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1. Introduction

The study of fixed points of mappings on complete metric spaces is a central topic in
nonlinear analysis, and it has been considered from various perspectives. Many researchers
have investigated the existence of fixed points of nonlinear mappings and their approx-
imation techniques. They adopt a subset of Hilbert and Banach spaces as the domain of
mappings. One of the most important results is Kirk’s fixed-point theorem for a nonex-
pansive mapping defined on a nonempty bounded closed convex subset of a reflexive
Banach space having the normal structure [1]. On the other hand, approximation schemes
of fixed points have also been actively studied. A nonlinear ergodic theorem by Baillon [2]
can be regarded as an approximation scheme of a fixed point of nonexpansive mapping.
The convergence of Mann’s type [3] iterative scheme to a fixed point of a nonexpansive
mapping was proved by Reich [4]. Wittmann [5] proved a strong convergence theorem of a
Halpern’s type [6] of iterative sequence in Hilbert spaces, and it was generalized to Banach
spaces by Shioji and Takahashi [7].

In 2004, Kirk [8] proved the following remarkable theorem, a milestone in the history
of fixed-point theory on geodesic spaces.

Theorem 1 (Kirk [8]). Let X be a Hadamard space and U a bounded open subset of X. Let
T : cl U → X be a nonexpansive mapping. Suppose that there exists p ∈ U such that x /∈
[p, Tx] \ {Tx} for every boundary point x of U. Then T has a fixed point.

This result is a fixed-point theorem for nonexpansive mapping on a complete geodesic
space. After this work, many researchers have studied fixed-point theory in geodesic
spaces. In particular, the techniques to approximate a fixed point of given nonexpansive or
other types of mappings have been investigated, and they obtained many valuable results.
Saejung [9] got the convergence theorem of the iterative sequence generated by the Halpern
scheme to the fixed point closest to a given anchor point. He, Fang, López, and Li [10]
showed a ∆-convergence theorem of the Mann type iterative sequence.

The shrinking projection method was first proposed by Takahashi, Takeuchi, and
Kubota [11]. There are many variations in projection methods, and it is one of the most
critical schemes among them. For the recent works, see [12,13], for instance. This method
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has also been studied in the setting of complete geodesic space, and several convergence
theorems were proved. Moreover, the following result was recently proved: a modified
version of the shrinking projection method in a Hadamard space.

Theorem 2 (Kimura [14]). Let X be a Hadamard space and suppose that a subset {z ∈ X |
d(u, z) ≤ d(v, z)} is convex for any u, v ∈ X. Let T : X → X a nonexpansive mapping with
Fix T ̸= ∅. Generate a sequence {xn} ⊂ X as follows: x1 ∈ X is given, C1 = X, and

Cn+1 = {z ∈ X | d(Txn, z) ≤ d(xn, z)} ∩ Cn,

xn+1 = PCn+1 xn

for n ∈ N. Then {xn} is ∆-convergent to x0 ∈ Fix T.

We will focus on this method in this study.
In a setting such as Banach or Hilbert spaces, some of approximate sequences men-

tioned above can be used to characterize the existence of a fixed point of a given mapping.
In particular, the boundedness of a generated sequence often guarantees the existence of a
fixed point; see [15] and references therein.

However, in a practical calculation, it is challenging to show the boundedness of the
sequence because we need to calculate infinitely many points to confirm it.

In this paper, we obtain an equivalent condition to the existence of a common fixed
point of a family of nonexpansive mappings defined on a Hadamard space by generating
an approximate sequence with an iterative process. Moreover, under the assumption that
the space is bounded, we show that the generating process of the sequence will stop in
finite steps if there is no common fixed point. We emphasize that judging the nonexistence
of fixed points in a finite time is a significant advantage. As an application of our results, we
also consider a convex minimization problem for a family of convex functions. The results
characterize the existence of a common minimizer. We also consider the minimization
problem on a given convex subset of the domain of the function.

2. Preliminaries

Let (X, d) be a metric space. We say γxy : [0, 1] → X is a geodesic between x, y ∈ X
if γxy(0) = x, γxy(1) = y, and d(γxy(s), γxy(t)) = |s − t|d(x, y) for any s, t ∈ [0, 1]. If a
geodesic γxy exists for any x, y ∈ X, then X is called a geodesic space. In particular, X is
said to be uniquely geodesic if for any x, y ∈ X, a geodesic between them exists uniquely. In
this case, the image of the geodesic γxy is denoted by [x, y]. In a uniquely geodesic space X,
the convex combination between two points is naturally defined; for x, y ∈ X and t ∈ [0, 1],
we define

tx ⊕ (1 − t)y = γxy(1 − t).

Using this notion, we can define the convexity of a subset of X; we say C ⊂ X is convex if
tx ⊕ (1 − t)y ∈ C for any x, y ∈ C and t ∈ [0, 1].

We usually define a CAT(0) space by using notions of geodesic triangles and compar-
ison triangles on a model space. In this paper, we use the following definition which is
equivalent to the original one. A uniquely geodesic space X is called CAT(0) space if for
any x, y, z ∈ X and t ∈ [0, 1], the inequality

d(tx ⊕ (1 − t)y, z)2 ≤ td(x, z)2 + (1 − t)d(y, z)2 − t(1 − t)d(x, y)2

holds. For the formal definition, see [16,17] for instance.
A Hadamard space is defined as a complete CAT(0) space. This space includes some

essential classes of sets for studying nonlinear mappings and their fixed points, such as
closed convex subsets of a Hilbert space, real Hilbert balls, R-trees, and others. Notice that
a closed convex subset of a Banach space is not necessarily a Hadamard space.
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Let X be a metric space. We say x ∈ X is a fixed point of a mapping T : X → X if it
satisfies x = Tx. The set of all fixed points of T is denoted by Fix T, that is,

Fix T = {x ∈ X | x = Tx}.

A mapping T : X → X is said to be nonexpansive if

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ X. It is easy to see that Fix T is always closed and convex if X is a CAT(0) space.
Let X be a Hadamard space and C ⊂ X be a nonempty closed convex subset of X. It is

known that, for x ∈ X, there exists a unique yx ∈ C which is closest to x in C, that is,

d(x, yx) = inf
y∈C

d(x, y).

Using this point, we define the metric projection PC : X → C by PCx = yx. We also know
that PC is a nonexpansive mapping with Fix PC = C.

For a bounded sequence {xn} ⊂ X, we call z an asymptotic center of {xn} if

lim sup
n→∞

d(xn, z) = inf
y∈X

lim sup
n→∞

d(xn, y).

It is known that the asymptotic center of every bounded sequence in a Hadamard space is
unique and it belongs to the closed convex hull of {xn}.

A bounded sequence {xn} is said to be ∆-convergent to x0 ∈ X if every subsequence
of {xn} has an identical asymptotic center x0. In a Hadamard space, we know that every
bounded sequence has a ∆-convergent subsequence [18].

For more details of Hadamard spaces and related notions, see [17].
Let X be a Hadamard space and f : X → ]−∞, ∞]. We say f is proper if f (x0) < ∞

for some x0 ∈ X. f is said to be lower semicontinuous if

f (x0) ≤ lim inf
n→∞

f (xn)

whenever {xn} ⊂ X converges to x0 ∈ X. f is said to be convex if

f (tx ⊕ (1 − t)y) ≤ t f (x) + (1 − t) f (y)

for any x, y ∈ X and t ∈ ]0, 1[.
A point x0 ∈ X is a minimizer of f if x0 satisfies

f (x0) = inf
x∈X

f (x).

The set of all minimizers of f on a subset D ⊂ X is denoted by argminD f .

3. Common Fixed Point Theorem

We consider the conditions equivalent to the existence of a common fixed point of
a family of nonexpansive mappings in a Hadamard space. We begin with the following
simple lemma.

Lemma 1. Let X be a Hadamard space and let {Cn} be a sequence of nonempty closed convex
subsets of X which is decreasing with respect to inclusion, that is, Cn+1 ⊂ Cn for all n ∈ N. Let
{yn} ⊂ X be a sequence such that yn ∈ Cn for every n ∈ N. If {yn} is bounded, then its asymptotic
center belongs to

⋂∞
n=1 Cn.

Proof. Suppose that {yn} is bounded, and let y0 be a unique asymptotic center of {yn}.
Fix k ∈ N arbitrarily. Letting wn = yn+k for n ∈ N, we have a sequence {wn} has the same
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asymptotic center y0 as {yn}. From the property of {Cn}, it follows that {wn} ⊂ Ck. Since
Ck is closed and convex, we have y0 ∈ Ck. Since k ∈ N is arbitrary, we obtain y0 ∈ ⋂∞

k=1 Ck,
the desired result.

The following main result shows that we can characterize the existence of a common
fixed point of given nonexpansive mappings by using the generating procedure of its
approximate sequence.

Theorem 3. Let X be a Hadamard space and suppose that a subset {z ∈ X | d(u, z) ≤ d(v, z)}
of X is convex for any u, v ∈ X. Let {Ti : X → X | i = 1, 2, . . . , m} be a family of nonex-
pansive mappings. Generate a sequence {xn} in X with a sequence {Cn} of subsets of X by the
following steps:

Step 0. x1 ∈ X, C1 = X, and n = 1;
Step 1. Cn+1 =

⋂m
i=1{z ∈ X | d(Tixn, z) ≤ d(xn, z)} ∩ Cn;

Step 2. (1) if Cn+1 ̸= ∅, then let xn+1 = PCn+1 xn, increment n to 1, and go to Step 1;
(2) if Cn+1 = ∅, then Ck = ∅ and leave xk to be undefined for all k ≥ n + 1, and

terminate the generating process.

Then, the following conditions are equivalent:

(a)
⋂m

i=1 Fix Ti ̸= ∅;
(b)

⋂∞
k=1 Ck ̸= ∅.

Further, in this case, {xn} is well defined and ∆-convergent to some x0 ∈ ⋂m
i=1 Fix Ti.

Proof. First we suppose
⋂∞

k=1 Ck ̸= ∅ and show
⋂m

i=1 Fix Ti ̸= ∅. Since Cn ̸= ∅ for all
n ∈ N, the sequence {xn} is well defined. Let p ∈ ⋂∞

k=1 Ck. Then, since a metric projection
is nonexpansive and p ∈ Cn+1 = Fix PCn+1 , we have

d(xn+1, p) = d(PCn+1 xn, p) ≤ d(xn, p)

for all n ∈ N. It follows that a real sequence {d(xn, p)} is convergent to some non-negative
number cp ∈ R, and that {xn} is bounded. Let t ∈ ]0, 1[. Since txn+1 ⊕ (1 − t)p ∈ Cn+1,
we have

d(xn+1, xn)
2 = d(PCn+1 xn, xn)

2

≤ d(txn+1 ⊕ (1 − t)p, xn)
2

≤ td(xn+1, xn)
2 + (1 − t)d(p, xn)

2 − t(1 − t)d(xn+1, p)2,

which implies that
d(xn+1, xn)

2 ≤ d(xn, p)2 − td(xn+1, p)2.

Letting t → 1, we have d(xn+1, xn)2 ≤ d(xn, p)2 − d(xn+1, p)2. Further, we obtain

0 ≤ d(xn+1, xn)
2 ≤ d(xn, p)2 − d(xn+1, p)2 → c2

p − c2
p = 0.

as n → ∞. Thus we have limn→∞ d(xn+1, xn) = 0. Since xn+1 ∈ Cn+1, from the definition
of Cn, we have

d(Tixn, xn+1) ≤ d(xn, xn+1)

for i = 1, 2, . . . , m. It implies

0 ≤ d(xn, Tixn) ≤ d(xn, xn+1) + d(Tixn, xn+1) ≤ 2d(xn, xn+1) → 0

and thus limn→∞ d(xn, Tixn) = 0 for every i = 1, 2, . . . , m.
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On the other hand, since {xn} is bounded, its asymptotic center is a unique point
x0 ∈ X. For each i = 1, 2, . . . , m, we have

lim sup
n→∞

d(xn, Tix0) ≤ lim sup
n→∞

(d(xn, Tixn) + d(Tixn, Tix0))

≤ lim sup
n→∞

(d(xn, Tixn) + d(xn, x0))

≤ lim
n→∞

d(xn, Tixn) + lim sup
n→∞

d(xn, x0)

≤ lim sup
n→∞

d(xn, x0).

By the uniqueness of the asymptotic center of {xn}, we have Tix0 = x0 for every i =
1, 2, . . . , m, and hence x0 ∈ ⋂m

i=1 Fix Ti ̸= ∅.
Next, we suppose that

⋂m
i=1 Fix Ti ̸= ∅ and prove

⋂∞
k=1 Ck ̸= ∅. It is sufficient to show

that
⋂m

i=1 Fix Ti ⊂ Ck for every k ∈ N. We prove this inclusion by induction. It is obvious
for the case k = 1. Suppose

⋂m
i=1 Fix Ti ⊂ Ck and we consider the case k + 1. Notice that, in

this case, xk is defined. Let z ∈ ⋂m
i=1 Fix Ti. Then, since each Ti is nonexpansive, we have

d(Tixk, z) ≤ d(xk, z)

for each i = 1, 2, . . . , m. This fact and the assumption of induction imply z ∈ Ck+1.
Consequently, we obtain

∞⋂

k=1

Ck ⊃
m⋂

i=1

Fix Ti ̸= ∅,

and this is the desired result.
We now prove the latter part of the theorem. From the argument above, we have

obtained the following:

• {d(xn, p)} is convergent to cp ∈ [0, ∞[ for each p ∈ ⋂∞
k=1 Ck;

• {xn} is bounded;
• the asymptotic center x0 of {xn} belongs to

⋂m
i=1 Fix Ti.

Let {xnj} be an arbitrary subsequence of {xn}. Since {xnj} is also bounded, there
exists a unique asymptotic center y0 ∈ X. We show that y0 is identical to the asymptotic
center x0 of {xn}. Since every Cn is a closed convex subset of X for n ∈ N, and {Cn} is a
decreasing sequence with respect to inclusion, by Lemma 1, we have

y0 ∈
∞⋂

j=1

Cnj =
∞⋂

n=1

Cn.

Therefore, a sequence {d(xn, y0)} has a limit cy0 ∈ [0, ∞[. It follows that

lim sup
n→∞

d(xn, y0) = cy0 = lim
n→∞

d(xn, y0)

= lim
j→∞

d(xnj , y0)

≤ lim sup
j→∞

d(xnj , x0) ≤ lim sup
n→∞

d(xn, x0).

This inequality shows that y0 is an asymptotic center of {xn}. From its uniqueness, we
have x0 = y0. Hence {xn} is ∆-convergent to x0 ∈ ⋂m

i=1 Fix Ti.

This result deals with a finite family of nonexpansive mappings, and we note that it
can be generalized to the case of an arbitrary infinite family of mappings. We can change
the proof for this case in a trivial way. However, in the view of practical calculations such
as computer experiments, it is almost impossible to handle an infinite family of mappings.
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4. The Case That the Underlying Space is Bounded

In this section, we consider the case where the underlying space X is bounded. Notice
that we do not assume the boundedness of X in Theorem 3. Thus, in the procedure in the
theorem,

⋂∞
k=1 Ck might be empty even if every Ck is nonempty, as in the following example.

Example 1. Consider the graph of the function f : ]0, ∞[ → R defined by f (x) = log x for
x ∈ ]0, ∞[. Then, the tangent line of the curve at the point p = (p1, log p1) on the graph intersects
with the y-axis at u = (0,−1 + log p1), and the normal line at p intersects with the y-axis at
v = (0, p2

1 + log p1). The midpoint of u and v is w = (0, (p2
1 − 1)/2 + log p1); see Figure 1.

x

y

O

p

u

v

w

Figure 1. The graph of f .

Using this fact, we consider the following procedure. Let T1 and T2 be the metric projec-
tions onto

D1 = {z = (z1, z2) ∈ R2 | z1 > 0, z2 ≤ log z1},

D2 = {z = (z1, z2) ∈ R2 | z1 < 0, z2 ≤ log(−z1)},

respectively. If the initial point x1 lies on the y-axis and we generate the sequence {xn} by the
scheme in Theorem 3, then, by symmetry, every xn will be on y-axis if it is defined. Now, we
assume that x1, x2, . . . , xn are defined and lie on the y-axis with descent order; xk+1 lies below xk
for k = 1, 2, . . . , n − 1. Let

p = T1xn = PD1 xn = (p1, log p1).

Then, by symmetry, we have

T2xn = PD2 xn = (p1, log(−p1)).

Further, from the calculations above, xn can be expressed by xn = (0, p2
1 + log x). Since the points

x1, x2, . . . , xn−1 lie above xn, by the simple calculation, we obtain

Cn+1 = {z ∈ R2 |
∥∥PD1 xn − z

∥∥ ≤ ∥xn − z∥}
∩ {z ∈ R2 |

∥∥PD2 xn − z
∥∥ ≤ ∥xn − z∥}

=

{
z = (z1, z2) ∈ R2

∣∣∣∣∣ z2 ≤ 1
p1

z1 +
p2

1 − 1
2

+ log p1

}

∩
{

z = (z1, z2) ∈ R2

∣∣∣∣∣ z2 ≤ − 1
p1

z1 +
p2

1 − 1
2

+ log p1

}

=

{
z = (z1, z2) ∈ R2

∣∣∣∣∣ z2 ≤ − 1
p1

|z1|+
p2

1 − 1
2

+ log p1

}
.
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This set forms a cone with the apex at (0, (p2
1 − 1)/2 + log p1), and therefore we have xn+1 =

(0, (p2
1 − 1)/2 + log p1); see Figure 2. Thus xn+1 is on the y-axis again, and we also have

∥xn − xn+1∥ =
p2

1 + 1
2

>
1
2

.
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R
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Figure 2. Generating xn+1 from xn
189

From these facts, the sequence {xn} generated by this procedure with the initial point x1 = 190

(0, 0) has the following properties: 191

• Cn ̸= ∅ for every n ∈ N; 192

• ∥xn − xn+1∥ > 1/2 for every n ∈ N. 193

Since every xn is defined and lies on the y-axis with descent order, the second property above implies 194

that 195

∥xn∥ =
n−1
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∥xk+1 − xk∥ >
n − 1

2
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as n → ∞. Thus we have 196
∞⋂

k=1

Ck = ∅.

Figure 2. Generating xn+1 from xn.

From these facts, the sequence {xn} generated by this procedure with the initial point
x1 = (0, 0) has the following properties:

• Cn ̸= ∅ for every n ∈ N;
• ∥xn − xn+1∥ > 1/2 for every n ∈ N.

Since every xn is defined and lies on the y-axis with descent order, the second property above
implies that

∥xn∥ =
n−1

∑
k=1

∥xk+1 − xk∥ >
n − 1

2
→ ∞

as n → ∞. Thus we have
∞⋂

k=1

Ck = ∅.

Suppose that the underlying space X is bounded. In this case, Kirk’s fixed-point
theorem guarantees that each nonexpansive mapping Ti has a fixed point. However, we do
not know whether a finite family {Ti} of mapping has a common fixed point or not.

The following result shows that we can obtain the non-existence of a common fixed
point of {Si} within a finite repeating time.

Theorem 4. Let X be a bounded Hadamard space, and suppose that a subset {z ∈ X | d(u, z) ≤
d(v, z)} of X is convex for any u, v ∈ X. Let {Ti : X → X | i = 1, 2, . . . , m} be a family of
nonexpansive mappings, and let {xn} be a sequence generated by the process in Theorem 3. Then,
the following hold:

(i) If
⋂m

i=1 Fix Ti ̸= ∅, then {xn} is ∆-convergent to x0 ∈ ⋂m
i=1 Fix Ti;

(ii) if
⋂m

i=1 Fix Ti = ∅, then there exists n0 ∈ N such that Cn0 = ∅.

Proof. (i) is a direct result of Theorem 3. For (ii), we show its contrapositive; we suppose
that Cn is nonempty for all n ∈ N and obtain

⋂m
i=1 Fix Ti ̸= ∅. Take a sequence {yn} ⊂ X

such that yn ∈ Cn for all n ∈ N. Since {yn} is bounded, it follows from Lemma 1 that
its unique asymptotic center belongs to

⋂∞
n=1 Cn. Thus

⋂∞
n=1 Cn is nonempty, and hence⋂m

i=1 Fix Ti is also nonempty by Theorem 3. This is the desired result.
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5. Applications to a Convex Minimization Problem

In this section, we attempt to apply the results discussed in the previous sections to
the problem of finding a common minimizer of a family of convex functions.

Let f : X → ]−∞, ∞] be a proper lower semicontinuous convex function defined on a
Hadamard space X. Then, for each x ∈ X, there exists unique yx ∈ X such that

f (yx) +
1
2

d(x, yx)
2 = inf

y∈X

(
f (y) +

1
2

d(x, y)2
)

Using this point, we define the resolvent R f : X → X of f by R f x = yx. Namely, R f x ∈ X
is a unique minimizer of the function g(y) = f (y) + (1/2)d(x, y)2. It is known [19] that R f
satisfies the following inequality:

2d(R f x, R f y)2 + d(R f x, x)2 + d(R f y, y)2 ≤ d(R f x, y)2 + d(R f y, x)2

for x, y ∈ X. Moreover, since the inequality

(p, s)2 + d(q, r)2 − d(p, r)2 − d(q, s)2 ≤ 2d(p, q)d(r, s)

holds for all p, q, r, s ∈ X, we have

2d(R f x, R f y)2 ≤ d(R f x, y)2 + d(Ry, x)2 − d(R f x, x)2 − d(R f y, y)2

≤ 2d(R f x, R f y)d(x, y)

for x, y ∈ X, and thus R f is nonexpansive. See also [16,20,21].
The resolvent operator has the following important property: the set of minimizers of

f is identical to the set of fixed points of R f . From this fact, we can apply our results to find
a common minimizer of a given family of convex functions.

Theorem 5. Let X be a Hadamard space and suppose that a subset {z ∈ X | d(u, z) ≤ d(v, z)}
of X is convex for any u, v ∈ X. Let { fi : X → ]−∞, ∞] | i = 1, 2, . . . , m} be a family of proper,
lower semicontinuous convex functions on X, and R fi

: X → X be the resolvent operator of fi
for i = 1, 2, . . . , m. Generate a sequence {xn} in X with a sequence {Cn} of subsets of X by the
following steps:

Step 0. x1 ∈ X, C1 = X, and n = 1;
Step 1. Cn+1 =

⋂m
i=1{z ∈ X | d(R fi

xn, z) ≤ d(xn, z)} ∩ Cn;
Step 2. (1) if Cn+1 ̸= ∅, then let xn+1 = PCn+1 xn, increment n to 1, and go to Step 1;

(2) if Cn+1 = ∅, then Ck = ∅ and leave xk to be undefined for all k ≥ n + 1, and
terminate the generating process.

Then, the following conditions are equivalent:

(a)
⋂m

i=1 argminX fi ̸= ∅;
(b)

⋂∞
k=1 Ck ̸= ∅.

Further, in this case, {xn} is well defined and ∆-convergent to some x0 ∈ ⋂m
i=1 argminX fi.

Proof. From the properties of a resolvent operator, we have argminX fi = Fix R fi
for every

i = 1, 2, . . . , m. Therefore, the condition (a) is equivalent to

m⋂

i=1

Fix R fi
̸= ∅.

Applying Theorem 3 with this fact, we have the condition (a) if and only if (b), which is
the desired result. The latter part of the theorem is also deduced directly.

Next, we consider the problem of finding a minimizer of a single function f on a given
closed convex subset D. If f minimizes at some point x0 in D, then it is a solution to the
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common fixed-point problem of the resolvent operator R f of f and the metric projection PD
onto D. On the other hand, if every minimizer of f does not belong to D, then a minimizing
point of f on D must be another point that belongs to D. In this case, we have

Fix R f ∩ Fix PD = argmin
X

f ∩ D = ∅.

From this observation, we obtain the following result related to the convex minimization
problem on a given convex set.

Theorem 6. Let X be a Hadamard space and suppose that a subset {z ∈ X | d(u, z) ≤ d(v, z)}
of X is convex for any u, v ∈ X. Let f : X → ]−∞, ∞] be a proper, lower semicontinuous convex
function on X, and R f : X → X be the resolvent operator of f . Let D be a nonempty closed
convex subsets of X. Generate a sequence {xn} in X with a sequence {Cn} of subsets of X by the
following steps:

Step 0. x1 ∈ X, C1 = X, and n = 1;
Step 1. Cn+1 = {z ∈ X | d(R f xn, z) ≤ d(xn, z)} ∩ {z ∈ X | d(PDxn, z) ≤ d(xn, z)} ∩ Cn;
Step 2. (1) if Cn+1 ̸= ∅, then let xn+1 = PCn+1 xn, increment n to 1, and go to Step 1;

(2) if Cn+1 = ∅, then Ck = ∅ and leave xk to be undefined for all k ≥ n + 1, and
terminate the generating process.

Then, the following conditions are equivalent:

(a) f minimizes at a point in D;
(b)

⋂∞
k=1 Ck ̸= ∅.

Further, in this case, the sequence {xn} is well defined and ∆-convergent to some x0 ∈ argminX f ∩D.

Furthermore, if we assume that X is bounded, then D is also bounded and thus
f |D : D → ]−∞, ∞] always has a minimizer, that is, argminD f ̸= ∅. We can use Theorem 4
to check whether this minimizer is also a global minimizer of f .

Theorem 7. Let X be a bounded Hadamard space, and suppose that a subset {z ∈ X | d(u, z) ≤
d(v, z)} of X is convex for any u, v ∈ X. Let f : X → ]−∞, ∞] be a proper lower semicontinuous
convex function on X, and let {xn} be a sequence generated by the process in Theorem 5. Then, the
following hold:

(i) If f minimizes at some point in D, then {xn} is ∆-convergent to x0 ∈ argminX f ∩ D;
(ii) If f does not minimize at any point in D, then there exists n0 ∈ N such that Cn0 = ∅.

6. Conclusions

In this paper, we study the existence of a common fixed point of a family of nonex-
pansive mapping defined on a Hadamard space. Using an iterative scheme by a projection
method, we obtained an equivalent condition to the existence of a common fixed point.

The sequence {Cn} of subsets in Theorem 3 may have an empty intersection even
if each Cn is not empty. We showed this fact in Example 1. However, if the whole space
is bounded, then

⋂∞
n=1 Cn = ∅ implies that some Cn0 is empty. This fact tells us that the

generating process of the iterative sequence will stop in finite steps if there is no common
fixed point. Therefore, the advantage of this method is that we can find the emptiness of a
common fixed point of mappings can be revealed in a finite time.

These results can be applied to convex minimization problems. We discussed this
problem and obtained several results deduced from our main results.
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