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Abstract: The technology of CO2 geological storage and CH4 intensive mining (CO2-ECBM) in
coal seams integrates greenhouse gas emission reduction and new fossil energy development and
has great development prospects. The CO2 injection, CO2 sequestration mechanism and storage
capacity, and CH4 stimulation effect constitute the core content of the effectiveness of CO2-ECBM,
among which CO2 injection is the most critical. Traditional seepage analysis methods often struggle
to tackle flow-related issues influenced by microscale effects and intricate channels. This paper
highlights the advantages of employing lattice Boltzmann (LBM) numerical simulations to study CO2

seepage behaviors when teaching a Rock Mass Seepage Mechanics Course. This course primarily
covers topics such as the pore structure of rock, unstable liquid seepage, gas seepage theory and
related subjects. Its goal is to provide students with a solid theoretical foundation to address the
complexities of fluid seepage in pours media encountered in practical scenarios. A novel LBM-based
methodology was employed to estimate the CO2 seepage capacity by incorporating the effects of
different concentrations of [Bmin]Cl solution (0 wt%, 1 wt%, 3 wt%, and 5 wt%). The CO2 velocity
distribution cloud map of each coal sample was simulated; the average velocity distribution curve of
each coal sample was obtained; and the velocity profile of the seepage channel of each coal sample
was described. This study can provide theoretical guidance for the technology of CO2 geological
storage and CH4 intensive mining in coal seams.

Keywords: CO2 injection; coal; LBM simulation; QSGS; seepage law

1. Introduction

The technology of CO2 geological storage and CH4 intensive mining (CO2-ECBM) in
coal seams integrates greenhouse gas emission reduction and new energy development
and has great development prospects, but its effectiveness, economy, sustainability, and
safety are still the main theoretical and technical problems facing CO2-ECBM at present.
The core aspect of the effectiveness of CO2-ECBM is CO2 injection. This topic is closely
related to the seepage mechanism in porous media.

Universities have responded to this demand by introducing courses such as “Rock
Mass Seepage Mechanics” for students majoring in fields like petroleum engineering and
safety engineering. These courses aim to enhance students’ understanding of professional
knowledge. Specifically, they cover the fundamental concepts of rock mass seepage me-
chanics, the basic laws governing it, mathematical models, and practical applications. By
introducing students to the principles of seepage mechanics and mathematical models,
these courses provide a solid foundation for solving complex fluid seepage problems in
porous media. Currently, the prevalent format of domestic rock mass seepage mechanics
courses typically presents traditional theoretical methods or simulation approaches. How-
ever, the complex pore and fissure structures found in extensively mined unconventional
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rock masses introduce multiscale effects into fluid diffusion, rendering traditional seepage
theoretical analyses inadequate for comprehensively addressing these intricate flow phe-
nomena [1,2]. While practical laboratory sessions enhance students’ comprehension of fluid
flow in rock masses, certain limitations are inherent in the teaching of rock mass seepage
mechanics experiments. These limitations include the need for specialized equipment,
complex experimental procedures, potential data inaccuracies, and the inability to fully
replicate real-world underground seepage conditions. To address these challenges, the
introduction of advanced theoretical analysis techniques is necessary to provide students
with a more intuitive and accurate understanding of seepage laws and mechanisms.

The extensively exploited unconventional rock masses exhibit complexity, making the
lattice Boltzmann (LBM) simulation method increasingly prevalent in addressing microscale
seepage issues and intricate channel networks [3–15]. The LBM approach offers flexibil-
ity in handling fluid–boundary interactions, a feat challenging for traditional numerical
methods. LBM’s porous media flow model is composed of pore-scale and representational
volume element (REV)-scale models, suited to different simulation scales. This simulation
method obviates the need for detailed knowledge of fluid flow within pores, focusing
on macro-physical parameters (e.g., porosity and permeability) after volume averaging,
compensating for the limited simulation scope of the pore-scale LBM model. Wang et al.
provided a comprehensive synthesis of multiscale transport phenomena encompassing
desorption, nanopore diffusion, micropore infiltration, convection, and mass flow within
mesoscopic pores. Their work culminated in the proposal of a shale gas production capacity
model [16]. Li’s work focused on summarizing recent advancements in the multiphase
lattice Boltzmann method, specifically emphasizing its application in elucidating heat
transfer phenomena during boiling and condensation phase transitions [17]. Addressing
the complexities inherent in actual environments and intricate structures, Chai delved
into nonlinear percolation using the lattice Boltzmann method. This research introduced a
lattice Boltzmann model to solve the Poisson equation by incorporating proposed rebound-
Maxwell diffuse reflection combined boundary conditions and boundary discretization
effects [18]. Zhao employed the LBM method to investigate pore structure and seepage
characteristics in reservoirs, offering deeper insights into the pore structure traits and
microscopic flow behavior within dense oil reservoirs [19]. Zhou et al. established a
two-dimensional LBM model that facilitated the implementation of kinetic concentration
boundary conditions during the interfacial mass transfer process. Their simulation ef-
fectively replicated the adsorption process within porous media at both pore-scale and
mesoscopic levels [20]. Tackling water vapor adsorption in complex nanometer porous
media, Zhang et al. proposed a pseudo-potential LBM method to study water seepage
behavior, aiming to address this specific challenge [21]. Lastly, Zhao simulated nanopore
flow dynamics using the LBM method and established an empirical formula tailored to
different geometries and wettability conditions [22].

This paper aims to incorporate the LBM seepage simulation technique to investi-
gate the effectiveness of CO2 injection in CO2-ECBM during the Rock Mass Seepage
Mechanics Course.

2. Methodology
2.1. Present Situation of the Rock Mass Seepage Mechanics Course

Presently, extensively exploited unconventional rock masses exhibit complex fracture
structures, and the fluid diffusion process—from pore desorption to fracture seepage—manifests
multiscale effects. Traditional seepage analysis methods, relying on simplistic assumptions,
are inadequate for analytical or semi-analytical flow modeling, particularly for scenarios
characterized by significant microscale effects and intricate channel networks. These
conventional methods struggle to accurately depict the fluid flow patterns in cross-scale
rock masses transitioning from “microscopic pores” to “mesoscopic fractures” [23–25].
Thus, this course exists the problem of “Knowledge Obsolescence”.
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2.2. The LBM Numerical Simulation Method

In recent years, computer simulation technology has significantly advanced, with
numerical simulation techniques playing a pivotal role in the teaching of rock mass seepage
mechanics. In this field, the primary focus is simulating fluid movement within porous
media. The fundamental concept behind the LBM involves modeling fluids as composed
of countless microscopic particles that interact within a grid framework. LBM simulates
macroscopic fluid flow by tracking the collective behavior of these fluid particles, offering
discrete macroscopic representation and continuous microscopic modeling. The underlying
equation for solving fluid flow in LBM is the Boltzmann equation, and due to the discrete
nature of the method, it boasts robust computational efficiency and supports parallel
computing to accelerate calculations.

The general steps of LBM to address flow problems entail first establishing a grid
within the flow field. Subsequently, a particle distribution function is defined within
each grid cell to characterize the distribution of various particles within that cell. The
particle distribution function within each cell is then calculated based on a collision model,
culminating in simulation results obtained through continuous iterative computations.
LBM enables precise simulations of complex flow phenomena, such as liquid infiltration
through porous media, flow within tiny conduits, and interactions within multiphase flows.

In comparison to traditional Computational Fluid Dynamics (CFD) methods, LBM
excels in terms of parallel computing efficiency, the capability to handle intricate boundary
issues, and its innate capacity to manage multiphase flows seamlessly. This makes it highly
promising in the realm of micro- and cross-scale research applications. LBM’s discrete
nature makes it exceptionally suited for simulating particulate flow within rock mass pores.
Unlike traditional CFD methods, LBM excels at capturing seepage within the intricate
pores of coal bodies, providing accurate simulations for highly irregular pore structures.

When applied to the classroom teaching of rock mass seepage mechanics, LBM offers
a vivid depiction of the physical characteristics and structures of rock mass. Furthermore,
simulation technology is user-friendly, yields intuitive results, and serves as a powerful tool
for increasing students’ interest in scientific research. It broadens students’ perspectives on
scientific inquiry, fostering a positive learning environment, thus significantly optimizing
the course on rock mass seepage mechanics.

LBM describes the evolution law of particles through the collision and migration of
particles and takes the velocity distribution function f as the basic variable:

∂ f
∂t

+ u · ∇ f = Ω (1)

The velocity distribution function is a function of spatial location x, particle velocity ξ,
and time t, namely f (x, ξ, t), which represents the density of particles with velocity ξ at
spatial point x at time t.

The discretized lattice Boltzmann equation (LBE) is given as follows:

fi(x + ξδt, t + δt)− fi(x, t) = Ωi (2)

where the collision term Ωi is the source of the complexity of the lattice Boltzmann equation.
In order to simplify the LBE, the LBGK model with single relaxation was developed. The
collision term in the model is expressed by the relaxation time:

Ωi =
δt
τ
[ fi(x, t)− f eq

i (x, t)] + δtFi (3)

The evolution equation of the LBGK model is given by:

fi(x + eiδt, t + δt)− fi(x, t) = − δt
τ

[
fi(x, t)− f eq

i (x, t)
]
+ δtFi (4)

where fi(x, t) is the particle distribution function of x in the direction i at time t, τ is the
non-dimensional relaxation time, and f eq

i (x, t) is the equilibrium distribution function.
The equilibrium distribution function can be uniformly expressed as:
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f eq
i = ωiρ

[
1 + 3

c2 (ei · u) + 9
2c4 (ei · u)2 − 3

2c2 u2
]

(5)

Here, ωi is the weight coefficient, and ei is the discrete velocity. For different lattice
types, ωi and ei have different values, and the parameters of ωi and ei in the D2Q9 model
are used in this paper.

The fluid density and velocity expressions are defined as follows:

ρ = ∑
i

fi, ρu = ∑
i

ci fi v (6)

In this paper, by introducing the seepage resistance caused by the porous medium and
other external forces, a fluid transport LBM model considering the influence of the wetting
degree of the coal wall is established. The external forces include the seepage resistance of
the porous medium and the force between the fluid and the solid wall. The expression of
the seepage resistance caused by the medium is given in Equation (7):

Fσ
b = − εv

K
u − εFs√

K
|u|u + εG (7)

where ε is the porosity, v is the viscosity coefficient of the fluid, K is the permeability, G is
the external volume force, and Fs is the structure function.

The expression for the force between the fluid phase and the solid wall is:

Fσ
ads(x) = −gσwψ(x)

N

∑
i=1

w
(
|ei|2

)
ψ(ρw)s(x + ei)ei (8)

Here, gσw is the strength coefficient of the interaction force between the fluid phase
and the solid wall, and ρw is the virtual velocity of the solid wall. In practice, gσw and ρw
can be adjusted, respectively, to obtain different sizes of contact angles. When the value of
gσw is negative, the contact angle between the fluid and the solid wall is less than 90◦, and
the fluid tends to wet the solid surface. When the value of gσw is positive, the contact angle
between the fluid and the solid wall is greater than 90◦, and the fluid tends to alienate the
solid surface. s is the indicator function, where s = 1 represents the solid wall and s = 0
represents the fluid phase.

3. Results and Discussions
3.1. Analysis of Coal Pore Surface Morphology

The SEM images of the original coal and the coal body treated with different concen-
trations of [Bmin]Cl solution are shown in Figure 1. According to Figure 1a, the surface
of the coal body has the adhesion of other minerals, has smaller superficial pores, and is
smoother, which indicates that the matrix of the coal has not been dissolved yet. Figure 1b
shows a coal sample treated with a 1% [Bmin]Cl solution, which does not affect the coal
very much due to its insufficient concentration. Figure 1c shows a coal sample treated
with a 3% [Bmin]Cl solution, where the pores on the surface of the coal increased and
the roughness was further increased. Figure 1d shows a coal sample treated with a 5%
[Bmin]Cl solution, where morphological changes can be clearly seen with severe surface
corrosion, increased roughness, and an increased number of pores. It can be seen that with
the increase in concentration, the number of coal pores becomes larger, generating new
cracks, enhancing the space for fluid seepage, and improving the permeability of the coal.

3.2. Analysis of Wetting Ability

The contact angle characteristics of the coal samples after treatment with raw coal and
[Bmin]Cl solution are shown in Figure 2. The contact angles of the coal samples decreased
continuously with the increase in [Bmin]Cl solution concentration, which were 82.6◦, 72.0◦,
67.9◦, and 62.3◦, respectively. It can be seen that the wettability of the coal samples before
and after ionic liquid modification was continuously enhanced along with the increase in
[Bmin]Cl solution concentration.
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3.3. Modeling of the Random Pore Structure of the Coal Body

Using QSGS, it is possible to establish the pore distribution characteristics with the
same core distribution probability (Pc), but with different porosity and different pore
growth angles. It can be seen in Figure 3 that the homocore-type distribution with different
porosity and pore growth angle has a unique pore structure, where the black area indicates
the coal body and the white area indicates the pores, and the structure size in the figure
is 20 × 20 µm2.
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Figure 3. Schematic diagrams of the pore reconstruction of coal samples: (a) raw coal; (b) coal treated
with 1 wt% [Bmin]Cl solution; (c) coal treated with 3 wt% [Bmin]Cl solution; (d) coal treated with
5 wt% [Bmin]Cl solution.

The pore structure of the coal seam was established according to the above method
with porosity settings of 46.7194%, 46.4635%, 47.0289%, and 47.2471% with increasing
concentration, and the same Pc value (0.005) was taken for reconstruction. As can be
seen in Figure 3, the number of pores increases with the increase in porosity at the same
Pc value. It can be concluded that with the increase in [Bmin]Cl solution concentration,
the pore number of coal samples modified with different concentrations of [Bmin]Cl
increased significantly.

3.4. LBM Simulation Results of Coal Velocity Distribution

Figure 4a–d shows the LBM simulation results of the velocity field distribution of
coal samples modified by 0 wt% [Bmin]Cl, 1 wt% [Bmin]Cl, 3 wt% [Bmin]Cl, and 5 wt%
[Bmin]Cl with four different surfactant solutions, respectively. Figure 5 describes the
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average velocity distribution curve of each coal sample, and Figure 6 presents the velocity
profile of the seepage channel of each coal sample.
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