi))
β log(− log(xi)) +

n

∑
i=1

log(− log(xi)) = 0. (6)

If Equation (6) is rearranged, we obtain

1
β
=

(
1

∑n
i=1(− log(xi))

β

)
n

∑
i=1

(− log(xi))
β log(− log(xi))−

(
1
n

) n

∑
i=1

log(− log(xi)), (7)

in which the left side 1
β is a decreasing function of β. Accordingly, denoting the right side

must be an increasing function of β. The first derivative of Equation (7) with respect to β is
as follows:

G(β, x) =
∑n

i=1(− log(xi))
β ∑n

i=1(− log(xi))
β log(− log(xi))

2

[
∑n

i=1(− log(xi))
β
]2 (8)

−
[
∑n

i=1(− log(xi))
β log(− log(xi))

2]2
[
∑n

i=1(− log(xi))
β
]2 .

We indicate that G(β, x) is greater than zero for a specific sample x. G(β, x) is a monotone
increasing function of β and approaches a finite, positive limit as β → ∞. Since 1

β is strictly

decreasing with the right limit +∞ at 0, it follows that the plots of 1
β and G(β, x) will

intersect exactly once, providing the ML estimate of β. It is evident that the denominator
of the G(β, x) is greater than zero. G∗(β; x) is the equivalent of demonstrating that the
numerator of G(β, x) is greater than zero, where

G∗(β; x) =
n

∑
i=1

(− log(xi))
β

n

∑
i=1

(− log(xi))
β log− log(xi))

2 (9)

−
[

n

∑
i=1

(− log(xi))
β log(− log(xi))

2

]2

.

Setting αi = (− log((xi)))
β
2 and bi =

((
− log(xi))

β log(− log(xi)
)) β

2 , i = 1, . . . , n, hence,
Equation (9) becomes

G∗(β; y) =
n

∑
i=1

α2
i

n

∑
i=1

b2
i −

(
n

∑
i=1

αibi

)2

and the necessary condition that G(β; y) is a monotone growing function of β is established
by the Cauchy–Schwarz inequality, which implies G∗(β; y) ≥ 0. It is important to note that
there is a finite upper bound for G(β; y), with y = log(x) transformation, namely

G(β; y) =
∑n

i=1 yβ
i ∑n

i=1 yi
β log(yi)

2 −
[
∑n

i=1(yi
β log(yi)

2]2
[
∑n

i=1 yβ
i

]2

and

lim
β→∞

G(β; y) = log(y(n))−
1
n

n

∑
i=1

log(y(i)) =
1
n

n−1

∑
i=1

log

(
(y(n))
y(i)

)
> 0.
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Thus, a plot of the 1
β and the G(β, x) provides an easy graphical way of determining the

estimator of the shape parameter β.

3. Estimation of Parameters for the Unit Burr XII Distribution
3.1. The Maximum Likelihood Method

In this subsection, let us recall a probability distribution called the unit Burr XII (UB)
distribution proposed by Korkmaz et al. [19]. The cdf and pdf of the UB distribution are
given, respectively, by

F(x, α, β) =
(

1 + (− log(x))β
)−α

(10)

and
f (x, α, β) =

αβ

x
(− log(x))β−1(1 +

(
− log(x))β

)−α−1
, (11)

where x ∈ (0, 1) and α, β > 0 are the shape parameters. Let X1,X2,...,Xn represent a size-n
random sample drawn from the UB distribution with observed values x1,x2, . . . , xn. Next,
the log-likelihood function is ascertained using the formula

ℓ(α, β) = n log(α) + n log(β)−
n

∑
i=1

log(xi) + (β − 1)
n

∑
i=1

log(− log(xi))

−(α + 1)
n

∑
i=1

log(1 + (− log(xi))
β).

For the complete sample case, the score equations are

∂ℓ(α, β)

∂α
=

n
α
−

n

∑
i=1

log
(

1 + (− log(xi))
β
)
= 0, (12)

∂ℓ(α, β)

∂β
=

n
β
+

n

∑
i=1

log(− log(xi))− (α + 1)
n

∑
i=1

log(− log(xi))(− log(xi))
β

1 + (− log(xi))
β

= 0. (13)

The parameters α and β can be estimated through numerical solutions of Equations (12)
and (13). A numerical solution is required for the vectorial solution of the two equations
above. For instance, the nlm package in R programming can be used to apply the Newton–
Raphson technique to obtain the ML estimators. In the next results, considering that the
other parameters are known, we concentrate on the existence and uniqueness of each ML
estimator of the UB distribution parameters; for more information on this technique, see
the approach of Popović et al. [18].

Proposition 3. From Equation (12), let f3(α, β) = ∂ℓ(α, β)/∂α. Then, there exists a solution for
f3(α, β) = 0 for α ∈ (0, ∞), and the solution is unique.

Proof. We have

f3(α, β) =
n
α
−

n

∑
i=1

log
(

1 + (− log(xi))
β
)

.

The limiting values of f3(α, β) as α → 0 and α → ∞ are obtained as follows: limα→0 f3

(α, β) = ∞ and limα→∞ f3(α, β) = − log
(

1 + (− log(x))β
)
< 0. Consequently, at least one

root exists, say α̂ ∈ (0, ∞). In order to establish the uniqueness, we must demonstrate
that ∂ f3(α, β)/∂α < 0; that is, ∂ f3(α, β)/∂α = −n/α2 < 0. Therefore, there is a solution for
f3(α, β) = 0, and the root α̂ is unique.
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Proposition 4. From Equation (13), let f4(α, β) = ∂ℓ(α, β)/∂β. Then, there is a solution to
f4(α, β) = 0 for β ∈ (0, ∞), and the unique solution arises when x > 1/e and S2 < 0, where

S2 = − n
β2 − (α + 1)

∑n
i=1 log(− log(xi))

2(− log(xi))
β

(
1 + (− log(xi))

β
)2 .

Proof. We have

f4(α, β) =
n
β
+

n

∑
i=1

log(− log(xi))− (α + 1)
n

∑
i=1

log(− log(xi))(− log(xi))
β

1 + (− log(xi))
β

.

The limiting values of f4(α, β) as β → 0 and β → ∞ are obtained as follows: limβ→0 f4(α, β) = ∞
and limβ→∞ f4(α, β) = log(− log(x)) < 0 for x > 1/e . Thus, there exists at least one root,
say β̂ ∈ (0, ∞). To illustrate the uniqueness, we need to show that ∂ f3(α, β)/∂β < 0; that is,

− n
β2 − (α + 1)

∑n
i=1

>0︷ ︸︸ ︷
log(− log(xi))

2

>0︷ ︸︸ ︷
(− log(xi))

β

(
1 + (− log(xi))

β
)2

︸ ︷︷ ︸
>0

< 0,

hence, S2 < 0. Therefore, there exists a solution for f4(α, β) = 0, and the root β̂ is
unique.

3.2. The Graphical Method

In this subsection, the graphical method is applied to the UB distribution. Let n
independent and identically random variables X1,X2,...,Xn from the UB be represented by
the observations x1,x2,...,xn. However, since there is uncertainty about the uniqueness of
this solution, the estimation of the α parameter (α̂) with the help of Equation (12) is given
below depending on the β parameter:

α̂ =
n

∑n
i=1 log

(
1 + (− log(xi))

β
) , (14)

and if Equation (14) is substituted in Equation (15), the following equation is obtained:

n
β
=


 n

∑n
i=1 log

(
1 + (− log(xi))

β
) + 1




n

∑
i=1

log(− log(xi))(− log(xi))
β

1 + (− log(xi))
β

−
n

∑
i=1

log(− log(xi)),

where the expression above can be rearranged as follows:

1
β
=


 n

∑n
i=1 log

(
1 + (− log(xi))

β
) + 1




n

∑
i=1

log(− log(xi))(− log(xi))
β

1 + (− log(xi))
β

(
1
n

)
−

n

∑
i=1

log(− log(xi))

(
1
n

)
. (15)

Thus, a plot of the 1
β and the Right-Hand Side (RHS) of Equation (15) provides a straight-

forward graphical approach to figure out the ML estimator of the shape parameter β. As
we have shown in the UB distribution that the RHS of the Equation (15) function increases
depending on β, it can be proved using the Cauchy–Schwarz inequality.
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4. Simulation Study

For the simulation study, we generated 5000 samples from the UB and UW distribu-
tions with sample sizes of n = 50, 100, 200, 300, 500 and selected values of α = 0.5, 0.4, 3
and β = 0.5, 3, 2. The estimation performance was assessed using averages, incorporating
metrics such as Average Absolute Biases (ABBs), Mean Squared Errors (MSEs), and Mean
Relative Errors (MREs) for all methods. These criteria are computed as follows:

ÂBBδ =
1

5000

5000

∑
i=1

∣∣∣δ̂1 − δ
∣∣∣,

M̂SEδ =
1

5000

5000

∑
i=1

(
δ̂1 − δ

)2
,

M̂REδ =
1

5000

5000

∑
i=1

∣∣∣δ̂1 − δ
∣∣∣

δ
.

where δ = (α, β) and δ̂ =
(

α̂, β̂
)

.
Tables 1–7 provide the parameter estimates and iteration times for the graphical and

ML methods for the simulation results. According to these results, as the sample size (n)
increases, in both approaches, values become closer to the nominal value. However, it
is observed that the graphical method has lower iteration times. Note that the previous
sections have established the uniqueness of the estimators produced by the graphical
technique.

Table 1. Average, MSE, ABB, and MRE values of the UW distribution for α = 0.5; β = 0.5.

Graphical Method Maximum Likelihood Method

β̂ α̂
Iteration

Times β̂ α̂
Iteration

Times

50 Average 0.5135 0.5020 3.2112 0.5009 0.5302 107.0762
MSE 0.0035 0.0093 0.0027 0.0090
ABB 0.0460 0.0766 0.0412 0.0727
MRE 0.0920 0.1531 0.0825 0.1454

100 Average 0.5077 0.5008 5.2085 0.5010 0.5144 126.5824
MSE 0.0017 0.0046 0.0015 0.0043
ABB 0.0323 0.0541 0.0306 0.0517
MRE 0.0646 0.1082 0.0611 0.1035

200 Average 0.5030 0.5002 10.0940 0.4939 0.5191 348.8838
MSE 0.0008 0.0022 0.0006 0.0022
ABB 0.0220 0.0376 0.0203 0.0364
MRE 0.0440 0.0752 0.0407 0.0727

300 Average 0.5024 0.5002 14.6583 0.4999 0.5080 390.4301
MSE 0.0005 0.0015 0.0005 0.0015
ABB 0.0181 0.0305 0.0182 0.0302
MRE 0.0361 0.0609 0.0363 0.0604

500 Average 0.5020 0.4998 24.1379 0.4997 0.5036 525.2444
MSE 0.0003 0.0009 0.0003 0.0008
ABB 0.0140 0.0241 0.0131 0.0230
MRE 0.0279 0.0482 0.0263 0.0460
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Table 2. Average, MSE, ABB, and MRE values of the UW distribution for α = 0.5; β = 3.

Graphical Method Maximum Likelihood Method

β̂ α̂
Iteration

Times β̂ α̂
Iteration

Times

50 Average 3.0870 0.5018 3.7160 3.1452 0.4867 182.0035
MSE 0.1298 0.0093 0.1347 0.8023
ABB 0.2793 0.0765 0.2799 0.0900
MRE 0.0931 0.1531 0.0933 0.1800

100 Average 3.0445 0.4995 6.3259 3.0936 0.4937 155.8538
MSE 0.0616 0.0045 0.0626 0.0044
ABB 0.1937 0.0530 0.1919 0.0521
MRE 0.0646 0.1060 0.0640 0.1043

200 Average 3.0277 0.4988 11.7208 3.0576 0.4986 369.6908
MSE 0.0295 0.0022 0.0276 0.0022
ABB 0.1353 0.0375 0.1304 0.0379
MRE 0.0451 0.0750 0.0435 0.0758

300 Average 3.0117 0.5005 17.6820 3.0634 0.4924 552.2836
MSE 0.0187 0.0015 0.0177 0.0013
ABB 0.1087 0.0306 0.1016 0.0286
MRE 0.0362 0.0612 0.0338 0.0572

500 Average 3.0073 0.5001 29.4930 3.0377 0.4970 624.4005
MSE 0.0111 0.0009 0.0109 0.0008
ABB 0.0840 0.0237 0.0812 0.0233
MRE 0.0280 0.0474 0.0271 0.0466

Table 3. Average, MSE, ABB, and MRE values of the UW distribution for α = 0.4; β = 2.

Graphical Method Maximum Likelihood Method

β̂ α̂
Iteration

Times β̂ α̂
Iteration

Times

50 Average 2.0554 0.4008 4.6646 2.0896 0.4012 50.2035
MSE 0.0605 0.0072 0.0618 0.0070
ABB 0.1904 0.0673 0.1905 0.0668
MRE 0.0952 0.1682 0.0952 0.1670

100 Average 2.0308 0.3978 6.0211 2.0652 0.3968 115.0413
MSE 0.0263 0.0034 0.0274 0.0032
ABB 0.1276 0.0465 0.1274 0.0450
MRE 0.0638 0.01163 0.0637 0.1125

200 Average 2.0165 0.3993 12.5732 2.0473 0.3945 204.3718
MSE 0.0129 0.0017 0.0133 0.0015
ABB 0.0904 0.0326 0.0895 0.0313
MRE 0.0452 0.0816 0.0448 0.0782

300 Average 2.0078 0.4011 16.8672 2.0275 0.3968 229.3947
MSE 0.0081 0.0011 0.0088 0.0010
ABB 0.0713 0.0270 0.0738 0.0250
MRE 0.0356 0.0675 0.0369 0.0625

500 Average 2.0067 0.3997 28.3637 2.0247 0.3972 529.7605
MSE 0.0050 0.0007 0.0048 0.0007
ABB 0.0563 0.0202 0.0539 0.0206
MRE 0.0281 0.0506 0.0269 0.0516
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Table 4. Average, MSE, ABB, and MRE values of the UW distribution for α = 3; β = 2.

Graphical Method Maximum Likelihood Method

β̂ α̂
Iteration

Times β̂ α̂
Iteration

Times

50 Average 2.0548 3.1486 3.5716 2.0547 3.1351 41.2599
MSE 0.0586 0.3397 0.0556 0.2858
ABB 0.1877 0.4279 0.1835 0.4079
MRE 0.0938 0.1426 0.0917 0.1360

100 Average 2.0262 3.0731 6.1976 2.0303 3.0847 63.1969
MSE 0.0258 0.1365 0.0263 0.1390
ABB 0.1258 0.2815 0.1282 0.2877
MRE 0.0629 0.0938 0.0641 0.0959

200 Average 2.0138 3.0361 11.2080 2.0135 3.0359 170.5127
MSE 0.0124 0.0632 0.0127 0.0628
ABB 0.0885 0.1972 0.0893 0.1964
MRE 0.0442 0.0657 0.0446 0.0655

300 Average 2.0097 3.0181 18.7684 2.0105 3.0278 205.8142
MSE 0.0084 0.0420 0.0083 0.0406
ABB 0.0726 0.1615 0.0722 0.1589
MRE 0.0363 0.0538 0.0361 0.0530

500 Average 2.0045 3.0143 26.8866 2.0068 3.0171 270.5770
MSE 0.0049 0.0241 0.0049 0.0229
ABB 0.0558 0.1220 0.0554 0.1194
MRE 0.0279 0.0407 0.0277 0.0398

Table 5. Average, MSE, ABB, and MRE values of the UB distribution for α = 0.5; β = 3.

Graphical Method Maximum Likelihood Method

β̂ α̂
Iteration

Times β̂ α̂
Iteration

Times

50 Average 3.1272 0.5038 4.1265 3.2115 0.5044 129.0187
MSE 0.3105 0.0098 0.3002 0.0096
ABB 0.4296 0.0782 0.4154 0.0778
MRE 0.1432 0.1564 0.1385 0.1555

100 Average 3.0753 0.5008 7.4095 3.1783 0.4960 209.9537
MSE 0.1493 0.0048 0.1366 0.0042
ABB 0.2994 0.0556 0.2782 0.0518
MRE 0.0690 0.0791 0.0673 0.0800

300 Average 3.0181 0.5014 20.2056 3.1192 0.4935 629.8633
MSE 0.0439 0.0015 0.0428 0.0013
ABB 0.1646 0.0311 0.1555 0.0291
MRE 0.0549 0.0622 0.0518 0.0582

500 Average 3.0150 0.5003 33.9075 3.1023 0.4922 1133.2000
MSE 0.0258 0.0009 0.0263 0.0008
ABB 0.1271 0.0243 0.1226 0.0227
MRE 0.0424 0.0487 0.0409 0.0453
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Table 6. Average, MSE, ABB, and MRE values of the UB distribution for α = 0.4, β = 2.

Graphical Method Maximum Likelihood Method

β̂ α̂
Iteration

Times β̂ α̂
Iteration

Times

50 Average 2.1342 0.4071 4.4509 2.2082 0.4074 123.8491
MSE 0.2193 0.0078 0.1906 0.0070
ABB 0.3377 0.0699 0.3246 0.0674
MRE 0.1689 0.1746 0.1623 0.1684

100 Average 2.0742 0.4081 8.4490 2.1618 0.3992 214.0975
MSE 0.0887 0.0038 0.0889 0.0028
ABB 0.2201 0.0484 0.2237 0.0429
MRE 0.1101 0.1212 0.1118 0.1072

200 Average 2.0424 0.4079 18.7761 2.1357 0.3971 690.8692
MSE 0.0374 0.0018 0.0434 0.0013
ABB 0.1499 0.0338 0.1544 0.0288
MRE 0.0750 0.0845 0.0772 0.0720

300 Average 2.0293 0.4086 34.5835 2.1195 0.3952 480.1750
MSE 0.0245 0.0013 0.0286 0.0008
ABB 0.1223 0.0284 0.1276 0.0223
MRE 0.0611 0.0710 0.0638 0.0557

500 Average 2.0255 0.4090 102.1389 2.0749 0.4021 815.1217
MSE 0.0149 0.0008 0.0152 0.0005
ABB 0.0958 0.0229 0.0933 0.0183
MRE 0.0479 0.0571 0.0467 0.0457

Table 7. Average, MSE, ABB, and MRE values of the UB distribution for α = 3; β = 2.

Graphical Method Maximum Likelihood Method

β̂ α̂
Iteration

times β̂ α̂
Iteration

Times

50 Average 2.0499 3.1036 4.8906 2.0570 3.1236 59.6729
MSE 0.0515 0.2519 0.0504 0.2507
ABB 0.1769 0.3807 0.1732 0.3782
MRE 0.0885 0.1269 0.0866 0.1264

100 Average 2.0255 3.0562 6.7617 2.0330 3.0705 40.9404
MSE 0.0241 0.1084 0.0238 0.1038
ABB 0.1225 0.2536 0.1209 0.2459
MRE 0.0613 0.0845 0.0604 0.0820

200 Average 2.0121 3.0232 12.8648 2.0210 3.0535 133.0177
MSE 0.0113 0.0516 0.0109 0.0472
ABB 0.0848 0.1776 0.0815 0.1680
MRE 0.0424 0.0592 0.0407 0.0560

300 Average 2.0094 3.0184 19.0574 2.0184 3.0418 246.6066
MSE 0.0074 0.0330 0.0076 0.0319
ABB 0.0688 0.1428 0.0681 0.1377
MRE 0.0344 0.0476 0.0341 0.0459

500 Average 2.0027 3.0118 30.6004 2.0111 3.0357 234.0810
MSE 0.0045 0.0202 0.0043 0.0181
ABB 0.0535 0.1131 0.0507 0.1042
MRE 0.0267 0.0377 0.0254 0.0347

5. Data Analysis

In this section, we examine three actual data examples to demonstrate how the ML
and graphical methods are put into practice. All computations made in this section were
performed using the R programming. The R codes for the UW distribution are provided
in Appendix A, which are used for the simulation study and data applications. To ensure
that the log-likelihood function behaves appropriately and achieves a clear optimum,
we produce plots showing the profiles of the log-likelihood (lk) function for both the
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UW and UB distributions using the maximum likelihood (ML) estimation method and
the considered graphical method (see Figures 1–6). The considered data examples are
mentioned in the following.

Example 1. In the first dataset, we consider the infection times of kidney dialysis patients as
described by Klein and Moeschberger [20]. We then normalize these data by dividing them by 30 to
scale them between 0 and 1, which are listed in Table 8.

Table 8. Times of infection.

0.083 0.083 0.117 0.117 0.117 0.150 0.183 0.217 0.217 0.25
0.250 0.250 0.250 0.283 0.317 0.350 0.383 0.417 0.417 0.45
0.483 0.483 0.717 0.717 0.750 0.750 0.850 0.917

The p-values for the UW and UB distributions are 0.7824 and 0.6971, respectively,
which show that both distributions have good fit values for this dataset. Moreover, the ML
estimates of (α̂, β̂) for the UW and UB distributions are (0.6125, 1.6990) and (1.1077, 2.0975),
respectively.

Figure 1. A fitted profile of the log-likelihood function obtained from the UW and UB distributions
for the ML estimators based on Example 1.

Example 2. The second dataset relates to the failure times of an airplane’s air conditioning system
as documented by Linhart and Zucchini [21]. To normalize these data, we divided the values by 265,
resulting in data that range from 0 to 1. These normalized values are presented in Table 9.
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Figure 2. RHS of Equation (7) vs. 1
β plot for UW and RHS of Equation (16) vs. 1

β plot for UB, in
Example 1.

Table 9. Times of infection.

0.0868 0.9849 0.3283 0.0264 0.4528 0.0528 0.2340 0.1774 0.8491
0.9283 0.0792 0.1585 0.0754 0.0188 0.0453 0.4528 0.0415 0.0113
0.2679 0.0415 0.0528 0.0415 0.0603 0.3396 0.0038 0.2679 0.0528
0.0604 0.1962 0.3585

The p-values for the UW and UB distributions are 0.3229 and 0.0979, respectively.
Since the p-values are greater than 0.05, the dataset fits both UW and UB distributions.
Furthermore, the ML estimates of (α̂, β̂) for the UW and UB distributions are (0.2786, 1.4563)
and (0.6897, 1.6794), respectively.

Figure 3. A fitted profile of the log-likelihood function obtained from the UW and UB distributions
for the ML estimators based on Example 2.

Figure 2. RHS of Equation (7) vs. 1
β plot for UW and RHS of Equation (15) vs. 1

β plot for UB, in
Example 1.

Table 9. Times of infection.

0.0868 0.9849 0.3283 0.0264 0.4528 0.0528 0.2340 0.1774 0.8491
0.9283 0.0792 0.1585 0.0754 0.0188 0.0453 0.4528 0.0415 0.0113
0.2679 0.0415 0.0528 0.0415 0.0603 0.3396 0.0038 0.2679 0.0528
0.0604 0.1962 0.3585

The p-values for the UW and UB distributions are 0.3229 and 0.0979, respectively.
Since the p-values are greater than 0.05, the dataset fits both UW and UB distributions.
Furthermore, the ML estimates of (α̂, β̂) for the UW and UB distributions are (0.2786, 1.4563)
and (0.6897, 1.6794), respectively.

Figure 3. A fitted profile of the log-likelihood function obtained from the UW and UB distributions
for the ML estimators based on Example 2.
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Example 3. The third dataset comes from the field of civil engineering and records the hailing times.
This dataset has previously been discussed by Kotz and Van Dorp [22]. Once again, we normalized
the data by dividing by 85, resulting in values that range between 0 and 1. These normalized values
are detailed in Table 10.

Table 10. The times that represent the hailing times.

0.320 0.340 0.350 0.350 0.360 0.360 0.390 0.415 0.430 0.440
0.440 0.440 0.454 0.460 0.470 0.470 0.473 0.475 0.479 0.480
0.480 0.482 0.490 0.495 0.510 0.510 0.515 0.520 0.520 0.530
0.540 0.540 0.540 0.540 0.540 0.560 0.560 0.570 0.570 0.570
0.580 0.580 0.580 0.580 0.590 0.590 0.590 0.590 0.590 0.590
0.590 0.590 0.590 0.590 0.600 0.600 0.600 0.600 0.600 0.600
0.600 0.600 0.620 0.630 0.640 0.650 0.650 0.650 0.660 0.670
0.680 0.680 0.690 0.700 0.700 0.700 0.710 0.730 0.740 0.750
0.790 0.800 0.820 0.850 0.860

The p-values for the UW and UB distributions are 0.2292 and 0.1401, respectively. Both
the UW and UB distributions are fitted by the dataset since the p-values are greater than
0.05. Also, the ML estimates of (α̂, β̂) for the UW and UB distributions are (3.5129, 2.9745)
and (4.8865, 3.3733), respectively.

Figures 2, 4, and 6 show that the curves of 1
β and RHS of Equations (7) and (16) are

decreasing and increasing, respectively, which adapts the theoretical investigations of the
graphical method of them. Furthermore, the intersection of both curves in the two plots of
all the mentioned figures gives the ML estimators of the shape parameter β for the UW and
UB, respectively, which is confirmed by the profiles of the log-likelihood in Figures 1, 3,
and 5 and also by their numerical ML estimates values.

Figure 4. RHS of Equation (7) vs. 1
β plot for UW and RHS of Equation (15) vs. 1

β plot for UB, in
Example 2.

Example 3. The third dataset comes from the field of civil engineering and records the hailing times.
This dataset has previously been discussed by Kotz and Van Dorp [22]. Once again, we normalized
the data by dividing by 85, resulting in values that range between 0 and 1. These normalized values
are detailed in Table 10.

Table 10. The times that represent the hailing times.

0.320 0.340 0.350 0.350 0.360 0.360 0.390 0.415 0.430 0.440
0.440 0.440 0.454 0.460 0.470 0.470 0.473 0.475 0.479 0.480
0.480 0.482 0.490 0.495 0.510 0.510 0.515 0.520 0.520 0.530
0.540 0.540 0.540 0.540 0.540 0.560 0.560 0.570 0.570 0.570
0.580 0.580 0.580 0.580 0.590 0.590 0.590 0.590 0.590 0.590
0.590 0.590 0.590 0.590 0.600 0.600 0.600 0.600 0.600 0.600
0.600 0.600 0.620 0.630 0.640 0.650 0.650 0.650 0.660 0.670
0.680 0.680 0.690 0.700 0.700 0.700 0.710 0.730 0.740 0.750
0.790 0.800 0.820 0.850 0.860

The p-values for the UW and UB distributions are 0.2292 and 0.1401, respectively. Both
the UW and UB distributions are fitted by the dataset since the p-values are greater than
0.05. Also, the ML estimates of (α̂, β̂) for the UW and UB distributions are (3.5129, 2.9745)
and (4.8865, 3.3733), respectively.

Figures 2, 4, and 6 show that the curves of 1
β and RHS of Equations (7) and (15) are

decreasing and increasing, respectively, which adapts the theoretical investigations of
the graphical method of them. Furthermore, the intersection of both curves in the two
plots of all the mentioned figures gives the ML estimators of the shape parameter β for
the UW and UB, respectively, which is confirmed by the profiles of the log-likelihood in
Figures 1, 3, and 5 and also by their numerical ML estimates values.
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Figure 5. A fitted profile of the log-likelihood function obtained from the UW and UB distributions
for the ML estimators based on Example 3.
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6. Conclusions

In this study, the uniqueness and existence of ML estimators for the UB and UW
distributions were investigated by analytical and graphical approaches. By employing
those approaches, reliance on the Newton–Raphson method for obtaining ML estimations
is feasible. Balakrishnan and Kateri [13] demonstrated the uniqueness and existence of ML
estimations for the Weibull distribution using the graphical method by utilizing the Cauchy–
Schwartz inequality. However, this method has not been previously studied for the UW and
UB distributions. Here, theoretical and applied studies have evidenced the uniqueness and
existence of ML estimations for the UW and UB distributions, with parameter estimations
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Example 3.

6. Conclusions

In this study, the uniqueness and existence of ML estimators for the UB and UW dis-
tributions were investigated by analytical and graphical approaches. By employing those
approaches, reliance on the Newton–Raphson method for obtaining ML estimations is feasible.
Balakrishnan and Kateri [13] demonstrated the uniqueness and existence of ML estimations
for the Weibull distribution using the graphical method by utilizing the Cauchy–Schwartz
inequality. However, this method has not been previously studied for the UW and UB distri-
butions. Here, theoretical and applied studies have evidenced the uniqueness and existence
of ML estimations for the UW and UB distributions, with parameter estimations obtained
through graphical methods shown to be unique across three real-life datasets. Furthermore,
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to verify the suitability of the log-likelihood function and confirm a precise optimum, cor-
responding profiles of the log-likelihood function for ML estimation methods for the UW
and UB distributions were depicted graphically. Lastly, a detailed simulation study was
conducted for the proposed graphical method and traditional ML methods for the UB and
UW distributions. In this study, the iteration times of the methods are provided. According to
these results, the graphical method achieves similar outcomes in a shorter period compared
to traditional methods. In a future study, we will investigate the efficiency of this graphical
method to some recent bounded distributions, including Kies families [23–25].
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Appendix A

Unit Weibull: Graphical Method
library(boot)
library(rootSolve)
n=50
x=NULL
alpha=0.4
beta=2
fullb=fullm=fullabb=fullmre=NULL
betamle=alphamle=NULL
ds=5000
baslangic <- Sys.time()
for (j in 1:ds)
cat("\14",j)
dev=F
while(dev==F) {
for(i in 1:n) {
u=runif(1)
x[i]=1/exp(exp(log(-log(u)/alpha)/beta)) }
modelm<-function(par) c(F1=((1/par[1])-((1/(sum((-log(x))^par[1])))*
sum(((-(log(x)))^
par[1])*log(-log(x)))-(1/n)*sum(log(-log(x))))))
ssm=try(multiroot(f = modelm, start =c(0.05)))
if (!is.character(ssm)) if (ssm$root[1]>0)dev=T
} betamle[j]=ssm$root[1] alphamle[j]=n/(sum(((-log(x))^ssm$root[1]))) } bitis<- Sys.time()
fark <- difftime(bitis, baslangic, units = "secs")
print(fark)
b1=mean(betamle)
b2=mean(alphamle)
m1=c(mean((betamle-beta)^2))
m2=c(mean((alphamle-alpha)^2))
abb1=c(mean(abs(betamle-beta)))
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abb2=c(mean(abs(alphamle-alpha)))
mre1=c(mean(abs(betamle-beta)/beta))
mre2=c(mean(abs(alphamle-alpha)/alpha))
fullb= rbind(fullb,n,b1,b2)
fullm= rbind(fullm,n,m1,m2)
fullabb= rbind(fullabb,n,abb1,abb2)
fullmre= rbind(fullmre,n,mre1,mre2)
print(fark)
fullb
fullm
fullabb
fullmre
“Maximum Likelihood Method”
alphamle=betamle=NULL
fullb=fullm=fullabb=fullmre=NULL
loglk=function(par){
t=0
beta=par[1]
alpha=par[2]
f=(1/x)*alpha*beta*(-log(x))^(beta-1)*exp(-alpha*(-
log(x))^beta)
t=t+sum(log(f))
return(-t)
}
for (j in 1:ds) { cat("\14",j) dev=F
while(dev==F) { for(i in 1:n) {
u=runif(1)
x[i]=1/exp(exp(log(-log(u)/alpha)/beta))
} aa=try(optim(c(beta,alpha),loglk, method = "CG", hessian = T),silent = T)
if (!is.character(aa))if (aa$par[1] >0& aa$par[2] >0)
dev=T
}
betamle[j]=aa$par[1]
alphamle[j]=aa$par[2]
} bitis <- Sys.time()
fark <- difftime(bitis, baslangic, units = "secs")
print(fark)
b1=mean(betamle)
b2=mean(alphamle)
m1=c(mean((betamle-beta)^2))
m2=c(mean((alphamle-alpha)^2))
abb1=c(mean(abs(betamle-beta)))
abb2=c(mean(abs(alphamle-alpha)))
mre1=c(mean(abs(betamle-beta)/beta))
mre2=c(mean(abs(alphamle-alpha)/alpha))
fullb= rbind(fullb,n,b1,b2)
fullm= rbind(fullm,n,m1,m2)
fullabb= rbind(fullabb,n,abb1,abb2)
fullmre= rbind(fullmre,n,mre1,mre2)
print(fark)
fullb
fullm)
fullabb
fullmre
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