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Abstract: Lattice structures have become an innovative solution for the improvement of part design,
as they are able to substitute solid regions, maintain mechanical capabilities, and reduce material
usage; however, dimensional quality control of these geometries is challenging. X-ray computed
tomography (XCT) is the most suitable non-destructive metrological technique as it is capable of
characterizing internal features and hidden elements. Uncertainty estimation of XCT is still in
development, and studies typically use high-resolution calibrated devices such as focal variation
microscopes (FVMs) as a reference, focusing on certain parts of the lattice but not the whole structure.
In this paper, an estimation of the accuracy of XCT evaluation of a complete lattice structure in
comparison to a higher-resolution reference device (FVM) is presented. Experimental measurements
are taken on ad hoc designed test objects manufactured in polyamide 12 (PA12) using selective
laser sintering (SLS), optimized for the evaluation on both instruments using different cubic-based
lattice typologies. The results confirm higher precision on XCT evaluation in both qualitative and
quantitative analysis. Even with a lower resolution, XCT is able to characterize details of the surface
such as re-entrant features; as well, standard deviations and uncertainties in strut diameter evaluation
remain more stable in all cells in XCT, identifying on the other hand reconstruction problems on FVM
measurements. Moreover, it is shown that, using XCT, no additional evaluation errors were found
in inner cells, suggesting that the measurement of external elements could be representative of the
whole structure for metrological purposes.

Keywords: X-ray computed tomography; lattice structures; additive manufacturing

1. Introduction

Additive manufacturing (AM) is an innovative and relatively recent industrial tech-
nology in which material is added layer-by-layer to create parts. Its main characteristic
is versatility: due to its manufacturing principle, in contrast to traditional technologies,
complex geometries such as freeform surfaces, hidden cavities, or lattice structures can
be produced [1–4]. The development of AM technologies has increased the quality of the
parts produced, from only formal prototypes to final products with optimal mechanical
and thermal properties, whether the material used is polymer, metal, ceramic, or even
reinforced/compound materials [5–7]. AM concept groups have different typologies: fused
deposition modeling (FDM), selective laser sintering (SLS), multijet, etc., each one with
singular characteristics.

In the industry, the introduction of lattice structures in newly developed products is
particularly interesting [8]. These features are designed to replace solid parts, maintaining
the same mechanical properties of the object and reducing the amount of material used and
the total weight; in conclusion, they can create more cost-effective designs. However, as
with most complex geometries produced by AM, quality control in terms of dimensional
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accuracy becomes difficult as lattices are not easily accessible using common metrological
devices (such as tactile machines and optical microscopes).

Here, X-ray computed tomography (XCT) has become a solution for the inspection
of complex geometries and hidden features [9,10]. XCT is based on the reconstruction of
a 3D volume through 2D X-ray images acquired along a 360◦ rotation of the measurand.
Volumes obtained by XCT not only includes the information on the surface of the object but
also the inner parts; thus, it is possible to inspect and characterize non-accessible areas and
inner cavities. Its application in industrial metrology [11–13] has required the improvement
of the acquisition techniques in order to obtain high-precision volumes optimal for the mea-
surement of macro geometries and micro features such as the surface roughness [14–17].

As a newly metrological technique, XCT still has disadvantages to overcome. Due to
the high number of factors affecting the accuracy of measurements, uncertainty calculations
are challenging, and the normative that regulates them is still in development. Currently,
the substitution method [18,19] is the main procedure used to calculate uncertainties in
XCT evaluation; however, it requires the usage of a reference device to calibrate the test
objects and make the correspondent comparisons [20–22]. For certain cases, as indicated
before, those reference measurements are not possible due to the geometry and the range
of evaluation of the device.

1.1. State of the Art

One of the most commonly used devices for the obtention of high-quality surfaces is
the focal variation microscope (FVM), which allows obtaining 2.5D measurements with
resolutions up to nanometers. Its application to surface roughness evaluation and texture
characterization in AM parts is widespread [23,24], and it has been used as a reference
instrument for the comparison of XCT measurements [15,16]. The main disadvantage of this
technique is the limitation in the range of evaluation, which is reduced to a few millimeters;
reconstructing 3D surfaces is highly time-consuming, as several local measurements are
required to be used and oversampled.

XCT, as stated before, has been a huge innovation due to its versatility in measur-
ing macro and micro geometries and the inspection of complex geometries or internal
features [25–28]. Although post-processing of the information is needed, the amount of
metrological data obtained is superior to other instruments in less time. It is commonly
used for the metrological evaluation of multi-material parts [29,30] and composites [31–33].
However, as stated before, the traceability of XCT measurements is still in development,
as well as the normative, which defines the procedures for the uncertainty calculations.
This is the reason for the common usage of reference devices with better traceability for the
verification of the results [34–36].

Several studies have been performed in the field of lattice characterization using XCT.
In [22], a reference object was designed to estimate uncertainties in lattices through a
variation of the substitution method. The concept of the theoretical supplemental surface
was used in [37] for the verification and tolerancing of an AM lattice. Also, the resolution
of XCT measurements has been studied [38] as a factor in XCT evaluation accuracy.

Lattice evaluation is challenging for other methods different from XCT, as stated
before; however, in some cases, a comparison has been performed by using reference
devices as coordinate measuring machines (CMMs) [39] for the measurement of outer faces
of the lattice (as it was not possible to reach the inside) or FVM [40], with the objective of
replicating the surface texture of the outer lattice struts.

Single-strut measurements are also used [41] for a general characterization of the com-
plete part, in which the orientation of the strut is evaluated as a parameter. Zanini et al. [42]
explored the application of two different methods for uncertainty calculation in lattice
structures, with both using an additional calibrated reference standard as a test object along
with a lattice part.
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To sum up, efforts have been focused on the study of certain factors of XCT measure-
ment (orientation, resolution, surface roughness, outer faces) or the traceability of XCT
evaluations through a reference-calibrated object, which typically differs from a real lattice.

1.2. Research Aim

In this paper, the main aim is to evaluate the precision of XCT when measuring
a realistic lattice structure through an intercomparison with a surface characterization
reference device. FVM, the instrument used for this study, is able to obtain high-quality
3D surfaces but has the limitation of the range of evaluation; here, an experiment is made
using a test object adapted for the measurement by both FVM and XCT, simulating a
4 × 4 × 4 cubic lattice.

Polymeric additive manufacturing has been selected for the manufacturing of the
parts. Typically, studies are based on metal lattice structures; however, polymeric lattice
structures also have a great interest in industry as they are more cost-effectively produced.
Additionally, the evaluation of polymers by XCT requires different machine settings, and
therefore, the results of measurements performed on metal parts cannot be extrapolated.
Selective laser sintering (SLS) is the AM process selected for the manufacturing of the parts,
choosing polymer polyamide 12 (PA12) for all the test objects. SLS is an appropriate AM
process for the production of complex geometries as there is no need for support structures,
as the powder itself acts as a support layer-by-layer. Other processes, as Polyjet, have
been considered, as they also do not require support structures and provide good part
accuracy. Although parts manufactured by SLS are more likely to be more porous, the
cleaning post-processing of small and complex features is easier on SLS, so the danger of
failure of the lattices is reduced.

Three typologies of parametric lattices were selected for the experiment, all cubic-
based, and a dimensional measurement and comparison of the struts were performed along
with a qualitative surface evaluation.

2. Materials and Methods

In this section, a description of the test objects designed to carry out the experiments
and the methodology followed to support their evaluation is presented.

2.1. Test Objects

Test objects were designed for the optimization of the measurements both in XCT
and FVM. Three lattice configurations were used for the design of the probes, according
to the most common typologies and the most suitable for the experiment: body-centered
(BCC), face-centered (FCC), and body-centered with additional vertical struts (BCCZ). Each
individual probe included 4 cubic cells of 5 mm length and 1 mm diameter struts. Criteria
for the selection of cell size and strut diameter were used to obtain a proper diameter/length
ratio in the struts: here, 1:5 ratio was considered appropriate. With this ratio, amount of
material is significantly reduced in comparison to a solid cube, and the post-processing
of the parts is facilitated. Higher ratio would not be realistic for a lattice structure, as
mechanical characteristics of the part would have been considerably affected.

An assembly was designed for each typology, which included several individual
probes, connected by a solid base (Figure 1). The intention of this assembly is to simulate a
4 × 4 × 4 lattice structure for the measurements in XCT; however, in this configuration, it
was not possible to reach the inner cells using Alicona (Graz, Austria), so the solid base was
removed after the XCT evaluations to measure each probe individually in the microscope.

Manufacturing of the test objects was carried out using SLS device (Lisa Pro, Sin-
terit, Kraków, Poland) in polymer polyamide 12 (PA12). Post-processing was applied
after the manufacturing by cleaning the parts with compressed air and abrasive dust, as
recommended by Sinterit, to remove unfused particles in the surface.
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2.2. Methodology 
First evaluation of the assemblies was performed by XCT Zeiss Metrotom 800 G3/225 

kV, using integrated software Metrotom OS 3.12 (Zeiss, Oberkochen, Germany). A total of 
5 iterations were taken for each assembly. After XCT evaluation, individual probes were 
separated from the solid base and measured by focal variation microscope—
InfiniteFocusSL, from Alicona—using an incorporated rotary plate that allows obtaining 
a 360° scan along a horizontal axis and integrated software IfMeasure Suite 5.3.6 (Alicona 
Imaging, Graz, Austria). Disposition of the test objects for the evaluation in XCT and FVM 
is displayed in Figure 2. 

Settings used for the evaluation in XCT and FVM are displayed in Table 1. Same 
settings were used for all parts. 

Table 1. Settings and parameters of the evaluation in each device. 

 XCT FVM 
Voltage/kV 70 - 
Current/µA 478 - 

Physical filter No - 
Projections 1700 - 

Exposure time/ms 667 27.5 
Contrast 1 - 0.45 

Magnification 4.0 4× AX (Lens) 
Resolution/µm 34.26 (Voxel size) 0.13 (Vertical), 8.5 (Lateral) 

Time elapsed/min 14–16 70–75 (each probe) 
1 non-dimensional contrast coefficient provided by software IfMeasure. 

Figure 1. (a) Individual probes of each cell typology: body-centered cubic (BCC), body-centered cubic
with vertical struts (BCCZ), and face-centered cubic (FCC); (b) 4 × 4 × 4 assembly (BCCZ).

2.2. Methodology

First evaluation of the assemblies was performed by XCT Zeiss Metrotom 800 G3/225 kV,
using integrated software Metrotom OS 3.12 (Zeiss, Oberkochen, Germany). A total of
5 iterations were taken for each assembly. After XCT evaluation, individual probes were
separated from the solid base and measured by focal variation microscope—InfiniteFocusSL,
from Alicona—using an incorporated rotary plate that allows obtaining a 360◦ scan along
a horizontal axis and integrated software IfMeasure Suite 5.3.6 (Alicona Imaging, Graz,
Austria). Disposition of the test objects for the evaluation in XCT and FVM is displayed in
Figure 2.

Polymers 2024, 16, x FOR PEER REVIEW 5 of 14 
 

 

  
(a) (b) 

Figure 2. (a) FCC assembly (circled in red, detailed in lower left corner) mounted in the XCT 
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Settings used for the evaluation in XCT and FVM are displayed in Table 1. Same
settings were used for all parts.

Table 1. Settings and parameters of the evaluation in each device.

XCT FVM

Voltage/kV 70 -
Current/µA 478 -

Physical filter No -
Projections 1700 -

Exposure time/ms 667 27.5
Contrast 1 - 0.45

Magnification 4.0 4× AX (Lens)
Resolution/µm 34.26 (Voxel size) 0.13 (Vertical), 8.5 (Lateral)

Time elapsed/min 14–16 70–75 (each probe)
1 non-dimensional contrast coefficient provided by software IfMeasure.

Resolution and time elapsed are the two parameters resulting from the adjustment of
the process settings of each method. For FVM, sampling resolution is inversely proportional
to time elapsed, while in XCT, the resolution obtained is the minimum achievable for the
complete characterization of the test object. This depends on the geometrical magnifica-
tion, a property resultant from the source-to-object distance (SOD) and source-to-detector
distance (SDD). Magnification in this case could have been improved by local tomogra-
phies; however, time elapsed would have increased exponentially with no significant
accuracy gains.

STL files were extracted for each probe for dimensional evaluation and intercompari-
son XCT-FVM using software Zeiss Inspect X-ray Pro 2023.3.0 and VG Studio Max 3.4.2. In
XCT evaluation, surface determination of the parts was performed in software VG Studio
Max 3.4.2, in Advanced mode, selecting a local gradient threshold with a search distance of
4 voxels, with no extra post-processing. Geometry and material of the test objects do not
imply a challenge in terms of XCT process settings adjustments or surface determination;
therefore, the aim was to automate as much as possible the surface-determination process
in order not to have any influence on the dimensional results.

3. Results

In this section, details of the results obtained in the evaluation of the test objects
are shown, including a first qualitative comparison of the STL obtained (Section 3.1) and
various analyses of the dimensional measurements of the lattice struts (Section 3.2).

3.1. STL Quality Comparison

The first qualitative analysis of the lattice surfaces obtained by FVM and XCT was
performed. STL files were extracted from each FVM and XCT measurement and imported
using the software VG Studio Max 3.4.2 for the evaluation.

In Figure 3, STL files of a single probe from each lattice typology in FVM measurements
are shown.

The first visual observation indicates that the reconstructed 3D files are not complete
in all cases; however, BCC probes show considerably fewer holes. These errors are located
mainly in internal zones, which are not possible to characterize by FVM as remaining
“hidden” by outer elements. Areas with no data have registered artifacts and deformations
in the edges.
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elements and inner features. Therefore, it has been able to reach zones that FVM is not 
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Figure 3. STL files obtained for each lattice typology in FVM measurements. Outer surface (blue) and
holes (yellow) are displayed. (a) BCC; (b) BCCZ; (c) FCC.

In Figure 4, STL files of the XCT reconstruction of single probes for each typology
are displayed.
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Figure 4. STL files obtained for each lattice typology in XCT measurements. (a) BCC; (b) BCCZ;
(c) FCC.

The XCT evaluation allowed us, as expected, to obtain complete STL files without
holes in the inner areas; as stated before, this technique allows us to inspect hidden elements
and inner features. Therefore, it has been able to reach zones that FVM is not capable of
characterizing. However, this first look does not allow us to fully understand the level
of detail of both devices. A close-up evaluation through 2D sections was performed. In
Figure 5, examples of 2D slices of both XCT and FVM surfaces with a grayscale XCT
background are shown, along with 3D details of the surfaces.
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map. (a) BCCZ vertical strut; (b) FCC transversal cut of a node; (c) 3D details of the FVM surface of a
BCC strut (yellow areas represent holes); (d) 3D details of the XCT surface of a BCC strut.

In these 2D slices and 3D details, it is possible to see that the XCT surface has more
microscopical details at a surface roughness level and at some features that, even though
they are not internal elements, are not directly on sight; these elements are called re-entrant
features (circled in green in Figure 5a) and are only possible to be measured by XCT [43].
Holes in the surface and the edge defects are evident, as seen in Figure 4.

The first visual analysis suggests that the quality of the 3D data obtained by XCT
is higher than by FMV. Inner areas are not adequately characterized by FVM, showing
errors in the edges of the holes that could affect the measurements of the struts. Also,
some microscopic details and re-entrant features are only possible to be obtained by XCT;
although having better resolution, it is possible that problems have occurred in FVM results
due to the 360◦ reconstruction. Here, it has been shown that the cell type was relevant in
FVM evaluation, as cell types with a higher amount of surface area that is not in direct
sight have bigger reconstruction errors. In XCT, as this technology is able to characterize
internal and hidden elements, this problem is not observed. To confirm the suggestions
obtained in this analysis, a quantitative evaluation was performed through dimensional
measurements of the lattice struts.

3.2. Dimensional Measurements

The results were obtained from the dimensional measurements of the individual struts
of the lattices. The mean values of each cell were intercompared for each lattice typology
(Section 3.2.1) and according to the cell position (Section 3.2.2). For this purpose, the
software Zeiss Inspect X-ray Pro 2023.3.0 was used.

3.2.1. Single Probe

The first analysis was performed by comparing the evaluation of a single probe of
each lattice typology using both devices. The mean values of the struts’ diameters were
grouped by cell unit, following the scheme shown in Figure 1a. A comparison of the mean
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values obtained from the XCT and FVM evaluation for each lattice typology are displayed
in Figure 6, including standard deviations of the results (error bars).
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The results show an increase in the deviation of the values between both devices for
cells located in higher positions; this becomes more evident for BCCZ and FCC, but the
affection is different (diameters in FVM evaluation for FCC are smaller, while those for
BCCZ are bigger). The standard deviation (σ) of the mean results is summarized in Table 2.

Table 2. Standard deviation (σ) of mean results of strut diameter evaluation for each case.

Cell 1 Cell 2 Cell 3 Cell 4

XCT FVM XCT FVM XCT FVM XCT FVM
σBCC 0.32 0.37 0.28 0.35 0.23 0.49 0.33 0.72

σBCCZ 0.97 1.26 0.62 1.76 1.23 1.99 0.79 2.97
σFCC 0.36 3.52 0.39 3.34 0.37 2.79 0.42 4.57

Additionally, expanded uncertainty calculations were made according to the proce-
dures indicated in the specific normative for each device:

• ISO 15530-3:2011 [18] for FVM measurements. ISO 15530-3:2011 defines general
calculations for the uncertainty estimation of a metrological device. The equation used
for the calculation of the expanded uncertainty U is the following:

UFVM = k ∗
√

u2
cal + u2

p + u2
w + u2

b, (1)

where k is the coverage factor (k = 2 for a 95% confidence); ucal is the standard uncer-
tainty of measurement due to the uncertainty of calibration of the calibrated workpiece,
as stated in the calibration certificate; up is the standard uncertainty of measurement
due to the measurement process, (standard deviation (σ) of the repeated measure-
ments); uw is the standard uncertainty of measurement due to variations in materials
and production (due to variations in, e.g., the coefficient of expansion, form errors,
roughness, elasticity, and plasticity); and ub is standard uncertainty of the measure-
ment of the correction of the systematic error b between the values, yi, indicated by
Alicona and the calibrated value, xcal, of the calibrated workpiece.

• VDI/VDE 2630-2.1 [19] for XCT measurements. As stated before, there is still no
standard for the determination of the uncertainties in XCT evaluation; however, this
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directive has good explanations of the factors to consider. Also, recommendations
suggested in [44] are followed.

VDI/VDE 2630-2.1 recommends an addition of parameter udrift, which is the standard
uncertainty of measurement due to the change (drift) in workpiece shape due to the
calibration referred to. Here, as the measurements performed by both devices are performed
one after the other with no time lapse, and no changes in the workpiece are supposed, udrift
could be neglected. It is also worth mentioning that, for XCT uncertainty calculations, a
maximum permissible error (MPE) = 4 µm, considering a rectangular distribution, was
used as it was provided by the manufacturer of the XCT device. The equation, thus, will
remain as following for XCT measurements:

UXCT = k ∗
√

u2
cal + u2

p + u2
w + u2

b + u2
dri f t, (2)

The results of the uncertainty calculations registered for the strut diameter measure-
ments are shown in Figure 7.
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The standard deviations registered are considerably higher for FVM measurements;
also, it is shown that, even with considerably lower resolution, uncertainty of the results
is similar or even lower for XCT measurements. This, combined with trends observed in
Figure 4, the results suggest that (i) repeatability of XCT results is higher and (ii) recon-
struction problems occur in FVM characterization. FVM measurements are taken along a
horizontal axis in which the single probe is aligned. As the alignment is not perfect, rotation
of the probe is not totally symmetric; therefore, the further the cell is from the clamping
of the probe, the higher the asymmetry, creating a “cone effect”. The numerical results
confirm that this affects the reconstruction of the volume for FVM, as deviations are higher
in the upper cells. In XCT, however, this effect does not happen, as the standard deviations
and the uncertainties are similar regardless of the position of the cell in the probe.

This reconstruction problem in FVM affects differently depending on the geometry
of the lattice. BCC cells show smaller deviations, although the trend stated before (higher
position, higher errors) is still followed; this suggests that the more surface reachable by
the microscope, the higher the correlation with XCT results.

3.2.2. Cell Position—4 × 4 × 4 Structure

A second analysis was performed regarding strut diameter evaluation. In a complete
lattice, cells were divided according to their location in the 4 × 4 × 4 structure, as it is
shown in Figure 8, and grouped in 4 different positions: corners, faces, edges, and centers.
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The objective was to check for different trends in the deviations XCT-FVM in contrast
to the results of the single-probe evaluation. The BCCZ lattice was chosen for this analysis,
as the lattice density is higher, and it can create higher noise levels in the measurement of
inner cells. The results are shown in Figure 9.
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Figure 9. Comparison of the XCT deviations of the struts’ diameters from FVM for each cell location
along the structure.

The results are divided into lower, middle, and upper cells considering single-probe
analysis segmentation. The values obtained show similar trends as previously, with higher
deviations in upper cells. Regarding positions, outer cells have higher errors (also worse
repeatability in terms of the standard deviation of results) than inner cells; this is an impor-
tant point, as it suggests that no additional measurement errors are found in inner cells,
and therefore in the case that reference measurements are required for any metrological
analysis (accuracy, uncertainties, etc.), outer cell characterization is representative enough
for the whole structure.

4. Discussion

The analysis of the measurements taken shows, as expected, better results for XCT
in all aspects. Although a 3D reconstruction of the single probes by the microscope is
possible with acceptable accuracy, the better repeatability of the XCT surfaces obtained is
demonstrated by smaller standard deviations and better uncertainties in strut diameter
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evaluation and higher-quality STL files. Although having better resolution, FVM is not
capable of characterizing certain details, such as re-entrant features, due to its limiting
optical measuring principle; in XCT, however, these non-visible elements are reachable,
therefore obtaining surfaces closer to the real part. Of course, the aim of this experiment
is not to evaluate the precision of FVM in lattice structure evaluation as it is not the most
suitable device for this purpose. Still, it is worth pointing out that compared to the reference
instrument, which had a remarkably better resolution (up to hundreds of nanometers)
when acquiring surface data, XCT obtained more repeatable results, which leads to the
suggestion of better precision. In addition, it is confirmed that cell type influences the
accuracy of the FVM evaluation method as the area proportion which is directly visible by
the microscope is not equal for all typologies; however, in XCT, there is no such problem,
as this technique is able to characterize hidden surfaces.

Another aspect to consider is the non-variability of the XCT results no matter the
position of the cell in the 4 × 4 × 4 structure, apart from the deviations found caused by
the reconstruction errors in FVM. As stated in previous studies [42], it is challenging to
compare inner cell results with reference devices because XCT is the only non-destructive
method able to characterize hidden parts. Thus, it is relevant that the XCT accuracy does
not decrease for inner cells; this suggests that a reference measurement of external lattice
elements by a reference device is enough for a performance evaluation of a complete XCT
lattice inspection. This must be taken with caution, as this experiment is performed in
a single material (polymer) and with a particular methodology; for other materials or
reference devices, further experiments should be required.

5. Conclusions and Future Work

In this paper, an approach to the definition of true precision in X-ray computed
tomography (XCT) characterization of polymeric lattice structures through a metrological
evaluation is presented. An experimental framework is settled, using a focal variation
microscope (FVM) as a calibrated reference device for the intercomparison with the XCT
measurements; this instrument was selected due to its higher resolution and its common
usage in surface 3D data acquisition. Ad hoc test objects were designed for the optimization
of measurements by both devices, simulating 4 × 4 × 4 structures composed of cubic-
based lattice cells organized in three typical configurations: body-centered cubic (BCC),
body-centered cubic with vertical struts (BCCZ), and face-centered cubic (FCC). A first
qualitative analysis of the surface obtained from the probes was performed, along with a
metrological evaluation of the diameters of the struts considering single-probe evaluation
(Section 3.2.1) and the complete structure for cell position error analysis (Section 3.2.2).

The results show higher repeatability of the values obtained in XCT measurements of
the diameter of the struts, with significantly lower standard deviations and good uncer-
tainty values. A trend was observed in FVM evaluation, as higher deviations from XCT as
well as lower repeatability were registered for upper cells. Errors are most likely caused by
reconstruction of the volume, as the rotation axis is not totally aligned with the horizontal
axis; this “cone-effect” is less evident in the BCC lattice, matching with the higher amount
of data obtained in the characterization.

Analysis of the deviations according to cell position along the 4 × 4 × 4 structure has
revealed similar trends, with no additional differences apart from reconstruction errors in
FVM mentioned before. This shows that no higher dimensional errors are found in the
XCT evaluation of inner cells of the lattice, therefore suggesting that the accuracy of inner
cell XCT measurement does not decrease, and reference measurements taken in outer cells
may be representative of all of the structure. However, this must be taken with caution, as
this experiment was performed with a particular methodology and for polymers.

As future work, further research should be performed for other materials (such as
metals) to complement this knowledge and to find out if these conclusions obtained could
be generalized for all cases. Additionally, studies could be expanded to other lattice types,
such as gyroids, diamond shapes, or organic forms, to verify the methodology.
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