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Abstract: Prime editing (PE), a recent progression in CRISPR-based technologies, holds promise for
precise genome editing without the risks associated with double-strand breaks. It can introduce a
wide range of changes, including single-nucleotide variants, insertions, and small deletions. Despite
these advancements, there is a need for further optimization to overcome certain limitations to
increase efficiency. One such approach to enhance PE efficiency involves the inhibition of the DNA
mismatch repair (MMR) system, specifically MLH1. The rationale behind this approach lies in the
MMR system’s role in correcting mismatched nucleotides during DNA replication. Inhibiting this
repair pathway creates a window of opportunity for the PE machinery to incorporate the desired
edits before permanent DNA repair actions. However, as the MMR system plays a crucial role in
various cellular processes, it is important to consider the potential risks associated with manipulating
this system. The new versions of PE with enhanced efficiency while blocking MLH1 are called PE4
and PE5. Here, we explore the potential risks associated with manipulating the MMR system. We
pay special attention to the possible implications for human health, particularly the development
of cancer.
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1. Introduction

The RNA-guided CRISPR (Clustered Regularly Interspaced Short Palindromic Re-
peats) endonuclease system was first identified in Escherichia coli (E. coli) in 1987, with
its unique genomic structure providing evidence for its function. This structure evolved
as an adaptive immune system employed by bacteria and archaea. It utilizes a set of
CRISPR-associated (Cas) genes to incorporate exogenous material into the CRISPR locus.
This incorporated material is then transcribed into RNA templates that guide the targeted
destruction of mobile elements at the DNA or RNA level [1]. To date, three types of
CRISPR systems have been identified, each with distinct mechanisms of action. Unlike
the Type II CRISPR/Cas system, which uses a single endonuclease called Cas9 to identify
and cleave target DNA, Type I and III systems employ a group of Cas genes to perform
RNA processing, target recognition, and cleavage [1–3]. In the Type II system, a pair of
non-coding RNAs guide the Cas9 endonuclease to its target DNA sequence. These RNAs
include a CRISPR RNA (crRNA) and an auxiliary transactivating crRNA (tracrRNA). The
crRNA contains two key components which are a 20-nucleotide guide sequence (often
called spacer), which determines target specificity via Watson-Crick base-pairing with the
target DNA and an invariant “direct repeat” component, which pairs with the “antirepeat”
segment of the tracrRNA to form an RNA duplex. The paired repeat segments of both
RNAs attract Cas9 to the complex [4,5].
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CRISPR-Cas-based genome editing relies on four primary double-strand break (DSB)
repair pathways in eukaryotic cells: non-homologous end joining (NHEJ), homologous
recombination (HR), microhomology-mediated end joining (MMEJ), and single-strand an-
nealing (SSA). Each pathway leads to different editing outcomes [6]. Therefore, researchers
are actively developing strategies to control the pathway that cells use to repair DSBs
during editing. However, the mechanisms governing DSB repair are intricately complex
and remain incompletely understood [6,7]. A deeper understanding of these mechanisms
promises fundamental insights into genome integrity and will pave the way for more
sophisticated genome editing strategies.

Prime editors, as the latest generation of CRISPR-Cas9 -based technologies, can insert
short DNA sequences without generating DSBs or requiring an external template. They
consist of a nicking version of Cas9 fused to a reverse transcriptase (RT) domain, which is
complexed with a prime editing guide RNA (pegRNA). The pegRNA consists of a primer-
binding site homologous to the sequence in the target and a reverse transcriptase (RT)
template, including the intended edit, all in the 3′ extension of a standard CRISPR-Cas9
guide RNA. At the target site, Cas9 nicks one strand of the DNA, which then anneals to the
primer-binding site on the pegRNA, extending by the Cas9-fused reverse transcriptase (RT)
using the pegRNA-encoded template sequence. Next, DNA repair mechanisms (miss match
repair, MMR) resolve the conflicting sequences on the two DNA strands, ultimately writing
the intended edit into the genome [8]. The prime editing (PE) process is complex, and the
factors influencing its efficacy are not fully understood. It involves multiple somewhat
independent stages, including three DNA binding events and successful MMR DNA repair,
all necessary for successful editing. Each stage is potentially influenced by the edited
sequence. Furthermore, the presence of a nick on the edited strand attracts the MMR
machinery to that DNA strand, initiating the EXO1-mediated degradation of the mismatch
generated by PE and restoring the original sequence. Consequently, compromising MMR
protein function, inhibiting EXO1 activity, or blocking the MMR pathway can enhance
prime editing efficiency [8,9].

The primitive PE system, referred to as PE1, was developed through the fusion of the
Moloney murine leukemia virus (M-MLV) RT with the C-terminus of Cas9 (H840A) nickase.
The pegRNA utilized in this system was an extension of the sgRNA, containing a PBS
sequence and an RT template. PE1 demonstrated a maximum editing efficiency of 0.7–17%
at various loci [8]. Building upon PE1, Liu et al. proposed enhancing prime editing efficacy
by modifying the RT component (PE2) (Figure 1A). Compared to PE1, PE2 increased the
efficiency of introducing point mutations by 1.6- to 5.1-fold on average, exhibited improved
editing efficiency in indels, and was compatible with short PBS sequences, as evidenced
by testing various RT mutations.Despite the enhanced efficacy of PE2, there remains a risk
of edited insertions being excised due to DNA mismatch repair mechanisms targeting the
edited strand. To mitigate this issue during DNA heteroduplex resolution, an additional
single guide RNA (sgRNA) was introduced. This sgRNA was designed to complement
the edited sequence introduced by the pegRNA while not targeting the original allele. It
directed the Cas9 nickase component of the fusion protein to nick the unedited strand
at a nearby location opposite to the original nick site. This improved prime editor was
designated as PE3, exhibiting approximately three times the editing efficiency of PE2 but
causing a higher rate of indels [8] (Figure 1C).

Motivated by the observation that pretreating cells with siRNAs targeting MMR can
enhance PE editing efficiency, a novel strategy was proposed for the concurrent delivery of
prime editors and MMR repressor units. This transient expression of the MMR repressor
protein MLH1d in the PE2 and PE3 systems, now referred to as PE4 and PE5, respectively,
significantly improved editing efficiency [9,10].
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Figure 1. Schematic representation of different types of prime editing (PE2, PE3, PE4, and PE5).
(A) (1) The PE2 comprises a fusion protein of Cas9 nickase and a reverse transcriptase (RT). This
complex is coupled with a prime editing guide RNA (pegRNA). (2) The PE complex binds to the
target locus, nicks the PAM strand, and facilitates hybridization between the 3’ end of the PAM
strand and the 3’ end of the pegRNA. The primer binding site (PBS) enables the initiation of reverse
transcription by the RT. (3) The PE complex dissociates, and cellular repair mechanisms resolve DNA
flaps to introduce the edit. (B) The PE4 comprises PE2 and a plasmid encoding the dominant negative
MMR protein MLH1 (MLH1dn). The PE4 process mirrors PE2 but with higher efficiency due to the
inhibition of MLH1 action, reducing the cellular MMR response. (C) The PE3 consists of PE2 and
an additional sgRNA. (1) This sgRNA is designed to match the edited sequence introduced by the
pegRNA but not the original allele. It directs the Cas9 nickase to cut the unedited strand at a nearby
site, opposite to the original nick. (2) Nicking the non-edited strand causes the repair system to copy
the information from the edited strand to the complementary strand, permanently installing the edit.
(D) The PE5 consists of PE3 and a plasmid encoding MLH1dn which increases the editing efficiency.

Chen et al. introduced PE4 (PE2 + MLH1 dominant negative, dn) (Figure 1B) and PE5
(PE3 + MLH1dn) (Figure 1D), increasing gene editing efficiency by transiently expressing an
engineered MMR inhibitory protein. This resulted in improved efficiencies for substitutions,
small insertions, and small deletions [10]. While optimizing the system is crucial, blocking
MMR with MLH1dn at any stage presents significant risks, especially for translational
applications, as discussed later. Notably, another group employed a similar approach to
enhance PE efficiency through the absence of the MMR system [10].

Given their central role in diverse DNA transactions, MMR proteins can have severe
consequences on various biological systems when inactivated. We will briefly summarize
their key features in the following paragraphs.

The efficiency of various DNA repair processes, particularly the MMR system, should
be a key consideration when designing PE experiments. A malfunction in this system can
have wide-ranging consequences, both for individual cells and for the entire body. Notably,
one major consequence is an increased level of point mutations across the genome due to
unrepaired errors in DNA synthesis [11,12].

MLH1 is a key DNA mismatch repair (MMR) gene that plays a critical role in safe-
guarding genomic stability and preventing cancer development. MMR is a process that
meticulously corrects errors arising during DNA replication (Figure 2). Uncorrected errors
can lead to mutations that fuel cancer development. When mutations occur in MLH1
or other MMR genes, the entire MMR system becomes compromised, resulting in the
accumulation of microsatellite instability (MSI) [13,14]. Microsatellites, consisting of re-
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peated sequences of 1–6 base pairs, are abundant in higher organisms’ genomes and show
significant genetic variation. Mutations in these regions typically involve the insertion or
deletion of a few individual or repeated units, mirroring a pattern of gradual mutation
accumulation. While the MMR system typically corrects most microsatellite mutations,
cells lacking this system experience a drastic increase in mutation rate [15,16].
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Figure 2. An overview of the MMR process. The DNA damage is recognized by the MutSa (MSH2-
MSH6) or MutSβ (MSH2-MSH3) complex following by the MutLa (MLH1-PMS2) complex attachment.
Then, exonuclease 1 (EXO1) removes the impaired nucleotides. Finally, DNA polymerase δ (Polδ)
incorporates accurate nucleotides.

2. Potential Molecular and Cellular Risks Associated with MLH1 Disruption
2.1. Mitochondria

The critical role of mitochondria, ubiquitous organelles within eukaryotic cells, lies
in their ability to generate cellular energy (adenosine triphosphate, ATP) via oxidative
phosphorylation. Disruptions in mitochondrial function are increasingly recognized as
contributing factors in various pathologies, including cancer [17,18]. A recent interesting
finding suggests a previously unknown function for MLH1 within the mitochondria [19].
MLH1 exhibits robust mitochondrial localization, and its deficiency triggers synthetic
lethality when combined with the inhibition of specific mitochondrial genes, such as POLG
and PINK1. Moreover, MLH1 loss is associated with a decline in the oxygen consumption
rate and reduced spare respiratory capacity [20,21].

MLH1, along with its partner proteins, plays a crucial role in maintaining mitochon-
drial function. Therefore, targeting these functions suggests a promising alternative thera-
peutic approach for MLH1-deficient diseases [22]. Interestingly, MLH1 frequently associates
with POLG, a mitochondrial replication enzyme responsible for both safeguarding mito-
chondrial homeostasis and initiating apoptosis. Notably, disruptions in this interaction
appear to be associated with the development of diabetic retinopathy, further highlighting
the critical role of MLH1 in ensuring mitochondrial integrity [19,22,23].
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2.2. Autophagy

Autophagy (“self-eating”) is a cellular recycling process that breaks down unnecessary
or damaged components, like proteins and organelles, for degradation in lysosomes or
vacuoles. Mutations in autophagy genes have been linked to various human disease [24].

MLH1, a key regulator of autophagy signaling, plays a crucial role in cellular sur-
vival. Studies have shown that MLH1 promotes autophagy, a self-preservation mechanism,
while hindering apoptosis, a form of programmed cell death [25]. This allows cells to
resist chemotherapy by activating the DNA mismatch repair (MMR) pathway through the
mTOR/S6K1 signaling cascade [25]. Additionally, MLH1 is essential for autophagy activa-
tion in response to the chemotherapy drugs, acting alongside the p53 protein, Importantly,
inhibiting MLH1 or the ATM-AMPK pathway diminishes autophagy, highlighting their
significance in this process [26,27].

Despite long-standing beliefs that autophagy and DNA repair are distinct processes, it
is increasingly apparent that they are closely related [27,28]. In other words, the cell ability
to function efficiently and competently depends on mechanisms that regulate autophagy
and DNA repair. The malfunction of either can result in dysregulation of the other, and
vice versa, thus having adverse consequences for cells [29]. The MMR system triggers
autophagy in tumor cells, which prevents chemotherapy-induced apoptosis if deficient. In
addition, patients with DNA repair defects are thought to have problems with autophagy,
leading to premature aging, developmental problems, and neurodegenerative diseases [27].

2.3. Variability in Cellular Responses to MMR Defects across Different Tissues

Although all human cells carry out common processes essential for survival, within
their tissue environment, they also manifest unique functions contributing to their pheno-
type. These processes, both common and tissue-specific, are ultimately regulated by gene
regulatory networks, which modulate gene expression and its extent [30]. Indeed, a single
gene may exert different effects on cellular phenotype across different tissues.

According to Chen et al., Mlh1d-treated cells did not exhibit microsatellite instability
(MSI) in the genome. However, clear evidence exists that tissue-specific haploinsufficiency
of MLH1 causes MMR-associated cancer [31]. This explains why MMR-related cancers
primarily affect the gastrointestinal tract. Therefore, tissue-specific investigations are crucial
to analyze which organs or cells are at risk following MMR failure [32].

Additionally, MMR proteins have been shown to inhibit homologous recombination
(recombination between similar or identical DNA sequences) [33]. In cells with MMR
defects, recombination rates become dramatically higher, leading to gene conversions at
the recombined sites, which can promote genome instability and tumorigenesis [34].

2.4. Folate

Folate, a key player in the methylation cycle which helps maintain healthy cells,
appears to have a complex role in colorectal cancer. Low dietary folate intake has been
linked to an increased risk of abnormal cell growth (neoplastic transformation) in the
colon [35,36]. This may be due to its role as a methyl donor. One way folate deficiency
can impact the colon is through methylation of the MLH1 gene promoter [37]. MLH1 is a
critical component of the DNA repair system, and its inactivation through methylation has
been implicated in the development of colon and lung cancers [38,39].

It is worth noting that the MMR system has been directly linked to folate-induced
apoptosis [40]. Moreover, folate pathway genes might contribute to fertility complications
in idiopathic (unexplained) infertility cases [41,42]. Notably, studies show that folate is the
most common vitamin deficiency in general population diets [43]. Therefore, any alteration
in the MMR system could potentially impact a large portion of the population, making this
relevant for translational applications.
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2.5. microRNA

MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene ex-
pression by binding to messenger RNA (mRNA) molecules and preventing them from
being translated into proteins miRNAs are involved in various cellular processes, including
metabolism, proliferation, cell cycle control, apoptosis, and autophagy [44]. Their dysregu-
lation is linked to numerous human diseases, including diabetes, cancer, and cardiovascular
diseases [45,46]. Moreover, making a connection between microRNA (miRNA) and MLH1
holds significant value. A study revealed an intriguing feedback loop between miRNAs
and the MMR system. The MLH1-PMS2 heterodimer (MutLα) positively regulates both the
processing of miR-422a and other miRNAs [44,47]. Further studies are needed to elucidate
how specific miRNAs interact with the MMR system to answer key questions.

2.6. Wnt Signaling Pathway

The Wnt signaling pathway plays a crucial role in regulating cell growth, differentia-
tion, and maintenance [48,49]. Alterations in genes within this pathway, including APC,
are frequently observed in different pathological conditions. Notably, MLH1 can indirectly
be involved in the Wnt signaling pathway by regulating the expression of other pathway
components [50]. The MLH1 gene promoter harbors four specific binding sites for the
transcription factor TCF7, a pivotal regulator of the Wnt signaling pathway, which regulates
the expression of downstream target genes. When TCF7 binds to these sites, it triggers
the transcriptional activation of the MLH1 gene [51]. More recently, a positive correlation
between TCF7 and MLH1 expression was reported.

2.7. Interaction Networks

Another crucial perspective is considering gene interaction networks. These networks
consist of genes linked by edges representing their functional relationships. These edges,
called interactions, represent potential physical interactions between gene products, where
one can alter or influence another. During genetic interactions, two gene variants collaborate
to produce an effect that neither could achieve alone [52,53]. For MLH1, BioGRID, a
systems biology database (Biological General Repository for Interaction Datasets), reports
416 interactions and 228 unique interactors [54]. This highlights the complex molecular
interactions involving MLH1 within each cell, interactions that further change under
different physiological and pathological conditions (Figure 3).
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3. The Clinical Impact of Defective MLH1

The integrity of the genome is critically safeguarded via the MMR system. Any mal-
function within this system can lead to severe consequences, such as the development of
cancer (Figure 4). Chen et al. found no signs of MSI in their cell lines. However, carcinogen-
esis is a multistage and long-term process, and oncogenic mutations (not necessarily MSI)
in proto-oncogenes or tumor -suppressor genes can create malignant phenotypes several
years after they are introduced [55]. By acting as lesion sensors, MMR proteins cause
apoptosis and activate cell cycle checkpoints, contributing to tumorigenesis by allowing
unchecked cell division [56].

In this section, we will discuss into the clinical outcomes of MMR deficiency, with a
specific emphasis on MLH1.
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3.1. Colorectal Cancer

Colorectal cancer (CRC) is considered the second leading cause of cancer-related
mortalities, resulting from the accumulation of genetic alterations in oncogenes and tumor
suppressor genes (TSGs) within the colorectal epithelium [57]. Two primary mechanisms of
genomic instability have been identified in the progression of sporadic CRC. The first, called
chromosomal instability, arises from a cascade of genetic changes that involve the activation
of oncogenes, such as K-ras, and the inactivation of TSGs, including p53, DCC/Smad4,
and APC [58–60].The second mechanism, referred to as microsatellite instability (MSI),
originates from the inactivation of DNA mismatch repair (MMR) genes, such as MLH1
and/or MSH2, mostly via promoter hypermethylation (MLH1ph). This leads to mutations
in genes containing coding microsatellites, such as transforming growth factor receptor II
(TGF-RII) and BAX genes [38]. MLH1 plays a multifaceted role in CRC development [61].
MSI can accumulate mutations in other parts of the genome, including TSGs. These
mutations contribute to the development of cancerous cells. Additionally, MSI allows cells
to escape normal growth control mechanisms, enabling metastasis [58,62]. Furthermore,
MMR deficiency may impair immune surveillance, allowing tumor cells to evade detection
and eradication by the immune system [62].

3.2. Gastric Cancer

Gastric cancer (GC), a widespread form of cancer worldwide, is classified into two dis-
tinct histological subtypes: intestinal and diffuse, according to Lauren’s classification [63].
Intestinal-type gastric cancer is linked to various genetic alterations [64]. Its precursor,
known as intestinal metaplasia, is marked by mutations in the p53 gene, reduced ex-
pression of retinoic acid receptor beta, and increased expression of telomerase reverse
transcriptase [65,66].

Gastric adenomas, precancerous lesions that can progress to metastatic gastric can-
cer, also display genetic changes. These alterations include mutations in the APC gene,
reduced expression of the p27 tumor suppressor protein, and amplification of the cyclin E
oncohgene [67]. Furthermore, in more advanced GC, c-ErbB2 is often amplified and over-
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expressed, TGFBRI expression is decreased, and p27 expression is completely lost. While
mutations in the hMLH1 gene are uncommon in gastric cancer, microsatellite instability
(MSI) is more frequent than in colorectal cancer [68]. Here, MSI is primarily caused by
hypermethylation of the MLH1 promoter; for example, 20% of primary GC patients have
been reported to have hypermethylated MLH1 promoters [68,69].

3.3. Glioblastoma

Glioblastoma (GBM) is the most frequent and most malignant primary brain tumor in
adults [70]. Growing evidence suggests DNA mismatch repair (MMR) gene expression may
also be associated with the tumor response to alkylating agents. Notably, MLH1, MSH2,
and MSH6 are considered intriguing candidate genes [71]. MMR deficiency, frequently
observed in GBM, may contribute to therapy resistance and tumor recurrence. Notably,
expression of MLH1 and PMS2 is reduced in recurrent GBM tumors compared to primary
tumors [72,73].

3.4. Endometrial Cancer

Endometrial cancer (EC) is a prevalent gynecological malignancy, ranking fourth
among women after breast, colorectal, and lung cancers [74].Two distinct types of endome-
trial carcinoma have been identified, exhibiting distinct pathological and clinical features.
Type I carcinoma, linked to hyperestrogenism, commonly manifests as endometrial hy-
perplasia and is characterized by the frequent expression of estrogen and progesterone
receptors, typically affecting younger women. In contrast, type II carcinoma, unrelated to
estrogen, is associated with an atrophic endometrium, the infrequent expression of estrogen
and progesterone receptors, and a higher prevalence in older women [75]. The distinct
morphological features of these cancers are reflected in their molecular genetic profiles.
Type I demonstrates defects in DNA repair mechanisms and mutations in PTEN, K-ras,
and beta-catenin, while type II exhibits aneuploidy, p53 mutations, and amplification of the
HER2/neu gene [76].

The underlying molecular dynamics of MMR-deficient/MSI-high endometrial cancers
involve three primary classes: (MLH1ph), accounting for approximately 70–75% of cases;
somatic mutations in MLH1, MSH2, MSH6, PMS2, and/or EPCAM occurring in 15–20% of
cases; and germline mutations in these genes contributing 5–10% of patients [77]. A smaller
percentage (around 3%) of ECs are associated with Lynch syndrome, which is inherited
through mutations in one of the MMR genes [78]. It is worth mentioning that improved
survival with an intact MMR system in EC has been reported by Cohn et al. [79].

3.5. Ovarian Cancer

Ovarian cancer (OC) is considered a primary contributor to mortality among gyne-
cological cancers and ranks fifth as a cause of cancer-related mortalities in women [80].
Hereditary predisposition is identified as a risk factor for OC, with mutations in breast
cancer susceptibility genes playing a role. Mutations in the MMR genes are the next most
common cause of OCs [81].

This is further fueled by multiple studies reporting a prevalence of MLH1ph ranging
from 10% to 50%, suggesting it’s a common feature in OC [82]. Additionally, research
indicates a notable preference for MMR deficiency in endometrioid and serous carcinomas
within OCs [83,84].

It should be mentioned that reported the safety of neoadjuvant pembrolizumab for
patients with MMR-deficient solid tumors resulting in high rates of clinical outcome has
drawn significant attention to the detection of MMR deficiency in tumors [85,86].

3.6. Fanconi Anemia

Fanconi anemia (FA) is a genetic syndrome that clinically affects several human
systems. It results in progressive bone marrow failure and predisposes individuals to
malignancies, particularly in the urogenital area and the head and neck [87].
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In addition to the FANCJ-MLH1 interaction, several additional nodes link the FA
and MMR pathways, suggesting that this crosstalk has functional importance. These
interactions include BRCA1-MSH2, FANCD2-MLH1/MSH2, SLX4/FANCP-MSH2, and
FAN1-MLH1. However, the full functional significance of these interactions remains
unclear [88]. MSH2, a key protein in the MMR pathway, plays a critical role in the FA
pathway by promoting the localization of FA core components to chromatin, and recruiting
FANCJ to sites of DNA crosslinks [89]. Given the relationship between the FANCJ-MLH1
interaction and MSH2, a central question is whether other FA pathway components also
function to balance the activity of MSH2 or other MMR proteins [90,91]. The ability of FA
cells to cope with replication stress is linked to proteins in the MMR pathway. Furthermore,
the MMR pathway plays a crucial role in the repair of DNA interstrand crosslinks (ICLs),
toxic lesions that result in chromosomal instability and disrupt normal transcription, likely
due to the direct interaction between FANCJ and MLH1 [92,93].

3.7. Fertility

From a fertility perspective, the MMR system plays a crucial role in many organisms
by facilitating meiotic crossovers, which are essential for various processes during meio-
sis [94]. However, this involvement could lead to DNA rearrangements and an increased
frequency of exchange between partially homologous sequences in germ cells, potentially
causing infertility [94,95]. Spermatocytes deficient in MLH1 exhibit premature chromosome
separation and arrest during the first meiotic division. Furthermore, human variants in
MLH1 and MLH3 genes are associated with aneuploidy, pregnancy loss, and premature
reproductive aging [95].

4. Conclusions and Perspectives

The genomic DNA of each cell is highly dynamic, undergoing an estimated 55,000 single-
strand breaks and 25 double-strand breaks daily [96]. Therefore, even temporary inhibition
of a multifunctional protein like MLH1 can have unpredictable consequences for individual
cells and the organism. Indeed, the proposition that transient MLH1 inhibition enhances
PE efficiency is intriguing but not overly surprising, as prolonged inhibition could result in
detrimental effects. Of particular note, the discovery of novel roles for the MMR system
is likely, adding a new layer of complexity to understanding how MMR interacts with
other cellular components like DNA replication and transcription machinery. These issues
all await further intensive studies in the MMR field, which could undoubtedly provide
important insights into the system’s many other potential roles in DNA interactions.

There is a lack of literature concerning the consequences of the transient knockdown
of MLH1 in various cell tissues, particularly in vivo, prior to any in vivo and clinical
applications of PE4 and PE5. Universal molecular investigations, such as whole-genome
sequencing and RNA sequencing, are suggested to observe any changes before and after
MLH1 knockdown. Additionally, other experiments, such as apoptosis and autophagy
evaluations, are recommended. Finally, long-term follow-ups in terms of clinical application
is recommended to screen for possible side effects.

In summary, future experiments exploring the application of the new version of PE
through MLH1 inhibition or targeting other members of the DNA repair system could lead
to unpredictable and severe side effects in various cell types, potentially even including the
development of cancers.
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