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Abstract: In the field of data transmission and storage, serialization formats play a crucial role by
converting complex data structures into a byte stream that can be easily stored, transmitted, and
reconstructed. Despite the myriad available serialization formats, ranging from JSON to Protobuf,
each has limitations, particularly in balancing schema flexibility, performance, and data copying over-
head. This paper introduces Lite2, a novel data serialization format that addresses these challenges by
combining schemaless flexibility with the efficiency of zero-copy operations for flat or key–value pair
data types. Unlike traditional formats that often require a predefined schema and involve significant
data copying during serialization and deserialization, Lite2 offers a dynamic schemaless approach
that eliminates unnecessary data copying, optimizing system performance and efficiency. Built upon
a contiguously stored B-tree structure, Lite2 enables efficient data lookup and modification without
deserialization, thereby achieving zero-copy operations.

Keywords: data serialization; data formats; schemaless; zero-copy

1. Introduction

If we need to send data from one place to another, we typically need to serialize the
data into an array of bytes. That is achieved through data serialization formats. There are
many ways to achieve this; the most common solution is JSON [1]. Initially designed for
communication between Javascript clients and servers, JSON gained popularity through
its human-readable characteristics and flexibility. It has gained support from mainstream
programming languages such as C, C++, Python, Java, and more. Over time, its use cases
have expanded beyond client–server communication to include pure back-end applications,
system configuration files, and even database storage.

Despite being a popular choice, JSON is only guaranteed to be the best fit for some
scenarios. For example, when a schema is already defined, there is no need to send the
names of attributes in the message. In such cases, formats like Protobuf [2] and Apache
Avro [3] can offer several advantages. Popić et al. [4] demonstrated that, in IoT scenarios,
the total message size of JSON could be 5.9 times larger than Protobuf when transmitting
the same data, indicating that Protobuf is more compact than JSON. Additionally, the
schema brings type safety and more efficient serialization/deserialization. It is especially
important when working with client–server [5] and high-availability applications [6].

However, even with a more efficient serialization/deserialization process, the cost of
using such formats is still considered significant. According to a study by Zeller et al. [7],
serialization and Remote Procedure Call (RPC) costs are responsible for 12% of all fleet
cycles across all applications at Google. Palkar et al. [8] found that modern big data
applications can spend 80–90% of CPU time parsing data. Therefore, researchers have
been exploring more efficient serialization formats that provide “zero-copy” operations
to completely reduce the serialization cost. Cap’n Proto [9] and FlatBuffers [10] are two
popular solutions in this category.
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The evolution of serialization formats did not benefit all applications; while schema-
based formats like Protobuf offer significant advantages in terms of data size, there are
cases where maintaining the flexibility of JSON is desired. Schema-based formats cannot
serve as a simple drop-in replacement in such instances. In a practical situation, developers
are currently seeking an alternative to JSON. Specifically, the server must retrieve a large
JSON from the database for each request, modify several entries, and store these entries
back into the database. This is a perfect fit for zero-copy serialization since 99% of the JSON
entries will not be accessed for each request yet are still wasting CPU time. However, to the
best of our knowledge, existing zero-copy solutions all require schemas to use.

This paper aims to propose a novel data serialization format. To address the above
issue, we need to thoroughly understand existing protocols, e.g., various kinds of JSON
encoders and protocols other than JSON, like Protobuf and CBOR. We analyze the charac-
teristics of each protocol, including its strengths and weaknesses. For instance, although
Protobuf is generally faster, its implementation library may not be optimized, leading
to slower parsing times due to extra memory allocation or copying [11]. As a result, we
identified the best fit and designed a novel data serialization format—Lite2. In the land-
scape of data serialization formats, various solutions cater to different needs, including
handling complex nested data structures. Lite2 is a novel approach optimized for scenarios
demanding high-performance operations with schemaless data, primarily focusing on flat,
key–value pair structures. This distinction is crucial for understanding Lite2’s design goals
and comparative benchmarks presented in this paper.

This paper is structured into eight sections. Section 2 outlines five existing approaches
to data serialization. Section 3 details the inner workings of the Lite2 data serialization
format. Section 4 describes a thorough experiment on our novel format compared to
other data formats. Section 5 presents the results and discusses the experiment. Finally,
Section 6 summarizes the findings and contributions of this paper, followed by Section 7
on applications and Section 8, which concludes our work.

2. Related Works

Data transfer protocols and serialization techniques are popular topics in academia
and industry [12–14]. Currently, there are a variety of data forms, each with its own
applicable scenarios, advantages, and disadvantages. There is no best solution. This section
compares the five most commonly used data forms: JSON, CBOR, Apache Avro, Protobuf,
and zero-copy serializations.

2.1. JSON

JSON (JavaScript Object Notation) is designed as a general-purpose data interchange
format. It was introduced as part of the JavaScript Language Standard but became widely
adopted by mainstream programming languages, e.g., C/C++, Java, Python, etc. JSON’s
main feature is that it is human-readable while still being easy for machines to encode and
decode. Its popularity makes it the default choice of data-interchange format.

As JSON becomes so popular, it is common for a web server to parse JSON. There is a
chance that JSON parsing and generation become the bottleneck of a back-end system. Thus,
any improvement in JSON processing could speed up the system simultaneously. There are
several competitive JSON parsers, e.g., RapidJson [15], simdjson [16], and sajson [17]. The
simdjson parser claimed to be the most performant, with substantial speedups in multiple
tasks. They achieved this by extensively utilizing single instruction, multiple data (SIMD)
instructions. In short, SIMD is a way to achieve data-level parallelism by applying the same
CPU instruction to an array of data. It is a common way to accelerate data processing [18]
and is why simdjson can achieve the same tasks with far fewer CPU cycles.

Simdjson had been ported to mainstream languages due to its high-performance guar-
antee. However, maintaining the performance of the ported version is a non-trivial task.
The issue is particularly outstanding in Python due to its highly dynamic nature. The re-
search community has made some efforts to address this issue. One of which is Cython [19],
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which is a Python language extension that allows explicit type declarations and is compiled
directly to C. The combination of Cython and simdjson results in cysimdjson [20], which is
becoming one of the fastest Python JSON libraries.

2.2. CBOR

CBOR (Concise Binary Object Representation) is a data format designed to achieve
goals such as the possibility of a tiny amount of code, a relatively small number of messages,
and scalability without version negotiation [21].

CBOR is a relatively new standard for representing data on constrained devices
but several research groups have studied it. For data transmission within a security
information and event management (SIEM) system [22], Rix et al. developed an approach
of transforming XML to CBOR using JSON as an intermediate step to reduce network load.
In addition, they applied GZIP compression. This combination compressed the example
file from 358 bytes (XML) to 251 (XML/GZIP) and 63 bytes using CBOR and GZIP. It shows
the significant benefits of CBOR/GZIP in their use cases. Ilgner et al. evaluated CBOR
for Bluetooth and 3G communication [23]. They encountered challenges because CBOR
consumes a lot of static memory for CBOR object variables. CBOR libraries do not support
64-bit integers and longer objects must be broken.

However, CBOR still has advantages while sensor data must be encoded for trans-
mission [24]. In many usage scenarios, CBOR, due to its unique combination of features,
becomes a viable alternative for JSON [25].

2.3. Apache Avro

Apache Avro is another powerful data serialization format. It was integrated with
Hadoop by Doug Cutting, the father of Hadoop [26].

Apache Avro is one of the most widely used data serialization approaches as it has
many advantages over other data serialization formats [3]. Firstly, Apache Avro is a
language-neutral data serialization system. Thanks to its efficient binary format, it does not
require code generation and can interoperate with various programming languages [27].
Secondly, it has better performance in data file size and reading/writing execution time
when compared with other data formats such as XStream [28], Protostuff [29], Thrift, and
so on [30]. Thirdly, given Apache Avro was created as a subproject of Hadoop, it is still a
preferred tech for serialization and deserialization in the Hadoop ecosystem [28,29].

However, Apache Avro also has a significant drawback—heavy dependence on the
schema. Schema designing and updating are of high importance in the application of Apache
Avro, and the binary data implementation needs specified knowledge and experience [27].

2.4. Protobuf

Protocol Buffers is a data exchange format created by Google to send data over a
network. It is a binary file format. Protobuf employs a language known as Protocol
Definition Language (PDL) [2]. Data structures defined in this language can be compiled
into code in various languages.

Protocol buffers can store data in a more efficient format than JSON or XML, allowing
for faster read and write times and more minor storage requirements [31,32]. Protocol
buffers can be used to serialize data before sending them over the network to deserialize
them on the other end. It can help reduce the bandwidth needed to transfer data and make
them more compact and efficient to process. Due to the format’s efficiency in size and
speed, distributed systems and mobile apps can benefit from its adoption.

However, it is more challenging to get started with than formats like JSON or XML
because the structure is more complex [31,32]. Also, corresponding adaptation and
transformation work is required. Compared with JSON and XML, the versatility still
needs improvement [33].
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2.5. Zero-Copy Serializations

With the recent trend of splitting a monolithic application into multiple microservices,
a remote procedure call (RPC) has become essential to the whole architecture. To make
an RPC call, the caller must serialize the parameter and send it to the target microservice.
Some researchers proposed “zero-copy” serialization formats to further reduce the cost of
the RPC [7]. Though still dependent on schemas, such formats have no cost of serialization
or deserialization because they represent the object the same way in memory and the
database. Typical solutions include Cap’n Proto [9] and Flatbuffers [10].

2.6. Gaps in Previous Research

Table 1 summarizes the properties of several compared protocols. The current ap-
proach seems to have provided solutions for the following cases:

• If users want maximum flexibility, they should try JSON.
• If they want a better balance of performance and flexibility, they can choose the better

JSON parser or CBOR.
• Protobuf/Avro is better if they have the schema in advance.
• As for better performance with a given schema, they should try zero-copy serialization

formats like Cap’n Proto.

As Table 1 illustrates, current serialization formats offer varying degrees of flexibility
and performance, with none achieving an optimal balance of both in all scenarios. While
we acknowledge the extensive support for nested records and arrays by established formats
such as JSON and Protobuf, it is crucial to highlight the distinct niche Lite2 aims to fill.
Specifically designed for efficiency and high performance in simpler data models, Lite2

excels in environments where data schemas are flat or primarily composed of key–value
pairs. This focus allows for specialized optimizations that significantly benefit applications
demanding rapid data access and minimal overhead, often constrained by traditional
formats’ schema rigidity.

Recognizing the diversity of data structures encountered in real-world applications, we
propose Lite2 not as a universal replacement but as a complementary option for specific use
cases. A hybrid model employing Lite2 for performance-critical, flat data segments alongside
formats like JSON or Protobuf for more complex, nested structures could offer a balanced
solution in scenarios where data complexity varies. By leveraging Lite2 for its intended
strengths, developers can achieve notable performance improvements without sacrificing the
expressiveness and flexibility provided by self-describing formats. This approach underlines
our contribution to the serialization landscape: introducing a format tailored for specific
efficiency and performance needs, thereby enriching the toolkit available to developers for
optimized data handling across a spectrum of application requirements.

Table 1. Protocol comparison table.

JSON CBOR Avro Protobuf Cap’n Proto Lite2

Binary No Yes Yes Yes Yes Yes
Schema-IDL No No Yes Yes Yes No

Human-readable Yes No No No No No
Self-describing Yes Yes No No No Yes

Zero-copy operations No No No No Yes Yes

3. Problem Statement

Suppose we have a dataset represented as a dictionary, denoted as D. This dictionary
consists of n key–value pairs. Specifically, it is defined as follows:

Dn = {ki : vi}, (1)

where i ∈ [1, n].
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Here, ki represents the ith key and vi is its corresponding value in the dictionary. The
index i ranges from 1 to n, covering all key–value pairs in the dictionary.

A data serialization format, referred to as F, is a transformation that converts D into
an array of bytes. This transformation can be expressed mathematically as

B = F(D), (2)

where B ∈ [0, 255]m and m is the length of B.
In this formula, B is the resulting array of bytes. Each element of B is within the range

of 0 to 255, reflecting the byte structure, and m is the total number of bytes in the array.
Moreover, the data serialization format provides an inverse operation to revert B into

the original dictionary D, represented as follows:

D = F−1(B) (3)

Different data serialization formats (F) may require varying structures of D and
produce different byte arrays B. To objectively compare these formats, we establish specific
operations that D must support. For any query q, the dictionary should either return the
corresponding value v, if q exists in D, or indicate its absence:

D[q] =
{

vq, i f q exists in D
NULL, otherwise

(4)

Additionally, for any key–value pair k, v, the dictionary should insert them if k is new
or update the existing value of k. This insertion or update operation is denoted as D[k] = v.

The primary criterion for comparing these formats is their time efficiency in performing
various operations. The time efficiency is defined as the duration to complete specific tasks,
detailed as follows:

Tde = Elapsed(F−1(B)) (5)

Tse = Elapsed(F(Dn)) (6)

Tp
read = Tde +

p

∑
i=0

Elapsed(Dn[qi]) (7)

Tq
write =

q

∑
i=0

Elapsed(Dn[ki] = vi) + Tse (8)

Tp
read+write = Tde +

p

∑
i=0

Elapsed(Dn[ki] = vi) + Tse (9)

These metrics evaluate the time elapsed in three common scenarios: (1) deserializing
the data and accessing a few entries, (2) deserializing the data, updating a few entries, and
then serializing the data, and (3) creating an instance of data in the specified format from
an empty state. The format with the lowest elapsed time for these operations is deemed the
most efficient.

4. Method

Although we did not find an algorithm that exactly meets our needs, we know about
a very similar application—SQL [34]. Take MySQL as an example; it mostly satisfies the
requirement of being schemaless zero-copy. As it can store arbitrary keys and therefore be
schemaless, it does not require loading everything into the memory before performing a
lookup, thus being zero-copy.

However, MySQL stores the data on hard disk drives directly. It does not need to
ensure the contiguity of the stored content, which is critical to a serialization format. A
serialization format should always serialize the data into a continuous chunk of bytes,
whereas an SQL database can split them everywhere on the disk.
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Another reason we do not use MySQL directly is because it is not dedicated to data
serialization and, therefore, includes some unnecessary design from our point of view.
Drawing inspiration from MySQL’s schemaless and zero-copy capabilities, the Lite2 format
incorporates these advantages while discarding the unnecessary overhead associated with
a full-fledged database system. The goal is to create a lightweight, memory-efficient tool
suitable for scenarios where data structures need to be serialized and deserialized rapidly
and frequently without the need for a complete database management solution. Lite2 is
designed to be a dedicated serialization tool, optimized for speed and flexibility, and free
from the constraints and complexities of database management systems. We named it
“Lite2” since it is lighter than SQLite [35].

4.1. Contiguously Stored B-Tree

The underlying data structure of SQL databases is B-tree [36]. A B-tree is a tree data
structure that stores sorted data and performs operations such as searches, insertions, and
deletions in logarithmic time. It is essentially a generalized binary search tree [37] that
allows storing more than two children in a node. It also has a self-balancing mechanism
by ensuring all paths from the root to the leaf have approximately the same length. These
properties make it practical in database applications. While Lite2 leverages the well-
established principles of B-trees for organizing data, its novelty lies in adapting these
principles to a zero-copy, schemaless serialization context. Unlike traditional B-trees used
primarily for database indexing, Lite2’s B-tree-inspired structure is designed from the
ground up to optimize for memory efficiency and direct operations on serialized data.
This design facilitates lookup, insertion, and deletion without deserialization, reducing
operation latencies and memory overhead.

Lite2 format aims to store a B-tree in contiguous memory. The memory layout is
designed as follows:

MAGIC VER DEPTH ROOT LEAK TREE_SECTION

SQLite 1 1 3 3 VAR

4.1.1. Header Section

Each serialized dataset starts with a magic string “SQLite” as an identification, fol-
lowed by one byte of version number to allow format versioning and evolution. Then, we
use one byte to store the depth of the tree and three bytes to store the offset of the root node.
The term offset refers to the zero-based index of a location in the serialized bytes, e.g., the
offset of magic is 0 while the offset of version is 7. We also keep a “leak” field to track the
length of the deleted entries in the tree section.

4.1.2. Nodes

The header section is followed by the tree section, which consists of two types of
objects: nodes and key–value (KV) entries.

PARENT_OFFSET PARENT_IDX LEN HASHES KV_OFFSET CHILDREN_OFFSET

3 1 1 3 ∗ 19 3 ∗ 19 3 ∗ 20

Nodes form the main body of the B-tree. To self-balance, we need to store the offset of
the parent node and the position of the current node as a child in the parent node within
each node. That results in the parent offset and parent index field at the beginning of each
node. We also need to track the number of children in each node, which is the purpose of
the length field.

The node is then followed by 3 fixed-sized sections: hashes of keys, which are used for
ordering, KV offsets, where the entries are stored, and child offsets, which are the locations
of the child nodes.



Computers 2024, 13, 89 7 of 17

The order of the tree is configurable and, in our case, we chose 19. The reasoning
behind this is that the typical cache line of an x86-64 CPU contains 64 bytes. As hashes are
represented by 3 bytes each, having an order of 19 will allow all the values required for
comparison (3 + 1 + 1 + 3 ∗ 19 = 62 bytes) to fit into a single cache line (64 bytes).

4.1.3. Entries

Entries are where the keys and values are stored. They are either deleted or referenced
from precisely one node in the B-tree.

CTRL LEN KEY_LEN VAL_LEN KEY VAL

1 3 3 3 VAR VAR

If the most significant bit of CTRL is set to 1, we consider this entry deleted. It is then
followed by its entire length (LEN), key length, value length, and the actual key and value.
Storing the entire length allows us to allocate a few more bytes for an entry so that it does
not need to relocate too frequently when the value grows in size.

4.1.4. Lookup and Insertion

The lookup is essentially a B-tree lookup (as shown in Algorithm 1).

Algorithm 1: Lookup operation in Lite2

Result: Find the value for the given key
Input : Key to find
Output : Value associated with the key or NOT FOUND

1 currentNode← root;
2 while currentNode ̸= NULL do
3 for key in currentNode.keys do
4 if key is equal to the search key then
5 return associated value;
6 else if key is greater than the search key then
7 currentNode← child node at the current index;
8 break;
9 end

10 if all keys in currentNode are less than the search key then
11 currentNode← rightmost child;
12 end
13 end
14 return NOT FOUND;

We start from the root node whose offset is stored in the header and search down
the tree until we reach the target or nothing. We chose a linear search to find the child to
descend to instead of a binary search. Linear search outperforms binary search with small
search ranges in our micro-benchmarks.

Insertion follows the same process as that defined for B-tree. The new nodes and
entries are allocated at the end of the buffer, as seen in Algorithm 2.
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Algorithm 2: Insertion operation in Lite2

Result: Insert a new key–value pair
Input : Key and value to insert

1 Perform Lookup(key) to determine insert location;
2 if key already exists then
3 Update the value and return;
4 Insert key–value pair in the determined location;
5 if node exceeds maximum capacity then
6 Split the node;
7 Propagate split if necessary, up to the root;
8 if root is split then
9 Create a new root;

4.1.5. Deletion

Finally, let us discuss the deletion in Algorithm 3.

Algorithm 3: Deletion operation in Lite2

Result: Mark a key–value pair as deleted
input : Key to delete

1 Perform Lookup(key) to locate the key–value pair;
2 if key is found then
3 Mark the entry as deleted in its control field;
4 Increment the “leak” counter in the header;
5 if the “leak” counter exceeds a threshold then
6 Rebuild the tree from non-deleted entries;

We perform a lazy deletion instead of a full one. The deleted entry will be marked
in its CTRL field and its length will be added to the leak field in the header. If the leak
field reaches some thresholds, we rebuild a new tree from the old one to eliminate all the
deleted entries.

4.1.6. Zero-Copy Operations

One of the key innovations of Lite2 is its ability to perform read and write operations
directly on the serialized data form. This approach eliminates the need for a separate
deserialization step, significantly accelerating data access times and reducing computational
overhead. We can directly perform B-tree lookup on the bytes buffer and insert into or
delete from the bytes buffer. Therefore, they are zero-copy operations.

4.2. Python Binding

PyO3 is a Rust library that allows you to write native Python modules or run Python
code and modules from Rust. It provides a safe and fast way to interface between Rust
and Python. PyO3 can be used with minimal configuration by using Maturin, a tool for
building and publishing Rust-based Python packages. We followed the official guidelines
and built our binding. We adhered to official guidelines while creating our binding and
avoided several errors by using PyO3:

• We refrained from directly modifying Python bytes since they are semantically im-
mutable and their contents should never change.

• We avoided keeping a raw reference to Python bytes in the Rust object, as it is unsafe
and could cause a segmentation fault. The Python caller can deconstruct the bytes
object at any time. Accessing these bytes from native code after deconstructing them
will result in a segmentation fault.
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• We avoided returning a reference of the data on the native heap to Python for similar
reasons. If the Python caller drops the Rust object, the reference is invalidated. Any
access to that reference results in a use-after-free error, causing segmentation faults.

Designs that contain the above-mentioned errors cannot be compiled with PyO3, which
saved us a significant amount of time debugging and reworking our implementation.

4.3. Benchmarking

Our benchmarking design incorporates essential features such as extensibility and
configurability. The former enables the easy addition of data serialization formats, while
the latter allows testing with varying data and numbers of rounds.

Despite Python’s lack of performance efficiency, it presents competitive capabilities for
benchmarking and testing. With its dynamic type system, we are able to create a benchmark
system that meets our requirements. For testing and benchmarking, we have chosen Pytest,
which supports small, readable tests and complex functional testing for applications and
libraries. The use of plain assert statements and adherence to conventions for Python
test discovery further enhance its utility. Furthermore, its vast collection of plugins and
extensions strengthens its applicability. We have implemented our benchmarks using the
pytest-benchmark extension to provide precise and statistically significant outcomes.

4.4. Test Strategies

Our testing strategy involved multiple approaches, including unit tests, random tests,
and fuzz tests. To avoid redundancy, we kept our Rust tests minimal and focused on testing
in Python. We also maintained a list of concerns and addressed them with corresponding
test cases:

• Can the format handle oversized keys and values properly? Our format has a theoreti-
cal size limit and it is essential to handle oversized data correctly.

• Does the library violate Python type guarantees? As we interact only with “bytes”,
which have immutable semantics, it is crucial to avoid any mutations.

• Does the library operate in a memory-safe way? It is vital to avoid use-after-
free situations.

• Does the format function correctly during insertion, query, and deletion operations?
• Does the library behave well with different key distributions? For a data structure

built upon hash functions, it is crucial to handle hash collisions correctly.
• Does the library require an appropriate amount of space? Even if the library passes all

the above tests, it is crucial to test its space requirements as space is one of our concerns.

5. Simulation Scenarios

For the process of our benchmark algorithm, we will consider it as a scenario where a
company needs to process a large amount of data from multiple sources. The data sources
include JSON files, binary files, and others. The developers must identify the most efficient
format between the 11 frameworks shown in Table 2.

Table 2. Data serialization formats.

Lite2 MessagePack

JSON Orjson

Cap’n Proto UJSON

CBOR Rapidjson

Proto Buffers Simdjson

Cysimdjson
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We can break down data processing into three cases: parsing and accessing the data,
inserting and dumping the data, and parsing, updating, and dumping the data. Each case
corresponds to the efficiency in read-heavy applications, write-heavy applications, and
read–write balance applications, as shown in Table 3.

Table 3. Performance metrics.

Read efficiency Parse the data and access a number of entries

Write efficiency Insert a number of entries and serialize

Read–write efficiency Parse the data, update some
entries, and serialize

To conduct this simulation, we first establish the parameters for the number of entries
(Ne) and average entry (key and value) length (Le). Subsequently, we generate sample data
conforming to each data serialization format. This sample data is written to disk. We will
calculate the elapsed time based on Equations (7)–(9) for each setting (Ne, Le) by performing
them multiple times. This evaluation will help us understand how each format performs
under various workload conditions.

We will run performance tests in this simulation for the following combinations:

• Ne is 100 and Le is 40
• Ne is 1000 and Le is 160
• Ne is 100,000 and Le is 640

In developing our benchmarking methodology, several vital parameters were carefully
selected to evaluate Lite2’s performance comprehensively. These parameters were chosen
to simulate a range of real-world scenarios that Lite2 will likely encounter, ensuring that
our assessment captures its strengths and potential limitations under various conditions:

1. Data Size (Ne) and Entry Size (Le): The sizes of datasets and individual entries
were chosen based on common use cases in data serialization where schemaless data
formats are prevalent [38]. These sizes reflect the varied nature of data these systems
handle, from configuration files to sensor data streams.

2. Read–Write Operation Mix: The mix of read and write operations in our benchmarks
was determined by analyzing typical workload patterns in target application domains.
This mix aims to provide a balanced view of Lite2’s performance across different data
access patterns.

3. Concurrency Levels: Given the increasing importance of concurrency in modern
applications [5], particularly those based in cloud and distributed computing envi-
ronments [6,39], we included varying levels of concurrency in our benchmarks. The
chosen levels represent the load conditions under which data serialization formats
must operate efficiently.

Where applicable, we benchmarked Lite2 against other formats using parameters
that align with those used in their respective evaluations. This approach ensures a fair
comparison, highlighting Lite2’s performance relative to established options in similar
conditions. The simulation scenarios are summarized in Table 4.

Table 4. Parameters for each simulation scenario.

Dataset Entries Average Key–Value Length

Simulation I 100 40

Simulation II 1000 160

Simulation III 100,000 640
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We designed the Ne to span three orders of magnitude. Our experiments indicate
that the three sets of data presented are sufficiently representative, so there is no need to
present additional data. This systematic approach facilitates an empirical comparison of the
performance of the three serialization formats under various conditions, ultimately assisting
developers and architects in identifying the most efficient format for their specific needs.

6. Results

Lite2 is a highly competitive format for datasets of various sizes. When the number of
operations is small (as shown in the results in Figures 1–3), Lite2 always shows unparalleled
performance, proving our zero-copy mechanism’s effectiveness. The advantage decreases as
the number of operations grows and is surpassed by Protobuf in the 100-entry configuration.
This is due to the different search algorithms for entry lookup. For Lite2, this is achieved
through a B-tree search with an O(logN) theoretical time complexity, where N represents
the number of elements in the tree. Protobuf, on the other hand, can access the elements
by offset like an array, which has a time complexity of O(1). When performed frequently,
the faster searching mechanism of Protobuf offsets the costly serialization process. Such a
trade-off is likely to be observed in smaller datasets. In larger datasets, the requirement for
achieving the offset becomes more unrealistic, making Lite2 a better choice.
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Figure 1. Parse and access entries.
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Figure 2. Parse and update entries and dump.
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Figure 3. Insert and dump.

Lite2 is comparable to other formats regarding pure insertion performance, even
though it is not the fastest. Furthermore, it has a propensity to become more time-effective
as the number of entries rises. Lite2 is a highly recommended data format for read and
update scenarios involving sizable schemaless datasets. It is the best-performing data
structure for these jobs thanks to its schematic format, direct memory access to serialized
data, and great performance.

7. Applications

Due to the nature of the analysis of simulation outcomes, Lite2 has a particular impact
on obtaining and updating data in multiple fields.

7.1. Web Server

Web servers commonly need to deal with data. For example, an e-commerce website
must store the merchandise with its properties, such as various discounts, prices, avail-
ability, etc. The properties could grow into a large key–value object and, due to their
interdependent nature, splitting them might not be a choice. The data are in rapid iteration,
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meaning applying schema will greatly increase the development complexity. The server
may need to fetch the data, access or modify a few entries of the data, and write them back
to the database. In such a scenario, the serialization and deserialization could spend signifi-
cantly more CPU cycles than the insertion/searching. A schemaless zero-copy serialization
format like Lite2 would be a perfect fit.

7.2. Financial and Securities Markets

Efficiency in reading and updating data is crucial in the financial and securities markets.
As information on the financial market is always changing, traders and investors must
act rapidly to get access to real-time data. Here is a specific illustration and explanation:
High-Frequency Trading (HFT) is a trading strategy based on algorithms and high-speed
computer programs to exploit small price differences in the market to realize profits. This
procedure necessitates the real-time acquisition and processing of a sizable volume of
schemaless data, such as market conditions, news, social media, etc. Time-saving measures
are therefore essential for reading and updating data.

Real-time access to data from numerous sources, formats, and structures is necessary
for high-frequency trading systems, including real-time stock prices, market quotations,
news, and social media. These data must be transferred at high speed and low latency to
enable trading algorithms to make judgments quickly. High-frequency trading systems
must also constantly update internal data to track market movements and modify trading
tactics in real time. The system must be adaptable and effective to quickly update data
because these data may not have a structure. In conclusion, Lite2 is quite helpful for
managing such events. It can read and update data quickly.

7.3. Internet of Things (IoT) and Real-Time Monitoring Systems

Time efficiency is crucial for accessing and updating data in the Internet of Things
(IoT) and real-time monitoring systems [40]. IoT devices and sensors produce a lot of
real-time data, necessitating frequent updates to keep the system functional. The intelligent
transportation system uses real-time monitoring and Internet of Things technology to
analyze and dispatch road or air traffic situations. To address the issue of congestion
quickly and boost the effectiveness of road transportation, traffic data must be acquired
and updated in real-time during this process.

7.4. Virtual Reality Entertainment Applications

In a VR entertainment application, the sensor data generated by different devices can
have varying schema structures, and the data generated by these sensors can be highly
dynamic and unpredictable.

Let us assume a virtual reality platform is designed to allow users to connect and
collaborate with others in real-time. It provides a range of tools and features for users to
build their virtual worlds and experiences. When users connect to it, many data need to be
handled, including information about the users’ avatars, their movements and actions, and
their interactions with objects and other users. Additionally, chat messages or other forms
of communication between users may need to be transmitted and processed.

This is a good application scenario for Lite2. First, a schemaless data framework
can allow for more efficient and flexible processing of the varying users’ data. Second, a
zero-copy data format would reduce the overhead associated with copying data, improving
performance and reducing memory usage. This is especially important in VR applications,
where high frame rates and low latency are critical for a smooth, immersive experience.

7.5. Real-Time Criminal Record Matching in CCTV Surveillance System

A CCTV surveillance system is deployed in a public security setting, let us say a city,
to monitor people’s movements. The system consists of multiple CCTV cameras capturing
video streams and generating data in real-time. The data includes video frames, metadata,
and other relevant information.
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When the CCTV cameras detect suspicious activities or individuals, the system per-
forms real-time criminal record matching against a mass database of criminal records.
Upon a successful match, the system generates an alarm in real-time, notifying the security
department to take action, like dispatching security officers to the location for further
investigation or intervention.

This is a good application scenario for Lite2. The format’s schemaless nature is
particularly beneficial as the data captured by the CCTV cameras may not adhere to a
fixed schema due to frequent changes in criminal records and varying data formats from
different sources. Zero-copy enables quick and efficient data retrieval and matching, crucial
in public security scenarios where speed is paramount.

8. Conclusions and Future Research

We have developed a novel schemaless serialization format known as Lite2. This
format has been thoroughly benchmarked to assess its performance in various scenarios.
In situations where the number of operations required after deserialization is low, Lite2

demonstrates a significant performance advantage over JSON, with up to a 100-fold increase
in efficiency. This performance improvement is attributable to Lite2’s unique design, which
allows it to excel in specific use cases where traditional formats like JSON may struggle to
keep up. By leveraging the strengths of Lite2, developers can optimize their applications for
maximum performance, particularly in situations where quick data retrieval and processing
are significant.

When comparing Lite2 and SQL databases, both use a B-tree data structure. Despite
this commonality, drawing a direct performance comparison between the two would not
yield valid conclusions. This is because Lite2 and SQL databases have different purposes
and design goals. Lite2 is a schemaless serialization format aimed at efficient data retrieval
and storage, optimized for high-performance reading and writing of key–value pairs, re-
flecting a specific subset of database operations that benefit from zero-copy and schemaless
characteristics. On the other hand, SQL databases are designed for structured data storage,
retrieval, and manipulation with a predefined schema.

The underlying reasons for the limitations in comparing Lite2 and SQL databases could
be their different architectures, optimizations, and implementations. To better understand
the performance and applicability of Lite2 in the context of database systems, further
exploration and research are needed. This could involve investigating more suitable
comparison metrics or methodologies, and examining the specific use cases where Lite2

might offer advantages over traditional database systems, which is not the focus of this
framework nor the paper.

Limitations and Future Work

Lite2, in its current implementation, is designed to handle map-type data structures,
which consist of key–value pairs. This limitation means that the format is unsuitable for
representing list or array-like structures. This could be a drawback in some use cases where
the data are inherently sequential or where list-based structures are more appropriate.

The key–value structure utilized by Lite2 currently only supports string data types for
both keys and values. This restriction can affect the format’s flexibility when dealing with
more complex or diverse data types, such as integers, floats, or nested objects. Extending
support to a wider variety of data types could significantly enhance Lite2’s adaptability
and usefulness across different applications.

To address these limitations and increase the applicability of Lite2, future work should
focus on expanding its capabilities to support various data structures, accommodating
diverse data types, and enhancing its performance in data creation scenarios. This would
produce a more versatile and efficient serialization format for various applications. Pro-
posed developments include introducing transaction support, enabling atomicity and
consistency across operations, and implementing range queries to facilitate more complex
data retrieval patterns. Additionally, exploring mechanisms for optimizing Lite2 for work-
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loads that involve joins and aggregations will be crucial for broadening its applicability
to a wider array of database applications. These advancements will leverage Lite2’s core
strengths while addressing the multifaceted nature of database workloads.

The performance of Lite2 when creating data from scratch is relatively ordinary, which
means that it may not stand out compared to other serialization formats in scenarios where
a substantial amount of new data needs to be generated and processed. This average
performance can be attributed to the format’s specific design choices and underlying data
structures, which may not be optimized for the rapid generation of new data. To enhance
Lite2’s performance in data creation scenarios, future work should investigate potential
improvements in its underlying data structures, algorithms, or implementation techniques.
Optimizing the format for creating data from scratch would make it more competitive and
applicable across a broader range of scenarios, increasing its overall utility and effectiveness
in various applications.
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