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Abstract: RNA-binding proteins and chemical modifications to RNA play vital roles in the co- and
post-transcriptional regulation of genes. In order to fully decipher their biological roles, it is an
essential task to catalogue their precise target locations along with their preferred contexts and
sequence-based determinants. Recently, deep learning approaches have significantly advanced in this
field. These methods can predict the presence or absence of modification at specific genomic regions
based on diverse features, particularly sequence and secondary structure, allowing us to decipher
the highly non-linear sequence patterns and structures that underlie site preferences. This article
provides an overview of how deep learning is being applied to this area, with a particular focus on the
problem of mRNA-RBP binding, while also considering other types of chemical modification to RNA.
It discusses how different types of model can handle sequence-based and/or secondary-structure-
based inputs, the process of model training, including choice of negative regions and separating sets
for testing and training, and offers recommendations for developing biologically relevant models.
Finally, it highlights four key areas that are crucial for advancing the field.

Keywords: RNA-binding proteins (RBPs); post-transcriptional modifications; deep learning; neural
networks; sequence motifs

1. Introduction

Modifications to RNA play pivotal roles in regulating gene expression, influencing a
wide range of processes such as cellular differentiation, development, stress response and
disease pathogenesis [1,2]. The term “epitranscriptomics” refers to the study of a broad
range of modifications that influence RNA either co- or post-transcriptionally. Notable
examples of modifications that play vital roles in regulating the fate of RNAs of protein-
coding genes include RNA-binding proteins (RBPs) and a host of chemical modifications
such as N6-methyladenosine (m6A), m5-cytosine (m6A), pseudouridine (ψ), and adenosine-
to-inosine (A-to-I) RNA editing (Figure 1A). These modifications exhibit diverse cellular
functions, including mRNA stability or degradation, splicing regulation, translation, and
transport and localisation of mRNA targets (Figure 1B) [3,4]. In humans, it is estimated
that there are over 1500 RBPs, which divide into a number of sub-families and possess a
range of RNA-binding domains, including the RNA recognition motif (RRM), K-homology
domain (KH), double-stranded RNA-binding domain (dsRBD), and zinc-finger domains.
Furthermore, RBPs tend to localise to specific sub-cellular compartments, exhibit context-
specific binding patterns, and often have highly specific sequence preferences [5]. The most
well-studied chemical modification, m6A, is typically found in the 3′ untranslated region (3′

UTR) and around the stop codon of modified transcripts [6], and its functions are mediated
by a specific set of RBPs known as m6A readers [7]. In contrast to m6A, which is reversible,
A-to-I RNA editing is an irreversible modification catalysed by the enzymatic activities
of the RBP protein family Adenosine deaminases acting on RNA (ADAR), which act on
double-stranded RNA (dsRNA) and play particularly important roles in self or non-self
recognition in the regulation of immune response [8]. Whilst individual RNA modifications
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have profound consequences on RNA function, they do not behave independently, and
how they coordinate to exert their regulatory effects is highly complex and has significant
implications for understanding gene regulatory control. Before this complexity can be
fully deciphered, however, a crucial prerequisite is to determine which transcripts and
precise positions are targeted by each modification and in what contexts, together with
their sequence or structural preferences for binding.
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Figure 1. Introduction to deep learning for the prediction of modified sites on RNA: (A) RNAs
are modified co- or post-transcriptionally by RNA-binding proteins (RBPs) and a range of chemical
modifications. The study of these modifications transcriptome-wide is collectively termed epitran-
scriptomics. (B) Example roles of RNA modifications played by RNA-binding proteins and/or m6A
methylation. (C) Schematic depicting neural network, which typically starts with transcriptome-
wide measurements of modified positions and makes some prediction based on the trained model.
(D) Motivations for using deep learning approaches, including handling of bias, identification of
precise binding locations, or model interpretation in terms of motif identification or assessing effects
of sequence mutation.

Modified locations within the transcriptome can be detected experimentally, most com-
monly through the use of immunoprecipitation-based methods [9–11]. For the detection
of RBP binding sites in vivo, numerous variations of the standard protocol, cross-linking
followed by immunoprecipitation and sequencing (CLIP), exist. Notable examples are the
high-resolution iCLIP (individual-nucleotide resolution CLIP) [12], and eCLIP (enhanced
CLIP) [13], the latter of which has been extensively applied by the ENCODE consortium
to profile 150 RBPs in the K562 and HepG2 cell lines, forming the largest resource of RBP
binding to date [14]. However, CLIP-based methods are susceptible to several biases,
including preferential binding to specific RNA sequences and the efficiency of cross-linking
can vary significantly between different RBPs and RNA regions [15]. This creates chal-
lenges for the accurate determination of binding sites, potentially leading to both false
positives and false negatives in the collected data. Recent advancements have led to the
development of immunoprecipitation-free methods for detecting RBP protein binding, such
as RNA-editor methods like HyperTRIBE and DART-seq [16,17]. These methods provide
promising alternatives for modification detection, circumventing some of the biases of CLIP
methods, although they do not guarantee the detection of the exact binding location. In
addition to in vivo methods, in vitro approaches such as RNAcompete, RNA Bind-n-Seq,
and SELEX (Systematic Evolution of Ligands by EXponential enrichment) facilitate the
discovery of sequence motifs specifically recognised by RBPs [18,19]. Furthermore, various
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advancements in technologies specifically for the detection of chemical modifications now
allow for more precise determinants of modified bases and their associated levels [20,21].
The recent introduction of direct RNA sequencing by Oxford Nanopore Technologies also
represents a significant step forward in the accurate detection of a variety of base modifica-
tions [22], with the potential for detecting multiple modifications within the same assay
and at single-molecule resolution [23,24].

Deep learning, an advanced sub-field of machine learning, has revolutionised the
analysis of genomic data in recent years [25]. Deep learning utilises deep neural networks,
characterised by multiple layers incorporating potentially millions of ’weights’, allowing
well-defined models to learn highly complex patterns and representations from large-
scale genomic datasets [26], Figure 1C). To facilitate model development, advancements
in deep learning frameworks that efficiently utilise GPU capabilities have significantly
enhanced the speed and performance of model training and testing, whilst also expanding
the accessibility of deep learning approaches to a broader research community [27,28].

In the context of predicting RNA modification preferences, such as mRNA-RBP in-
teractions, deep learning can serve several purposes (Figure 1D). First, it can address the
high levels of noise in experimental datasets, which may be of low resolution or subject
to a range of systemic biases [15]. In this regard, deep learning-based predictions can
both refine the locations of observed sites and reduce the number of sites called as false
positives in data processing pipelines. Second, well-trained models can extend predictions
of modified locations to under-explored areas, especially where data is scarce, such as with
lowly expressed RNAs, non-coding RNAs, or viral RNA [29,30], potentially leading to
significant biological insights. Third, the learned feature spaces from trained models can be
leveraged to uncover biologically relevant patterns, such as RNA-binding motifs [31,32],
local cis-regulatory elements [33], or secondary structure features. They can also be used to
address the impact of sequence variation in silico [34], such as single-nucleotide polymor-
phisms associated with specific diseases, thereby proving potential phenotypic insights
to genetic connections. Additionally, in the context of nanopore direct RNA sequencing,
several advanced deep learning approaches have recently been developed to interpret the
signals captured as the RNA strand is pulled through a specialised pore, both for accurately
determining the base type and modification status for each assayed molecule [23,24].

This perspective provides an overview of recent deep learning-based approaches
developed to address where and how modifications select their target sites on mRNAs.
Whilst the main focus is on the prediction of mRNA-RBP binding sites, we also highlight
publications on other modifications, particularly m6A and A-to-I editing. This work
describes the different types of inputs typically used in training and how various types
of layers can be used to connect these inputs to outputs. It discusses how models might
be trained in a biologically meaningful way. Additionally, as deep learning methods and
applications for RNA modifications are still in their infancy, future prospects in the field are
explored, focusing on major challenges and opportunities for applying these techniques in
the field.

2. Deep Learning for RNA Modifications

In order to decipher the complex regulatory roles of modifications to RNA, includ-
ing their potential roles in disease, it is essential to be able to accurately pinpoint where
and in which contexts these modifications occur. In recent years, numerous deep learn-
ing approaches have been published to this end, with some key examples summarised
in Table 1. Whilst these approaches can vary greatly, Figure 2 outlines the most typical
inputs, features and modelling strategies. First, ’positive’ regions (e.g., known binding
locations with some surrounding context) are usually selected for training (Figure 2A).
Since deep learning models have a reputation for requiring substantial numbers of training
examples, many studies focus on data from large-scale efforts like ENCODE [13,14], or
from other well-documented studies in human cell-lines [35,36], often aided by databases
such as POSTAR3 [37] or m6A-Atlas [38,39]. Note that many deep learning models de-
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pend on proper processing of raw reads as a prerequisite. Rigorous pipelines exist for
performing the necessary quality controls, conducting peak-calling and filtering regions
also present in paired input samples, thereby generating a list of quality regions, or single-
nucleotide positions in the case of some assays such as iCLIP [12], for use in further model
training [40,41]. It is important to note, however, that even after peak-calling, certain biases,
such as preferences towards certain sequence contexts, may still be present.
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Figure 2. Strategies and outcomes for modelling RBP binding using deep learning techniques:
(A) definition of positive and negative sites and inclusion of surrounding context. (B) Inputs: typical
positive training examples include sequence and/or RNA secondary structure at and surrounding lo-
cations of known binding sites, together with negative regions of equal size without detected binding.
(C) Modelling: Popular deep learning-based layers include single-dimensional (1D) convolutional
layers for detecting local sequence motifs from the input data; gated recurrent unit (GRU) or long
short-term memory (LSTM) layers for capturing long-range dependencies impacting RBP binding;
graph (GRN) layers for capturing higher-order interactions between RNA nucleotides/structures; a
fully connected layer, allowing the model to learn complex patterns; and attention, which focuses on
important parts of the input data.

Table 1. Examples of some recent models for RNA modifications with emphasis on RNA-binding
protein (RBP) binding. Note that this is not meant as an exhaustive list, but to cover a variety of
currently available models. Abbreviations: RNASS: RNA secondary structure; CNN: convolutional
neural network; RNN: recurrent neural network; SVM: support vector machine; GCN: graph convo-
lutional network; MIL: multiple instance learning. For more detailed specifics of each model, please
see cited references.

Name Data Description Model Ref

HDRNet RBP

Sequence + in vivo RNASS (icSHAPE) +
DNABERT [42], data shared with PrismNet [43],
101 bp regions, random assignment of positions in
test/training.

Attention [44]

BERT-RBP RBP
Sequence + RNASS + DNABERT [42], 101 bp re-
gions, data as per RBPsuite [45], random assign-
ment of positions in test/training.

Attention [46]
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Table 1. Cont.

Name Data Description Model Ref

RBPnet RBP
Sequence to signal mixture approach for bias cor-
rection, 300 bp windows, chromosome-wise splits
to test/training.

CNN [29]

DeepPN RBP
Sequence + RNASS, bound-genes sourced nega-
tives, 501 bp regions, random assignment of posi-
tions in test/training.

CNN/GCN [47]

PrismNet RBP

Sequence + in vivo RNASS, 101 bp regions, nega-
tives with >40% icSHAPE coverage sampled from
transcriptome, random assignment of positions in
test/training.

CNN/attention [43]

RNAProt RBP
Multiple variable features, inc. sequence, RNASS,
conservation, etc., 81 bp regions, random assign-
ment of positions in test/training.

RNN [48]

DeepCLIP RBP
Sequence, matched-gene negatives for training, up
to 75 bp regions, random assignment of positions
in test/training.

CNN/RNN [34]

DeepRiPe RBP

Multitask models covering 59 RBPs, Sequence
(150 bp regions derived from 50 bp bins) and ge-
nomic feature information (250 bp regions), random
assignment of bins in test/training.

multi-output
CNN [49]

iM6A m6A Sequence-based m6A site prediction, surrounding
unmethylated sites as negatives, human+mouse

CNN [33]

m6Anet m6A
Trained on nanopore signal for molecule-resolution
m6A prediction.

NN/MIL [23]

EditPredict A-to-I
Sequence, predict A-to-I editing sites sourced from
REDIportal [50], non-edited sites as negatives, up
to 200 bp regions, multi-species.

CNN [51]

To train models to distinguish between affected (e.g., bound by an RBP or methylated)
and unaffected states, positive regions are often paired with similar numbers of so-called
negative regions. Many recent approaches source these negative regions either from the
same gene set to minimise gene selection bias or from general transcriptomic sampling
(see [52] for detailed comparison of these two strategies). Some try to address systematic
biases by treating regions as negative if they are called as sites bound by other RBPs that
are not the RBP of interest [49]. Other methods avoid the need to specifically select negative
regions, one example being iM6A [33], which, using an architecture similar to spliceAI for
the detection of splice sites [53], aims to detect m6A sites out from surrounding nucleotides.

2.1. Features and Model Architecture

The features to the neural networks can take various forms, but the two which are
by far the most prevalent in the prediction of mRNA-RBP binding sites are sequence and
RNA secondary structure (Figure 2B). Generally, these types of models are supervised, that
is, the ground truth is considered as known and the model is tasked with connecting the
supplied input features with these ground truth measurements (e.g., presence or absence
of binding) via a set of non-linear functions incorporating weights which are optimised in
the training process. For this reason, we focus on supervised approaches here, but other
types of models are also extremely useful in biology, such as unsupervised learning of
cell clusters from single-cell RNA-sequencing [54] or semi-supervised deep learning for
biological imaging analysis [55], just to name two applications.

Due to its simplicity and flexibility, the RNA sequence extracted using the coordinates
of the regions surrounding selected positions is frequently processed in a one-hot encoded
format, before being presented as input to a neural network (Figure 2B). In this format, each
possible base (A,U,C,G) in the RNA sequence is represented as a separate “channel”, which
is essentially a vector of the same length as the input sequence with value of one where the
sequence encodes for that base and zero otherwise. A popular alternative representation
is using k-mers, whereby the sequence is broken up into overlapping segments of length



Genes 2024, 15, 629 6 of 16

k, before often being collapsed into a vector of counts for each possible sequence. On the
whole, there is a trend towards using wider sequence contexts around positions of interest,
with some even including full transcript sequences [33,56], although note that with larger
models there may be a trade-off between the maximum input sequence length and the
availability of GPU capacity for training. Interestingly, recent deep learning models for RBP
appear to show that sequence alone can achieve high performance scores for determining
the binding status for a large number of RBPs [29,34,43,57], the locations of m6A sites [33],
and A-to-I editing sites [51].

Figure 2C outlines some popular layer types frequently used in the model architec-
ture of supervised neural networks. Encoded RNA sequence is usually managed using
one-dimensional (1D) convolutional layers (termed a convolutional neural network, CNN).
Briefly, the model learns a set of weights making up fixed-sized filters, which essentially
scan across the input to the layer and assign scores. These scores are subsequently passed
via an activation function to the next layer. The initial convolutional layer is especially
seen as informative, as it directly connects to the encoded sequence input and can thus be
interpreted in terms of de novo motifs or sequence contexts relevant for RBP binding [58].
Whilst CNNs excel at identifying local ’motif-like’ sequence patterns, recurrent neural
networks (RNN), specifically those with LSTM (long short-term memory) or GRU (gated re-
current unit) layers, are adept at learning long-term dependencies in sequence data [59–61]
and bidirectional variations of LSTM can process sequences in both directions, enriching
their ability to learn contextual patterns. RNNs have been applied with success in the
context of RBP-mRNA interactions, two examples being iDeepE and DeepCLIP [34,57].
In addition, models involving transformer layers implement self-attention mechanisms
by assigning variable attention weights to different positions, allowing them to handle all
parts of the sequence at once. Transformers have shown promising potential in recently
published approaches for RBP-mRNA interaction prediction [44,46,62].

Deep learning models are particularly flexible at combining different layer types,
such as LSTM layers following convolutional layers. Fully connected layers, whereby all
nodes connect to all nodes in the subsequent layer, are also common, and typically feed
into the output layer. Fully connected layers allow for learning highly complex feature
spaces, although these feature spaces can be difficult to interpret and these layers should be
used sensibly with smaller datasets since they can vastly increase the number of trainable
weights in the model. Layers are also interspersed with specialised types of layers such
as activation layers, pooling or drop-out layers, which respectively pass features non-
linearly between layers, reduce feature dimensions, or limit the number of parameters in
the subsequent layer to avoid overfitting [63,64] (Figure 2C). Overfitting occurs when a
model achieves a very high performance within the same data on which it is trained, but
fails to generalise to new, unseen data, such as new genomic locations. Large models with
few examples are especially prone to overfitting, and for this reason, it is important to assess
model performance on only unseen data (see below). Overall, due to wide possibilities for
complex arrangements and parameterisations, different models with similar feature sets
can potentially perform very differently. For this reason, it is important that approaches are
carefully optimised for the given problem and cannot be treated as ’black-box’ approaches
for machine learning.

2.2. Incorporating RNA Secondary Structure

Since the RNA-binding domains of RBPs vary in their ability to recognise and bind
RNA secondary structures, RNA conformation can play an important determining role in
the prediction of mRNA-RBP interactions and is therefore frequently considered as an input
feature in models. GraphProt, based on support vector machines (SVMs), was one of the
first models to extensively incorporate predicted secondary structure information, encoded
as graph kernels [65] and has since been superseded by deep learning-based methods. Many
of these models encode secondary structure features into a graph, where each node repre-
sents a nucleotide in the sequence and edges symbolise their interactions [47,66,67]. This
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graph representation is processed via a graph convolutional network (GCN) (Figure 2C),
which applies a series of convolution operations, aggregating features from neighbouring
nodes by taking into account both its individual features and the structure of its immediate
surroundings in the graph.

The majority of these models focus on predicted RNA secondary structures via the
application of computational tools (e.g., RNAfold or RNAshapes [68,69]. These tools
work by calculating the minimum free energy (MFE) structure from a given sequence
based on sophisticated dynamic programming algorithms. As RNA structure can be
stochastic within cells, one approach found it advantageous to consider base-pairing proba-
bilities instead of a single MFE configuration [70]. Alternatively, PrismNet accommodates
experimentally determined in-vivo secondary structures by utilising the experimental
icSHAPE method [30,44], which provides a score at genomic positions representing double-
strandedness or single-strandedness of the transcribed RNA [71]. Notably, these structures
appear to remain stable across different cell types [72], yet their observed variations seem
able to decipher dynamic, tissue-dependent mRNA-RBP binding [43]. A more recent model,
HDRNet, takes this concept a step further by testing the capabilities of in-vivo secondary
structures to predict dynamic RBP binding in a given cell context using a model which
was trained on another context, with promising results [44]. In addition, the same study
further supported the advantage of using in vivo structures over computational predictions,
finding that models using in vivo structures always outperformed their counterparts based
on RNAfold-predicted structures in place of the icSHAPE scores.

However, note that the inclusion of the RNA secondary structure and sequence in
parallel does not always guarantee an improvement in performance over sequence alone,
and is instead likely to be dependent on the underlying biology of the protein under
study [57]. Interestingly, for certain RBPs such as PABPC4, METAP2, DDX55, and DGCR8,
performance was actually found to be higher for a model using only structure-based
features compared to sequence-only features [30]. However, the same study did show
that, on average across all tested proteins, a combination of in vivo structure and sequence
resulted in the best performance (an AUROC of 0.850 compared to 0.797 and 0.758 for
sequence-only and structure-only models, respectively, where an AUROC of 1 implies
a perfect model; see below for description of measures of model performance). Since
performance variations are likely reflecting the underlying biology of the protein under
study, a closer look into these statistics may provide useful clues of properties of binding
behaviours of lesser known RBP groups. In addition, note that the role of secondary
structure via deep learning for the prediction of other modifications such as RNA-editing
and m6A remains less explored. Whilst the ADAR proteins catalysing RNA-editing are
known to have strong preferences for double-stranded RNA, m6A sites typically appear
associated with single-stranded RNA, although the precise nature of the relationship
between m6A and RNA structure does remain somewhat unclear [73].

Finally, note that models are not limited by only sequence and/or secondary structure
features, but can flexibly be extended to incorporate further features: for example, RNAprot
has shown benefits in including additional features such as sequence conservation [48],
and, given RBPs have preferences for specific genomic features, including information
of the locality of the bound region (e.g., 5′ UTR, CDS, 3′ UTR) also seems to help predic-
tions [49]. Moreover, progress in the use of large language models for genomic sequence,
such as bidirectional encoder representations from transformers (BERT), has accelerated
recently [42] and appears advantageous for the prediction of RNA-RBP interactions [44,46].
For example, HDRNet adapts BERT to encode sequences of interest broken into short k-mer
stretches as dynamic representations that appear efficient at capturing both local contexts
and long-range dependencies, reflected in the impressive performance of their models [44].

2.3. Perspective on Current Models

Due to the limited number of large data resources over which modelling can be applied
systematically on a broad scale, a number of the RBP models mentioned in Table 1 focus on
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the same datasets (e.g., ENCODE [14] for RBPs in the HepG2 and K562 cell lines). Despite
this, the overall approaches employed by the various models are often difficult to compare
due to differences and/or ambiguities in model setups, such as variations in the choice of
negative sets, region sizes, and chosen strategy for dividing examples between sets used for
training and testing sets used for assessing model performance (for example, holding out
individual positions vs. whole genes or chromosomes, see below for further discussion on
this aspect) (see Table 1 for set-ups of individual models). On the other hand, despite the
different modelling approaches, the performance of a given model may be more influenced
by the characteristics of the protein under study than by specific model architectures or
feature choices. For instance, AGO2, involved in RNA-binding functions via miRNAs [74],
and ALKBH5, an eraser of N6-methyladenosine, often receive lower performance scores
relative to other RBPs [34,67]. This could be attributed to the low dependency of that
protein on only sequence-based features, although factors such as poor data quality or
insufficient numbers of training sites to work with likely also play a significant role.

Moreover, it should be noted that trained models are not immune to biases present
in the original data. For example, one study noted an inverse correlation between AUC
performance and GC-richness in the RBP’s sequence preference [34]. Efforts to mitigate
sequence biases in immunoprecipitation-based data are ongoing [29,67,70]. For example,
a promising recent method, RBPnet, integrates matched input signal in a mixture-model
approach, allowing the neural network to separate ‘true’ signal from systematic biases
that can be inferred from the input [29]. Another method, HPNet, attempts to mitigate the
influence of systematic nucleotide bias in the data by employing ’context-averaging’ [67].
Whilst these attempts are important for improving the quality of binding site predictions,
it should be noted that the field’s heavy reliance on eCLIP data underscores the need for
further attention to this issue [14]. Incorporating orthogonal experimental information,
such as data from the RNA-editor methods [16,17], could lead to more confident results,
although such approaches have to date not yet been tested.

In addition to the above considerations, overfitting remains a significant challenge,
caused by the scarcity of reliable input data and labels for training, particularly to RBPs
with few binding sites, or rarer chemical modifications. One promising option to mitigate
this is via transfer learning, whereby one trains on a broad set of modifications and then
fine-tunes on individual modifications [75]. The use of recent foundation models for
genomic sequence can help in this regard [42,76]. These large models are pre-trained over
a broad range of genomes, and sequence embedding vectors can be extracted or models
fine-tuned for use in specific problems, such as mRNA-RBP site prediction, thus aiding in
circumventing issues with low dataset sizes [46].

2.4. Model Performance and Choice of Background Set: The Hunt for Biologically Relevant Results

It should be noted that due to competing approaches on similar data, there is often
a pressure to demonstrate the best model performance in published works. Model per-
formance can be measured in multiple ways. The most typical scores are accuracy (the
proportion of correct predictions) and the area under the curve (AUC), which balances the
sensitivity of the model to find true sites and the specificity to exclude those which are not
true sites, with 1 being a perfect model and 0.5 suggesting the model guesses randomly.
Alternatively, the area under the precision recall curve (AUPRC) balances precision, which
is the proportion those sites predicted which are actually modified, and recall, which is
the proportion of modified sites that are also predicted as such. AUPRC ranges between
0 and 1 and is usually preferred over AUC in situations where numbers of positives and
negatives are unbalanced, as the AUC can be highly misleading in these situations. In
any case, it is normally preferable to quote a range of statistics in order to comprehensibly
describe and compare model performance.

Whilst one generally would expect to trust predictions derived from a well-performing
model over a lesser-performing one, it is important to realise that there are situations where
a well set-up model can show poorer performance according to these above metrics, yet
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yield more biologically relevant results. One example is the use of stringent background
sets, which may lead to poorer performance metrics but actually ensures that the learned
feature space aligns with the biological problem and avoids capturing irrelevant informa-
tion. To address the impact of choice of the negative set, a recent study systematically
benchmarked a range of models in the context of RBP binding [52]. They considered
two different background sets: one based on random sampling within the same genes
as the positive positions, and one based on sampled positions that were experimentally-
defined binding sites of other RBPs. The rationale of the second set was that by sampling
positions of other RBPs to the one of interest, one can avoid learning features associated
with potential experimental biases between the positive and negative set. Indeed, they
found that performance dropped for this second set, suggesting that a portion of the mea-
sured performance of the less strict background may be capturing over-representation of
experimental bias in positive sets rather than true biological signal.

2.5. Further Considerations for Modelling Approach

Figure 3 illustrates some suggestions for designing and training deep learning models
to maximise biological insight. First, as mentioned, careful selection of negative site location
is essential (Figure 3A). In addition, RBPs are not uniformly distributed across transcripts,
but are often localised to highly specific regions, such as near splice sites or in the 3′

UTR [14], and m6A tends to be enriched near the stop codon. Since sequence and/or
secondary structure preferences are highly variable across transcripts, general sequence
patterns relevant to the transcript region or the presence of these specific features might be
over-represented in intervals around the positive sites. Similar to the above situation with
experimental biases, this could result in the model appearing to perform well, but in a way
that is capturing region preferences independent of what is relevant to the binding of the
specific modification. To circumvent this, when constructing machine learning models, it is
suggested to consider carefully matching background sites according to transcript features,
and preferably on genes that display similar expression distributions and/or are targets for
the RBP of interest [77].
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Figure 3. Recommendations for deep learning model training and prediction: (A) Choice of negative
(’non-modified’) locations can have a large influence on the biological applicability of the model.
Suggested options could be to match modified positives according to feature location, expression
and/or target status. (B) When performing cross-validation, it is recommended to avoid information
leakage by distributing genes across the folds rather than individual sites, whose sequence could
overlap a site in another fold. (C) In order to honestly assess the model, it is recommended to predict
out of fold.

Second, when training models, it is common practice to employ cross-fold validation
(Figure 3B,C). Here, one allocates positions to a number of folds, typically 5 or 10, and
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trains the model on all the folds but one, using the held-out fold to assess model perfor-
mance. Producing predictions for each held-out fold allows one to gain an overall picture
of model performance, and since performance statistics are only calculated on sets not
including within training, these statistics should not be inflated by potential overfitting
of the model. Frequently, in order to allocate training examples to different folds, sites
are simply randomised across these five folds, this being the case for a large number of
the models highlighted above (see Table 1 for strategies employed for allocating folds by
selected recent mRNA-RBP models). However, in the case of post-transcriptional modifica-
tions, there is a strong argument for exercising caution, since one single transcript region
can harbour multiple modified sites, forming clusters. This means that highly overlapping
input features (e.g., sequence or secondary structure) will occur across multiple different
folds, potentially leading to inflated performance statistics. Thus, it is highly recommended
to allocate folds in such a way that any given gene is only found within a single fold
(Figure 3B). Many published deep learning models within the genomics field take this a
step further, by holding out entire chromosomes in order to strictly ensure that there is
no leakage between the training and testing sets, with one example from Table 1 being
RBPnet [29]. In addition, SpliceAI takes an even stricter approach by holding back paralogs
from the training set in order to addresses the issue of sequence similarity due to common
gene ancestors [53], and it would be interesting to see how this approach affects the predic-
tion scores of current mRNA-RBP interaction modelling approaches. Additionally, along
similar lines of argument, when interpreting a model, it is also recommended to work with
prediction scores or effects of in silico mutation using a model whereby the involved inputs
were never seen within the training set (Figure 3C).

In conclusion, it is important for focus to shift towards biological interpretations
beyond mere performance statistics when assessing a model. Lower performance scores
might indicate that the problem is set up more stringently, controlling for more confounding
variables. These models may have greater potential to provide interesting biological insights,
and further efforts are required to fully explore these aspects.

3. Some Major Future Perspectives

Deep learning within genomics, including the field of RNA modifications and particu-
larly the context of mRNA-RBP interactions, is gaining a lot of traction in recent years, with
a lot of recently published approaches (not limited to those presented in Table 1). However,
there are still a number of distinct challenges and opportunities to be taken into account, so
that the field can move further forward in terms of biological discoveries. Four are briefly
discussed below.

3.1. Generalisability across Cell Types and Species

Current experimental methods for studying RNA-binding proteins (RBPs) typically
require substantial input material, leading to a heavy reliance on cell lines. This reliance
has resulted in data skewed toward a group of specific human cell lines, most notably
K562, HepG2 and HEK293T [14]. Whilst the sequence itself remains consistent across
different cell types, variable expression patterns influence binding opportunities, which
are likely further driven by distinct regulatory ’grammar rules’ driving observed cell-type-
specific patterns [78]. Furthermore, secondary structure differences have been shown to
significantly affect RBP binding disparities between K562 and HepG2 cells [43], which
can be leveraged for predicting dynamic binding patterns across cell types [44]. Without
experimental data covering a broader range of cell types, the relevance of such differences
cannot be thoroughly explored. For example, RBPs like TDP-43 and FUS are implicated in
memory formation through the creation of sub-cellular RnP granules; such context-specific
roles are not adequately represented in the most commonly assayed cell types [79].

Moreover, the field is heavily biased towards human data, with a notable lack of
data from other species. In plants, for example, RBPs play essential roles in growth,
development, and stress response, yet high-quality RBP binding data for these species
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are scarce [80], although recent improvements in immunoprecipitation and RNA-editor
approaches aimed specifically at plants are now boosting this area [77,81]. The POPSTAR3
database, which compiles RBP binding data across seven species [37], further highlights
the limited share of non-human data available. Expanding RBP binding data in non-
human species is crucial not only for the understanding modification-associated regulatory
mechanisms in each specific species, but also for deciphering evolutionary relationships
in RBP binding. Furthermore, note that a significant challenge with non-human species
is the limited understanding of which proteins possess mRNA binding capabilities. For
this reason, the integration of deep learning approaches aimed at predicting RBPs and their
binding domains [82–85] and their subcellular locations [86] could be key to advancing
experimental efforts across various species.

3.2. Focus On Model Interpretation

Interpreting deep learning models, given their highly non-linear feature spaces in-
volving large numbers of weights, is challenging yet crucial for understanding biological
contexts [26,87]. Reassuringly, there is a growing trend towards models considering what
sequence motifs and/or secondary structure contexts might be driving RBP binding to
RNA. In particular, in silico mutagenesis or related approaches can be used to interrogate
how base changes in the input sequences influences the binding predictions, and are further
useful for informing motif detection algorithms [88–91]. As an example, Grønning et al.
used their models to show that point mutations known to cause exon skipping were pre-
dicted to result in increased binding of the RBP SRSF1, which has known roles in exon
inclusion [34], and the authors of iM6A looked at the impact of single nucleotide variants
on m6A deposition probabilities [33], which showed agreement with experimental data.
Moreover, two recent studies leverage their models to make predictions on viral RNAs,
where there are very few training data to work with [29,30], and the results were at least in
part validated by external datasets. Significant challenges persist, however, as RBPs can be
highly redundant and have highly redundant binding sites, such that a single-nucleotide
mutation may not be sufficient to alter the binding probability. Therefore, more work is
required to build robust frameworks of how sequence variation affects molecular function
and disease through its impact on RBP binding.

3.3. Extensions to Predictions on Non-Coding RNAs

Non-coding RNAs, such as long non-coding RNAs, enhancer RNAs, microRNAs,
and others, exhibit highly diverse functional roles and pronounced cell-specificity [92].
Moreover, the functional roles of these RNA species in the context of their interactions
with RNA modifiers such as RBPs or m6A remain poorly understood [93]. One suggested
function of lncRNAs is to act as molecular scaffolds or decoys, potentially sequestering
RBPs from target genes, with implications in immune regulation [94]. Additionally, recent
studies have revealed an enrichment of m6A modification in non-coding RNAs, with
m6A-reader RBP YTHDC1 playing a role in maintaining RNA integrity [95].

On the whole, the limited availability of data on non-coding RNA modifications poses
a significant challenge in terms of training deep learning models. One approach could be
to employ models trained on mRNA-based data to predict modifications in non-coding
RNAs. Due to the current lack of experimental methods, however, validations of these
observations remain difficult; therefore, technological advancements that can lead to high
quality and throughput at these regions could have both large impact in terms of validating
current deep learning based observations, as well as training new models.

3.4. Cooperative Contexts and Interplay with Other Modifications

RBPs do not operate in isolation, but often exhibit redundant behaviour or act in
collaboration or competition with other RBPs. For instance, the YTH-domain m6A reader
RBPs display highly redundant functions [96,97], while the RBPs HuR and AUF1 are known
to compete for binding sites, affecting the stability of shared mRNA targets [98]. Moreover,
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different types of modifications do not act independently. For example, the presence or
absence of A-so-I RNA editing can significantly modify RBP binding patterns [99,100]. Such
interactions underscore the highly complex nature of RNA regulation, where modifications
and RBPs form a dynamic dependency network. Therefore, studying the binding patterns of
a single RBP or modification may not sufficiently capture the nuances of RNA stability and
decay. Indeed, research in this area has demonstrated that considering the full repertoire
of RBPs yields a more accurate prediction of RNA half-life than analysing any individual
RBP [43]. However, a significant limitation in current research is the scarcity of experimental
methods capable of establishing potential cooperative binding locations on a genome-wide
scale; addressing this gap would provide essential data for establishing ground truths on
which to train deep learning-based modelling frameworks.

4. Conclusions

This article has provided an overview of recent advances in deep learning in the
context of RNA modifications, highlighting areas in which there are distinct challenges and
opportunities. It is important to emphasise that this is a cyclical process, with experimental
data forming a basis for deep learning models, and these improved models, in turn, can
guide the development of either improved or more targeted experimental methodologies.
Consequently, future collaboration between experimental and computational biologists
will be key for driving progress in the RNA modification field, allowing for the construction
of powerful and highly interpretable models able to answer biological questions in a range
of species and contexts.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Delaunay, S.; Helm, M.; Frye, M. RNA modifications in physiology and disease: Towards clinical applications. Nat. Rev. Genet.

2024, 25, 104–122. [CrossRef] [PubMed]
2. Barbieri, I.; Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 2020, 20, 303–322. [CrossRef] [PubMed]
3. Gerstberger, S.; Hafner, M.; Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 2014, 15, 829–845. [CrossRef]

[PubMed]
4. Hentze, M.W.; Castello, A.; Schwarzl, T.; Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 2018,

19, 327–341. [CrossRef] [PubMed]
5. Dominguez, D.; Freese, P.; Alexis, M.S.; Su, A.; Hochman, M.; Palden, T.; Bazile, C.; Lambert, N.J.; Van Nostrand, E.L.;

Pratt, G.A.; et al. Sequence, structure, and context preferences of human RNA binding proteins. Mol. Cell 2018, 70, 854–867.
[CrossRef] [PubMed]

6. Ke, S.; Alemu, E.A.; Mertens, C.; Gantman, E.C.; Fak, J.J.; Mele, A.; Haripal, B.; Zucker-Scharff, I.; Moore, M.J.; Park, C.Y.; et al.
A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 2015, 29, 2037–2053.
[CrossRef] [PubMed]

7. Patil, D.P.; Pickering, B.F.; Jaffrey, S.R. Reading m6A in the transcriptome: M6A-binding proteins. Trends Cell Biol. 2018,
28, 113–127. [CrossRef] [PubMed]

8. Eisenberg, E.; Levanon, E.Y. A-to-I RNA editing—immune protector and transcriptome diversifier. Nat. Rev. Genet. 2018,
19, 473–490. [CrossRef]

9. Ule, J.; Jensen, K.B.; Ruggiu, M.; Mele, A.; Ule, A.; Darnell, R.B. CLIP identifies Nova-regulated RNA networks in the brain.
Science 2003, 302, 1212–1215. [CrossRef]

10. Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.;
Amariglio, N.; Kupiec, M.; et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012,
485, 201–206. [CrossRef]

11. Linder, B.; Grozhik, A.V.; Olarerin-George, A.O.; Meydan, C.; Mason, C.E.; Jaffrey, S.R. Single-nucleotide-resolution mapping of
m6A and m6Am throughout the transcriptome. Nat. Methods 2015, 12, 767–772. [CrossRef]

http://doi.org/10.1038/s41576-023-00645-2
http://www.ncbi.nlm.nih.gov/pubmed/37714958
http://dx.doi.org/10.1038/s41568-020-0253-2
http://www.ncbi.nlm.nih.gov/pubmed/32300195
http://dx.doi.org/10.1038/nrg3813
http://www.ncbi.nlm.nih.gov/pubmed/25365966
http://dx.doi.org/10.1038/nrm.2017.130
http://www.ncbi.nlm.nih.gov/pubmed/29339797
http://dx.doi.org/10.1016/j.molcel.2018.05.001
http://www.ncbi.nlm.nih.gov/pubmed/29883606
http://dx.doi.org/10.1101/gad.269415.115
http://www.ncbi.nlm.nih.gov/pubmed/26404942
http://dx.doi.org/10.1016/j.tcb.2017.10.001
http://www.ncbi.nlm.nih.gov/pubmed/29103884
http://dx.doi.org/10.1038/s41576-018-0006-1
http://dx.doi.org/10.1126/science.1090095
http://dx.doi.org/10.1038/nature11112
http://dx.doi.org/10.1038/nmeth.3453


Genes 2024, 15, 629 13 of 16

12. König, J.; Zarnack, K.; Rot, G.; Curk, T.; Kayikci, M.; Zupan, B.; Turner, D.J.; Luscombe, N.M.; Ule, J. iCLIP reveals the function of
hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 2010, 17, 909–915. [CrossRef] [PubMed]

13. Van Nostrand, E.L.; Pratt, G.A.; Shishkin, A.A.; Gelboin-Burkhart, C.; Fang, M.Y.; Sundararaman, B.; Blue, S.M.; Nguyen, T.B.;
Surka, C.; Elkins, K.; et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP
(eCLIP). Nat. Methods 2016, 13, 508–514. [CrossRef] [PubMed]

14. Van Nostrand, E.L.; Freese, P.; Pratt, G.A.; Wang, X.; Wei, X.; Xiao, R.; Blue, S.M.; Chen, J.Y.; Cody, N.A.; Dominguez, D.; et al.
A large-scale binding and functional map of human RNA-binding proteins. Nature 2020, 583, 711–719. [CrossRef] [PubMed]

15. Wheeler, E.C.; Van Nostrand, E.L.; Yeo, G.W. Advances and challenges in the detection of transcriptome-wide protein–RNA
interactions. Wiley Interdiscip. Rev. Rna 2018, 9, e1436. [CrossRef] [PubMed]

16. Rahman, R.; Xu, W.; Jin, H.; Rosbash, M. Identification of RNA-binding protein targets with HyperTRIBE. Nat. Protoc. 2018,
13, 1829–1849. [CrossRef] [PubMed]

17. Meyer, K.D. DART-seq: An antibody-free method for global m6A detection. Nat. Methods 2019, 16, 1275–1280. [CrossRef]
[PubMed]

18. Ray, D.; Kazan, H.; Cook, K.B.; Weirauch, M.T.; Najafabadi, H.S.; Li, X.; Gueroussov, S.; Albu, M.; Zheng, H.; Yang, A.; et al.
A compendium of RNA-binding motifs for decoding gene regulation. Nature 2013, 499, 172–177. [CrossRef] [PubMed]

19. Lambert, N.; Robertson, A.; Jangi, M.; McGeary, S.; Sharp, P.A.; Burge, C.B. RNA Bind-n-Seq: Quantitative assessment of the
sequence and structural binding specificity of RNA binding proteins. Mol. Cell 2014, 54, 887–900. [CrossRef]

20. Dai, Q.; Zhang, L.S.; Sun, H.L.; Pajdzik, K.; Yang, L.; Ye, C.; Ju, C.W.; Liu, S.; Wang, Y.; Zheng, Z.; et al. Quantitative sequencing
using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 2023, 41, 344–354.
[CrossRef]

21. Liu, C.; Sun, H.; Yi, Y.; Shen, W.; Li, K.; Xiao, Y.; Li, F.; Li, Y.; Hou, Y.; Lu, B.; et al. Absolute quantification of single-base m6A
methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. 2023, 41, 355–366. [CrossRef] [PubMed]

22. Garalde, D.R.; Snell, E.A.; Jachimowicz, D.; Sipos, B.; Lloyd, J.H.; Bruce, M.; Pantic, N.; Admassu, T.; James, P.; Warland, A.; et al.
Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 2018, 15, 201–206. [CrossRef] [PubMed]

23. Hendra, C.; Pratanwanich, P.N.; Wan, Y.K.; Goh, W.S.; Thiery, A.; Göke, J. Detection of m6A from direct RNA sequencing using a
multiple instance learning framework. Nat. Methods 2022, 19, 1590–1598. [CrossRef]

24. Mateos, P.A.; Sethi, A.; Ravindran, A.; Guarnacci, M.; Srivastava, A.; Xu, J.; Woodward, K.; Yuen, Z.; Mahmud, S.; Kanchi, M.; et al.
Simultaneous identification of m6A and m5C reveals coordinated RNA modification at single-molecule resolution. bioRxiv 2022. .
[CrossRef]

25. Angermueller, C.; Pärnamaa, T.; Parts, L.; Stegle, O. Deep learning for computational biology. Mol. Syst. Biol. 2016, 12, 878.
[CrossRef] [PubMed]

26. Zou, J.; Huss, M.; Abid, A.; Mohammadi, P.; Torkamani, A.; Telenti, A. A primer on deep learning in genomics. Nat. Genet. 2019,
51, 12–18. [CrossRef] [PubMed]

27. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems. 2019. Available
online: https://dl.acm.org/doi/10.5555/3454287.3455008 (accessed on 10 May 2024).

28. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:
A system for Large-Scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

29. Horlacher, M.; Wagner, N.; Moyon, L.; Kuret, K.; Goedert, N.; Salvatore, M.; Ule, J.; Gagneur, J.; Winther, O.; Marsico, A. Towards
In-Silico CLIP-seq: Predicting Protein-RNA Interaction via Sequence-to-Signal Learning. Genome Biol. 2022, 24, 180. [CrossRef]

30. Xu, Y.; Zhu, J.; Huang, W.; Xu, K.; Yang, R.; Zhang, Q.C.; Sun, L. PrismNet: Predicting protein–RNA interaction using in vivo
RNA structural information. Nucleic Acids Res. 2023, 51, W468–W477. [CrossRef]

31. Zhang, S.; Zhou, J.; Hu, H.; Gong, H.; Chen, L.; Cheng, C.; Zeng, J. A deep learning framework for modeling structural features
of RNA-binding protein targets. Nucleic Acids Res. 2016, 44, e32. [CrossRef]

32. Laverty, K.U.; Jolma, A.; Pour, S.E.; Zheng, H.; Ray, D.; Morris, Q.; Hughes, T.R. PRIESSTESS: Interpretable, high-performing
models of the sequence and structure preferences of RNA-binding proteins. Nucleic Acids Res. 2022, 50, e111. [CrossRef]

33. Luo, Z.; Zhang, J.; Fei, J.; Ke, S. Deep learning modeling m6A deposition reveals the importance of downstream cis-element
sequences. Nat. Commun. 2022, 13, 2720. [CrossRef]

34. Grønning, A.G.B.; Doktor, T.K.; Larsen, S.J.; Petersen, U.S.S.; Holm, L.L.; Bruun, G.H.; Hansen, M.B.; Hartung, A.M.; Baumbach, J.;
Andresen, B.S. DeepCLIP: Predicting the effect of mutations on protein–RNA binding with deep learning. Nucleic Acids Res. 2020,
48, 7099–7118. [CrossRef]

35. Mukherjee, N.; Wessels, H.H.; Lebedeva, S.; Sajek, M.; Ghanbari, M.; Garzia, A.; Munteanu, A.; Yusuf, D.; Farazi, T.; Hoell, J.I.; et al.
Deciphering human ribonucleoprotein regulatory networks. Nucleic Acids Res. 2019, 47, 570–581. [CrossRef] [PubMed]

36. Stražar, M.; Žitnik, M.; Zupan, B.; Ule, J.; Curk, T. Orthogonal matrix factorization enables integrative analysis of multiple RNA
binding proteins. Bioinformatics 2016, 32, 1527–1535. [CrossRef]

37. Zhao, W.; Zhang, S.; Zhu, Y.; Xi, X.; Bao, P.; Ma, Z.; Kapral, T.H.; Chen, S.; Zagrovic, B.; Yang, Y.T.; et al. POSTAR3: An
updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res. 2022,
50, D287–D294. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nsmb.1838
http://www.ncbi.nlm.nih.gov/pubmed/20601959
http://dx.doi.org/10.1038/nmeth.3810
http://www.ncbi.nlm.nih.gov/pubmed/27018577
http://dx.doi.org/10.1038/s41586-020-2077-3
http://www.ncbi.nlm.nih.gov/pubmed/32728246
http://dx.doi.org/10.1002/wrna.1436
http://www.ncbi.nlm.nih.gov/pubmed/28853213
http://dx.doi.org/10.1038/s41596-018-0020-y
http://www.ncbi.nlm.nih.gov/pubmed/30013039
http://dx.doi.org/10.1038/s41592-019-0570-0
http://www.ncbi.nlm.nih.gov/pubmed/31548708
http://dx.doi.org/10.1038/nature12311
http://www.ncbi.nlm.nih.gov/pubmed/23846655
http://dx.doi.org/10.1016/j.molcel.2014.04.016
http://dx.doi.org/10.1038/s41587-022-01505-w
http://dx.doi.org/10.1038/s41587-022-01487-9
http://www.ncbi.nlm.nih.gov/pubmed/36302990
http://dx.doi.org/10.1038/nmeth.4577
http://www.ncbi.nlm.nih.gov/pubmed/29334379
http://dx.doi.org/10.1038/s41592-022-01666-1
http://dx.doi.org/10.1101/2022.03.14.484124
http://dx.doi.org/10.15252/msb.20156651
http://www.ncbi.nlm.nih.gov/pubmed/27474269
http://dx.doi.org/10.1038/s41588-018-0295-5
http://www.ncbi.nlm.nih.gov/pubmed/30478442
https://dl.acm.org/doi/10.5555/3454287.3455008
http://dx.doi.org/10.1186/s13059-023-03015-7
http://dx.doi.org/10.1093/nar/gkad353
http://dx.doi.org/10.1093/nar/gkv1025
http://dx.doi.org/10.1093/nar/gkac694
http://dx.doi.org/10.1038/s41467-022-30209-7
http://dx.doi.org/10.1093/nar/gkaa530
http://dx.doi.org/10.1093/nar/gky1185
http://www.ncbi.nlm.nih.gov/pubmed/30517751
http://dx.doi.org/10.1093/bioinformatics/btw003
http://dx.doi.org/10.1093/nar/gkab702
http://www.ncbi.nlm.nih.gov/pubmed/34403477


Genes 2024, 15, 629 14 of 16

38. Tang, Y.; Chen, K.; Song, B.; Ma, J.; Wu, X.; Xu, Q.; Wei, Z.; Su, J.; Liu, G.; Rong, R.; et al. m6A-Atlas: A comprehensive
knowledgebase for unraveling the N 6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res. 2021, 49, D134–D143.
[CrossRef] [PubMed]

39. Liang, Z.; Ye, H.; Ma, J.; Wei, Z.; Wang, Y.; Zhang, Y.; Huang, D.; Song, B.; Meng, J.; Rigden, D.J.; et al. m6A-Atlas v2. 0: Updated
resources for unraveling the N 6-methyladenosine (m6A) epitranscriptome among multiple species. Nucleic Acids Res. 2024,
52, D194–D202. [CrossRef]

40. Krakau, S.; Richard, H.; Marsico, A. PureCLIP: Capturing target-specific protein–RNA interaction footprints from single-
nucleotide CLIP-seq data. Genome Biol. 2017, 18, 240 . [CrossRef]

41. Uren, P.J.; Bahrami-Samani, E.; Burns, S.C.; Qiao, M.; Karginov, F.V.; Hodges, E.; Hannon, G.J.; Sanford, J.R.; Penalva, L.O.; Smith,
A.D. Site identification in high-throughput RNA–protein interaction data. Bioinformatics 2012, 28, 3013–3020. [CrossRef]

42. Ji, Y.; Zhou, Z.; Liu, H.; Davuluri, R.V. DNABERT: Pre-trained Bidirectional Encoder Representations from Transformers model
for DNA-language in genome. Bioinformatics 2021, 37, 2112–2120. [CrossRef]

43. Sun, L.; Xu, K.; Huang, W.; Yang, Y.T.; Li, P.; Tang, L.; Xiong, T.; Zhang, Q.C. Predicting dynamic cellular protein–RNA interactions
by deep learning using in vivo RNA structures. Cell Res. 2021, 31, 495–516. [CrossRef]

44. Zhu, H.; Yang, Y.; Wang, Y.; Wang, F.; Huang, Y.; Chang, Y.; Wong, K.c.; Li, X. Dynamic characterization and interpretation for
protein-RNA interactions across diverse cellular conditions using HDRNet. Nat. Commun. 2023, 14, 6824. [CrossRef] [PubMed]

45. Pan, X.; Fang, Y.; Li, X.; Yang, Y.; Shen, H.B. RBPsuite: RNA-protein binding sites prediction suite based on deep learning. BMC
Genom. 2020, 21, 884 . [CrossRef] [PubMed]

46. Yamada, K.; Hamada, M. Prediction of RNA–protein interactions using a nucleotide language model. Bioinform. Adv. 2022,
2, vbac023. [CrossRef] [PubMed]

47. Zhang, J.; Liu, B.; Wang, Z.; Lehnert, K.; Gahegan, M. DeepPN: A deep parallel neural network based on convolutional neural
network and graph convolutional network for predicting RNA-protein binding sites. BMC Bioinform. 2022, 23, 257. [CrossRef]
[PubMed]

48. Uhl, M.; Tran, V.D.; Heyl, F.; Backofen, R. RNAProt: An efficient and feature-rich RNA binding protein binding site predictor.
GigaScience 2021, 10, giab054. [CrossRef] [PubMed]

49. Ghanbari, M.; Ohler, U. Deep neural networks for interpreting RNA-binding protein target preferences. Genome Res. 2020,
30, 214–226. [CrossRef]

50. Picardi, E.; D’Erchia, A.M.; Lo Giudice, C.; Pesole, G. REDIportal: A comprehensive database of A-to-I RNA editing events in
humans. Nucleic Acids Res. 2017, 45, D750–D757. [CrossRef]

51. Wang, J.; Ness, S.; Brown, R.; Yu, H.; Oyebamiji, O.; Jiang, L.; Sheng, Q.; Samuels, D.C.; Zhao, Y.Y.; Tang, J.; et al. EditPredict:
Prediction of RNA editable sites with convolutional neural network. Genomics 2021, 113, 3864–3871. [CrossRef]

52. Horlacher, M.; Cantini, G.; Hesse, J.; Schinke, P.; Goedert, N.; Londhe, S.; Moyon, L.; Marsico, A. A Systematic Benchmark of
Machine Learning Methods for Protein-RNA Interaction Prediction. Briefings Bioinform. 2023, 24, bbad307. [CrossRef]

53. Jaganathan, K.; Panagiotopoulou, S.K.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.;
Schwartz, G.B.; et al. Predicting splicing from primary sequence with deep learning. Cell 2019, 176, 535–548. [CrossRef] [PubMed]

54. Li, X.; Wang, K.; Lyu, Y.; Pan, H.; Zhang, J.; Stambolian, D.; Susztak, K.; Reilly, M.P.; Hu, G.; Li, M. Deep learning enables accurate
clustering with batch effect removal in single-cell RNA-seq analysis. Nat. Commun. 2020, 11, 2338. [CrossRef] [PubMed]

55. Han, K.; Sheng, V.S.; Song, Y.; Liu, Y.; Qiu, C.; Ma, S.; Liu, Z. Deep semi-supervised learning for medical image segmentation:
A review. Expert Syst. Appl. 2024, 245, 123052. [CrossRef]

56. Han, H.; Talpur, B.A.; Liu, W.; Wang, L.; Ahmed, B.; Sarhan, N.; Awwad, E.M. RNA-RBP interactions recognition using multi-label
learning and feature attention allocation. J. Cloud Comput. 2024, 13, 54. [CrossRef]

57. Pan, X.; Rijnbeek, P.; Yan, J.; Shen, H.B. Prediction of RNA-protein sequence and structure binding preferences using deep
convolutional and recurrent neural networks. BMC Genom. 2018, 19, 511. [CrossRef] [PubMed]

58. Trabelsi, A.; Chaabane, M.; Ben-Hur, A. Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA
sequence binding specificities. Bioinformatics 2019, 35, i269–i277. [CrossRef] [PubMed]

59. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
60. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
61. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
62. Wang, X.; Zhang, M.; Long, C.; Yao, L.; Zhu, M. Self-attention based neural network for predicting RNA-protein binding sites.

IEEE/Acm Trans. Comput. Biol. Bioinform. 2022, 20, 1469–1479. [CrossRef]
63. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]
64. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
65. Maticzka, D.; Lange, S.J.; Costa, F.; Backofen, R. GraphProt: Modeling binding preferences of RNA-binding proteins. Genome Biol.

2014, 15, R17. [CrossRef]
66. Uhl, M.; Tran, V.; Heyl, F.; Backofen, R. GraphProt2: A novel deep learning-based method for predicting binding sites of

RNA-binding proteins. BioRxiv 2019. [CrossRef]

http://dx.doi.org/10.1093/nar/gkaa692
http://www.ncbi.nlm.nih.gov/pubmed/32821938
http://dx.doi.org/10.1093/nar/gkad691
http://dx.doi.org/10.1186/s13059-017-1364-2
http://dx.doi.org/10.1093/bioinformatics/bts569
http://dx.doi.org/10.1093/bioinformatics/btab083
http://dx.doi.org/10.1038/s41422-021-00476-y
http://dx.doi.org/10.1038/s41467-023-42547-1
http://www.ncbi.nlm.nih.gov/pubmed/37884495
http://dx.doi.org/10.1186/s12864-020-07291-6
http://www.ncbi.nlm.nih.gov/pubmed/33297946
http://dx.doi.org/10.1093/bioadv/vbac023
http://www.ncbi.nlm.nih.gov/pubmed/36699410
http://dx.doi.org/10.1186/s12859-022-04798-5
http://www.ncbi.nlm.nih.gov/pubmed/35768792
http://dx.doi.org/10.1093/gigascience/giab054
http://www.ncbi.nlm.nih.gov/pubmed/34406415
http://dx.doi.org/10.1101/gr.247494.118
http://dx.doi.org/10.1093/nar/gkw767
http://dx.doi.org/10.1016/j.ygeno.2021.09.016
http://dx.doi.org/10.1093/bib/bbad307
http://dx.doi.org/10.1016/j.cell.2018.12.015
http://www.ncbi.nlm.nih.gov/pubmed/30661751
http://dx.doi.org/10.1038/s41467-020-15851-3
http://www.ncbi.nlm.nih.gov/pubmed/32393754
http://dx.doi.org/10.1016/j.eswa.2023.123052
http://dx.doi.org/10.1186/s13677-024-00612-0
http://dx.doi.org/10.1186/s12864-018-4889-1
http://www.ncbi.nlm.nih.gov/pubmed/29970003
http://dx.doi.org/10.1093/bioinformatics/btz339
http://www.ncbi.nlm.nih.gov/pubmed/31510640
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TCBB.2022.3204661
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1186/gb-2014-15-1-r17
http://dx.doi.org/10.1101/850024


Genes 2024, 15, 629 15 of 16

67. Zhao, X.; Chang, F.; Lv, H.; Zou, G.; Zhang, B. A Novel Deep Learning Method for Predicting RNA-Protein Binding Sites. Appl.
Sci. 2023, 13, 3247. [CrossRef]

68. Gruber, A.R.; Lorenz, R.; Bernhart, S.H.; Neuböck, R.; Hofacker, I.L. The vienna RNA websuite. Nucleic Acids Res. 2008,
36, W70–W74. [CrossRef] [PubMed]

69. Steffen, P.; Voß, B.; Rehmsmeier, M.; Reeder, J.; Giegerich, R. RNAshapes: An integrated RNA analysis package based on abstract
shapes. Bioinformatics 2006, 22, 500–503. [CrossRef]

70. Yan, Z.; Hamilton, W.L.; Blanchette, M. Graph neural representational learning of RNA secondary structures for predicting
RNA-protein interactions. Bioinformatics 2020, 36, i276–i284. [CrossRef] [PubMed]

71. Spitale, R.C.; Flynn, R.A.; Zhang, Q.C.; Crisalli, P.; Lee, B.; Jung, J.W.; Kuchelmeister, H.Y.; Batista, P.J.; Torre, E.A.; Kool, E.T.; et al.
Structural imprints in vivo decode RNA regulatory mechanisms. Nature 2015, 519, 486–490. [CrossRef]

72. Sun, L.; Fazal, F.M.; Li, P.; Broughton, J.P.; Lee, B.; Tang, L.; Huang, W.; Kool, E.T.; Chang, H.Y.; Zhang, Q.C. RNA structure maps
across mammalian cellular compartments. Nat. Struct. Mol. Biol. 2019, 26, 322–330. [CrossRef]

73. Chan, D.; Feng, C.; Spitale, R.C. Measuring RNA structure transcriptome-wide with icSHAPE. Methods 2017, 120, 85–90.
[CrossRef] [PubMed]

74. Hutvagner, G.; Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002, 297, 2056–2060. [CrossRef]
[PubMed]

75. Vaculík, O.; Chalupová, E.; Grešová, K.; Majtner, T.; Alexiou, P. Transfer Learning Allows Accurate RBP Target Site Prediction
with Limited Sample Sizes. Biology 2023, 12, 1276. [CrossRef] [PubMed]

76. Dalla-Torre, H.; Gonzalez, L.; Mendoza-Revilla, J.; Carranza, N.L.; Grzywaczewski, A.H.; Oteri, F.; Dallago, C.; Trop, E.;
de Almeida, B.P.; Sirelkhatim, H.; et al. The nucleotide transformer: Building and evaluating robust foundation models for
human genomics. bioRxiv 2023. . [CrossRef]

77. Arribas-Hernández, L.; Rennie, S.; Köster, T.; Porcelli, C.; Lewinski, M.; Staiger, D.; Andersson, R.; Brodersen, P. Principles of
mRNA targeting via the Arabidopsis m6A-binding protein ECT2. eLife 2021, 10, e72375. [CrossRef]

78. Uhl, M.; Houwaart, T.; Corrado, G.; Wright, P.R.; Backofen, R. Computational analysis of CLIP-seq data. Methods 2017, 118, 60–72.
[CrossRef] [PubMed]

79. Hanan, M.; Soreq, H.; Kadener, S. CircRNAs in the brain. RNA Biol. 2017, 14, 1028–1034. [CrossRef]
80. Mateos, J.L.; Staiger, D. Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association.

Plant Cell 2023, 35, 1708–1726. [CrossRef] [PubMed]
81. Lewinski, M.; Brüggemann, M.; Köster, T.; Reichel, M.; Bergelt, T.; Meyer, K.; König, J.; Zarnack, K.; Staiger, D. Mapping

protein–RNA binding in plants with individual-nucleotide-resolution UV cross-linking and immunoprecipitation (plant iCLIP2).
Nat. Protoc. 2024, 19, 1183–1234. [CrossRef]

82. Peng, X.; Wang, X.; Guo, Y.; Ge, Z.; Li, F.; Gao, X.; Song, J. RBP-TSTL is a two-stage transfer learning framework for genome-scale
prediction of RNA-binding proteins. Brief. Bioinform. 2022, 23, bbac215. [CrossRef]

83. Zhang, J.; Yan, K.; Chen, Q.; Liu, B. PreRBP-TL: Prediction of species-specific RNA-binding proteins based on transfer learning.
Bioinformatics 2022, 38, 2135–2143. [CrossRef]

84. Arican, O.C.; Gumus, O. PredDRBP-MLP: Prediction of DNA-binding proteins and RNA-binding proteins by multilayer
perceptron. Comput. Biol. Med. 2023, 164, 107317. [CrossRef] [PubMed]

85. Jin, W.; Brannan, K.W.; Kapeli, K.; Park, S.S.; Tan, H.Q.; Gosztyla, M.L.; Mujumdar, M.; Ahdout, J.; Henroid, B.; Rothamel, K.; et al.
HydRA: Deep-learning models for predicting RNA-binding capacity from protein interaction association context and protein
sequence. Mol. Cell 2023, 83, 2595–2611. [CrossRef]

86. Wang, J.; Horlacher, M.; Cheng, L.; Winther, O. DeepLocRNA: An interpretable deep learning model for predicting RNA
subcellular localisation with domain-specific transfer-learning. Bioinformatics 2024, 40, btae065. [CrossRef] [PubMed]

87. Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.M.; Zietz, M.;
Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018,
15, 20170387. [CrossRef]

88. Shrikumar, A.; Greenside, P.; Kundaje, A. Learning important features through propagating activation differences. In Proceedings
of the International Conference on Machine Learning. PMLR, Sydney, Australia, 6–11 August 2017; pp. 3145–3153.

89. Shrikumar, A.; Tian, K.; Avsec, Ž.; Shcherbina, A.; Banerjee, A.; Sharmin, M.; Nair, S.; Kundaje, A. Technical note on transcription
factor motif discovery from importance scores (TF-MoDISco) version 0.5. 6.5. arXiv 2018, arXiv:1811.00416.

90. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing
Systems; 2017; pp. 4768–4777. Available online: https://dl.acm.org/doi/10.5555/3295222.3295230 (accessed on 10 May 2024).

91. Nair, S.; Shrikumar, A.; Schreiber, J.; Kundaje, A. fastISM: Performant in silico saturation mutagenesis for convolutional neural
networks. Bioinformatics 2022, 38, 2397–2403. [CrossRef] [PubMed]

92. Marchese, F.P.; Raimondi, I.; Huarte, M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017,
18, 206. [CrossRef]

93. Ferre, F.; Colantoni, A.; Helmer-Citterich, M. Revealing protein–lncRNA interaction. Brief. Bioinform. 2016, 17, 106–116. [CrossRef]
94. Fatica, A.; Bozzoni, I. Long non-coding RNAs: New players in cell differentiation and development. Nat. Rev. Genet. 2014,

15, 7–21. [CrossRef]

http://dx.doi.org/10.3390/app13053247
http://dx.doi.org/10.1093/nar/gkn188
http://www.ncbi.nlm.nih.gov/pubmed/18424795
http://dx.doi.org/10.1093/bioinformatics/btk010
http://dx.doi.org/10.1093/bioinformatics/btaa456
http://www.ncbi.nlm.nih.gov/pubmed/32657407
http://dx.doi.org/10.1038/nature14263
http://dx.doi.org/10.1038/s41594-019-0200-7
http://dx.doi.org/10.1016/j.ymeth.2017.02.010
http://www.ncbi.nlm.nih.gov/pubmed/28336307
http://dx.doi.org/10.1126/science.1073827
http://www.ncbi.nlm.nih.gov/pubmed/12154197
http://dx.doi.org/10.3390/biology12101276
http://www.ncbi.nlm.nih.gov/pubmed/37886986
http://dx.doi.org/10.1101/2023.01.11.523679
http://dx.doi.org/10.7554/eLife.72375
http://dx.doi.org/10.1016/j.ymeth.2017.02.006
http://www.ncbi.nlm.nih.gov/pubmed/28254606
http://dx.doi.org/10.1080/15476286.2016.1255398
http://dx.doi.org/10.1093/plcell/koac345
http://www.ncbi.nlm.nih.gov/pubmed/36461946
http://dx.doi.org/10.1038/s41596-023-00935-3
http://dx.doi.org/10.1093/bib/bbac215
http://dx.doi.org/10.1093/bioinformatics/btac106
http://dx.doi.org/10.1016/j.compbiomed.2023.107317
http://www.ncbi.nlm.nih.gov/pubmed/37562328
http://dx.doi.org/10.1016/j.molcel.2023.06.019
http://dx.doi.org/10.1093/bioinformatics/btae065
http://www.ncbi.nlm.nih.gov/pubmed/38317052
http://dx.doi.org/10.1098/rsif.2017.0387
https://dl.acm.org/doi/10.5555/3295222.3295230
http://dx.doi.org/10.1093/bioinformatics/btac135
http://www.ncbi.nlm.nih.gov/pubmed/35238376
http://dx.doi.org/10.1186/s13059-017-1348-2
http://dx.doi.org/10.1093/bib/bbv031
http://dx.doi.org/10.1038/nrg3606


Genes 2024, 15, 629 16 of 16

95. Akhtar, J.; Lugoboni, M.; Junion, G. m6A RNA modification in transcription regulation. Transcription 2021, 12, 266–276. [CrossRef]
[PubMed]

96. Zaccara, S.; Jaffrey, S.R. A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell 2020,
181, 1582–1595. [CrossRef] [PubMed]

97. Arribas-Hernández, L.; Rennie, S.; Schon, M.; Porcelli, C.; Enugutti, B.; Andersson, R.; Nodine, M.D.; Brodersen, P. The
YTHDF proteins ECT2 and ECT3 bind largely overlapping target sets and influence target mRNA abundance, not alternative
polyadenylation. eLife 2021, 10, e72377. [CrossRef] [PubMed]

98. Lal, A.; Mazan-Mamczarz, K.; Kawai, T.; Yang, X.; Martindale, J.L.; Gorospe, M. Concurrent versus individual binding of HuR
and AUF1 to common labile target mRNAs. EMBO J. 2004, 23, 3092–3102. [CrossRef] [PubMed]

99. Hu, X.; Zou, Q.; Yao, L.; Yang, X. Survey of the binding preferences of RNA-binding proteins to RNA editing events. Genome Biol.
2022, 23, 169. [CrossRef] [PubMed]

100. Weirick, T.; Militello, G.; Hosen, M.R.; John, D.; Moore IV, J.B.; Uchida, S. Investigation of RNA Editing Sites within Bound
Regions of RNA-Binding Proteins. High-Throughput 2019, 8, 19. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/21541264.2022.2057177
http://www.ncbi.nlm.nih.gov/pubmed/35380917
http://dx.doi.org/10.1016/j.cell.2020.05.012
http://www.ncbi.nlm.nih.gov/pubmed/32492408
http://dx.doi.org/10.7554/eLife.72377
http://www.ncbi.nlm.nih.gov/pubmed/34591013
http://dx.doi.org/10.1038/sj.emboj.7600305
http://www.ncbi.nlm.nih.gov/pubmed/15257295
http://dx.doi.org/10.1186/s13059-022-02741-8
http://www.ncbi.nlm.nih.gov/pubmed/35927743
http://dx.doi.org/10.3390/ht8040019

	Introduction
	Deep Learning for RNA Modifications
	Features and Model Architecture
	Incorporating RNA Secondary Structure
	Perspective on Current Models
	Model Performance and Choice of Background Set: The Hunt for Biologically Relevant Results
	Further Considerations for Modelling Approach

	Some Major Future Perspectives
	Generalisability across Cell Types and Species
	Focus On Model Interpretation
	Extensions to Predictions on Non-Coding RNAs
	Cooperative Contexts and Interplay with Other Modifications

	Conclusions
	References

