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Abstract: Elastic spherical polishing tools effectively conform to the polishing surface and exhibit high
efficiency in the removal of materials, so they are extensively used in the sub-aperture polishing stages
of optical components. However, their processing is often accompanied by significant mid-spatial
frequency (MSF) errors, which critically degrade the performance of optical systems. To suppress
the MSF errors generated during polishing with spherical tools, this study investigates the influence
factor of MSF errors during the polishing process through an analysis of the convolution effect in
material removal. A material removal profile model is established, and a uniform removal simulation
is conducted to assess the influence of different shape material removal profiles on MSF errors.
Simulation and experimental results show that a Gaussian-like shape material removal profile is
more effective in suppressing the MSF errors during polishing compared to the “W” and trapezoidal
shape material removal profiles. In addition, based on the characteristics of the RMS decreasing in a
serrated trend with the decrease in path spacing, a path spacing optimization method considering
the polishing efficiency is proposed to improve the polishing efficiency while controlling the MSF
errors, and the effectiveness of the path spacing optimization method is verified by comparing the
MSF error at the maximum theoretical path spacing and the path spacing that is less than this. Finally,
the path spacing optimization method is used to polish single-crystal silicon to further illustrate
its practicality.

Keywords: sub-aperture polishing; mid-spatial frequency error; convolution effect; material removal
profile

1. Introduction

Optical components are widely applied in fields such as precision instrumentation
and optical imaging, including extreme ultraviolet lithography systems, space telescopes,
high-power laser equipment [1–6], etc. With the rapid development of these areas, higher
precision requirements for optical components have become necessary. Polishing is the final
processing step for optical components and plays a vital role in achieving the ultimate pre-
cision of the component. With the advances in computer technology, computer-controlled
optical surfacing (CCOS) technology has been successfully applied to the ultra-precision
polishing stage of optical component manufacture [7]. Compared to traditional polishing
methods, CCOS technologies ensure accurate material removal, better predictability of
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the results, and higher processing efficiency. Today, based on CCOS technology, various
polishing methods, such as magnetorheological polishing [8], bonnet polishing [9], ion
beam polishing [10], and abrasive jet polishing [11], have widely been employed in the
manufacture of optical components, significantly improving the processing quality and
efficiency. In the CCOS technology, the size of the polishing tool is much smaller than
that of the workpiece, which ensures the convergence efficiency of the surface form to a
certain extent, but introduces additional MSF errors during the polishing process [12,13].
The elastic spherical polishing tools are widely used in the sub-aperture polishing stage
of optical components because of their effective fit to the polished surface and efficient
material removal ability. However, more severe MSF errors are produced during the pol-
ishing process. MSF errors degrade the performance of optical components, such as by
producing small-angle scattering and reducing image contrast [14], which greatly impacts
the imaging quality of the optical system. Therefore, reducing the MSF errors produced
during the polishing process is of great significance.

In the sub-aperture polishing process of optical components, it is commonly believed
that the generation of MSF errors is due to the regular removal of materials along the
polishing path by the polishing tool. Compared with the more regular path, the pseudo-
random path direction is more variable, which allows for a certain degree of suppression
of MSF errors on the polishing surface. Consequently, many scholars have researched
pseudo-random paths. Dunn et al. [15] first proposed a universal pseudo-random path
that has been widely applied in magnetorheological finishing and abrasive jet polishing,
effectively suppressing MSF errors. Subsequently, some researchers applied various paths,
such as maze paths, Peano paths, six-direction pseudo-random paths, and circular pseudo-
random paths [16–19], in optical sub-aperture polishing, achieving different degrees of
MSF error suppression. Despite the effective suppression of ripple errors through the use
of pseudo-random paths, the variability in the direction of the paths can lead to significant
velocity changes near the path turning points, which requires a high dynamic performance
by the machine tools and is detrimental to the convergence of the polished surface’s form.
Wan et al. [20] suggested that the mechanism by which pseudo-random paths suppress MSF
errors involves the transfer of MSF errors to lower-spatial-frequency errors, which sacrifices
the efficiency of surface form convergence to some extent. Frequent changes in the path
direction can damage the machine tool. Hence, raster paths remain the most commonly
used polishing paths. Another method to suppress MSF errors involves the use of small
polishing pads for smoothing ripples. To smooth surface ripples effectively, small polishing
pads require a certain level of stiffness; however, to ensure adequate conformity of the small
pad with the workpiece, especially during the smoothing of curved components, the pad
also needs to possess a certain degree of flexibility. Therefore, designing small polishing
pads that meet the specific stiffness and flexibility requirements presents a challenge. Kim
et al. [21] designed a rigid–conformal small polishing pad and proposed a parametric
smoothing model to quantitatively describe the smoothing effects of the polishing tools.
The flexible layer of this pad was made of a viscoelastic material, which can be considered
a non-Newtonian fluid. During the polishing process, its unique rheological properties
enabled better contact with aspheric surfaces and maintained sufficient stiffness under
high-speed impact conditions, achieving a certain smoothing effect. Building on Kim’s
work, Su et al. [22] introduced a parametric smoothing model to describe the smoothing
of complex surfaces. Song et al. [23] proposed a time-varying smoothing model that
included specific factors related to smoothing efficiency based on the parametric smoothing
model and Preston’s equation. The smoothing efficiency of the rigid conformal polishing
pad can be maximized by utilizing the time-varying smoothing model. Yu et al. [24]
designed a rigid aspheric smoothing tool for aspheric and freeform surface smoothing
and demonstrated its effectiveness in removing MSF errors on aspheric surfaces through
comparative experiments with spherical smoothing tools. Hou et al. [25] proposed a
predictable smoothing evolution model combining process parameters and error reduction
factors and experimentally proved that the predictive model was consistent with the actual
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smoothing effect. However, smoothing is a time-consuming process and there is a high
probability that the surface form of the workpiece will be damaged during the ripple
smoothing process.

Although ample research has been conducted on the suppression of MSF errors
during the sub-aperture polishing of optical components, the primary focus has been on
optimizing the polishing path or improving the smoothing ripple performance of small
pads to mitigate MSF errors, and little attention has been paid to the influence of the
material removal characteristics of the polishing tool itself on the MSF error. Furthermore,
some scholars have investigated the effect of different process parameters on the profile of
the tool influence function (TIF) and analyzed the convergence efficiency of the TIF with
different cross-section profile shapes to surface forms, but did not discuss its effect on the
MSF error [26–28]. Therefore, this paper analyzes the formation mechanism of MSF error
based on the convolution effect of material removal. A material removal profile model is
established, and different shapes of removal profiles are used to simulate the MSF error
distribution on the processed surface. In addition, a path spacing optimization method is
proposed to improve the polishing efficiency while effectively controlling the MSF error.

2. Theoretical Analysis
2.1. Analysis of MSF Error Source

In the sub-aperture polishing of optical components, the amount of material removed
is equal to the convolution of the tool influence function (TIF) with the dwell time along a
specified polishing path, which can be expressed as follows [29]:

H(x, y) = R(x, y) ∗ T(x, y) (1)

where H(x, y) is the amount of material that is removed; R(x, y) is the TIF; T(x, y) is the
dwell time at the dwell points along the polishing path; and ∗ is the convolution operation.

The polishing tool moves continuously in the scanning direction and discretely in
the feed direction during the polishing process, as shown in Figure 1a. The final material
removal can be viewed as two parts. First, the TIF moves continuously along the scanning
direction on one polishing path to form a material removal ribbon, in which no ripples
are considered to be generated. Then, the material removal ribbons formed on different
polishing paths are convolved and superimposed to form the final material removal. As
shown in Figure 1b, due to the convolutional nature of material removal, the overlap
of material removal ribbons on adjacent polishing paths leads to non-uniformity in the
material removal. This generates a periodic ripple error, also known as an MSF error, in the
scanning direction. In this paper, the material removal profile is defined as the cross-section
of the material removal ribbon perpendicular to the tangential direction of the path, and it
is obvious that the shape of the material removal profile directly affects the formation of
the ripples.

2.2. Material Removal Profile Model

As mentioned above, the formation of ripples is closely related to the superposition
state of the material removal profile. Thus, analyzing the formation of the material removal
profile is of significant importance for the suppression of ripples.

According to the Preston equation [30], the material removal at the contact area
between the polishing tool and the workpiece can be expressed as follows:

dh(x, y) = KP(x, y)V(x, y)dt (2)

where dt denotes the dwell time; P(x, y) denotes the pressure in the contact region; V(x, y)
denotes the relative velocity between the polishing tool and the workpiece in the contact
region; dh(x, y) denotes the depth of material removal during the dwell time dt; and K is
the Preston coefficient.
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Figure 1. Analysis of MSF source. (a) Schematic diagram of polishing using a raster path; (b) peri-
odic ripples in the feed direction. 

2.2. Material Removal Profile Model 
As mentioned above, the formation of ripples is closely related to the superposition 

state of the material removal profile. Thus, analyzing the formation of the material re-
moval profile is of significant importance for the suppression of ripples. 

According to the Preston equation [30], the material removal at the contact area be-
tween the polishing tool and the workpiece can be expressed as follows: 

( , ) ( , ) ( , )dh x y KP x y V x y dt  (2)

where dt   denotes the dwell time; ( , )P x y   denotes the pressure in the contact region; 
( , )V x y  denotes the relative velocity between the polishing tool and the workpiece in the 

contact region; ( , )dh x y  denotes the depth of material removal during the dwell time dt
; and K is the Preston coefficient. 

The elastic spherical polishing tool moves along the polishing path with a given scan-
ning rate sV , the direction of the y-axis is the tangent direction of the polishing path, and 
the direction of the x-axis is perpendicular to the tangent direction of the polishing path, 
as shown in Figure 2. Figure 3 shows the schematic diagram of the local contact area be-
tween the polishing tool and the workpiece. When the polishing tool moves along the y-
axis with a given scanning rate sV , the distance traveled by the polishing tool during the 
period dt  is: 

 sdy V dt  (3)

Substituting Equation (3) into Equation (2) yields: 

Figure 1. Analysis of MSF source. (a) Schematic diagram of polishing using a raster path; (b) periodic
ripples in the feed direction.

The elastic spherical polishing tool moves along the polishing path with a given
scanning rate Vs, the direction of the y-axis is the tangent direction of the polishing path,
and the direction of the x-axis is perpendicular to the tangent direction of the polishing
path, as shown in Figure 2. Figure 3 shows the schematic diagram of the local contact area
between the polishing tool and the workpiece. When the polishing tool moves along the
y-axis with a given scanning rate Vs, the distance traveled by the polishing tool during the
period dt is:

dy = Vsdt (3)

Substituting Equation (3) into Equation (2) yields:

dh(x, y) =
KP(x, y)V(x, y)

Vs
dy (4)

Set point C for any point on the x-axis in the contact area, L1 and L2 are the end
and start points of the polishing tool along the straight polishing path through point C,
respectively. Then, the depth of material removal produced at point C is:

h(x) =
∫ L1

L2

KP(x, y)V(x, y)
Vs

dy (5)

It is evident that Equation (5) is the material removal profile model.
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Given a polishing path spacing of s, the 2D material removal profile S on the surface
of the workpiece in the feed direction is expressed with the following equation:

S(x) =
n

∑
i=1

hi(x − (i − 1)s) (6)

where hi denotes the removal profile on the ith polishing path.
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Figure 2. Positional relationship between the polishing tool and the workpiece. (a) Three-view
schematic diagram; (b) axial schematic diagram.
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In Equation (6), it can be seen that the overlap of the removal profile directly affects
the generation of ripples in the feed direction. Therefore, the effect of the material removal
profile and path spacing on the MSF error is simulated and analyzed in the next section.

3. Simulation Analysis
3.1. Simulation Analysis of the Influence of Material Removal Profile on MSF Errors

To obtain the TIFs required for the simulation, fixed-point polishing experiments were
carried out under different processing parameters. The workpieces and polishing tools
used in the experiments were 50 × 50 mm square planar-fused silica pieces and elastic
spherical polishing tools with a radius of 20 mm, respectively. The polishing tool was
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bonded with a polyurethane polishing pad of 1 mm thickness, and the polishing fluid was
a 3.5% CeO2 slurry with mass fraction. The specific processing parameters are shown in
Table 1. The experimentally obtained TIF is shown in Figure 4, where λ is a unit wavelength
of 632.8 nm. According to Equation (5), the TIF is calculated along the Y-axis to obtain the
different material removal profiles, as shown in Figure 5, and the scanning rate adopted in
the calculation is 30 mm/min. It can be seen that due to the difference in the precession
angle, three different shapes of removal profiles appear, which are as follows: the “W”
shape removal profile, the trapezoidal shape removal profile, and the Gaussian-like shape
removal profile.
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Table 1. Process parameters for generating TIFs.

Parameter Value

Tool radius (mm) 20
Tool offset (mm) 0.2

Precession angle (◦) 3, 7, 11
Rotation rate (rpm) 300

Dwell time (s) 10

Based on the analysis presented in the previous section, it is clear that the formation
of MSF errors is closely related to the removal profile and the overlapping condition of
these profiles. Therefore, three different removal functions in Figure 4 are used to simulate
uniform polishing under raster paths with different path spacings to analyze the effect
of three typical material removal profiles on the MSF error. To ensure that the material



Micromachines 2024, 15, 654 7 of 16

removal rate of different TIFs in the simulation is consistent, and to avoid the effect of
different material removal depths on the MSF error, the scanning rates at the 3◦, 7◦, and
11◦ precession angles are 6.2 mm/min, 6.4 mm/min, and 7.5 mm/min, respectively.

According to Equation (1), the simulation is carried out for an area of 30 × 30 mm;
to avoid the influence of the edge effect, the circular center area with a radius of 5 mm is
extracted for the analysis. Figure 6 shows the root mean square (RMS) value obtained from
the simulation of different removal profiles with different path spacings. It can be seen
that as the path spacing decreases, the RMS with different removal profiles decreases as a
whole. However, from the localized view of the curves in Figure 6, the RMS values do not
decrease monotonically with the decrease in the path spacing but show a serrated change,
which is due to the influence of the superposition complexity of the removed profiles on
the adjacent polishing paths under different path spacings. Moreover, the RMS of the
“W” shape removal profile at a precession angle of 3◦ is significantly higher than that of
the trapezoidal shape removal profile at a precession angle of 7◦ and the Gaussian-like
shape removal profile at a precession angle of 11◦, and the RMS of the Gaussian-like shape
removal profile, which is the smallest overall. This indicates that at the same path spacing,
the Gaussian-like shape removal profile has the best material removal uniformity and can
minimize the generation of ripples.
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To further illustrate the effect of different removal profiles on the MSF error, the
power spectral density (PSD) curves obtained after a uniform polishing simulation with
different removal profiles at a 1 mm path spacing are used for an example analysis. Figure 7
shows the material removal distribution calculated after uniform removal simulations
with different removal profiles at 1 mm path spacings. As shown in Figure 7a2,b2,c2,
the ripple heights obtained after uniform polishing using the “W” shape, trapezoidal
shape, and Gaussian-like shape removal profiles are 32.56 nm, 23.71 nm, and 17.39 nm,
respectively. The use of the “W” shape removal profile is effective in reducing the ripple
height. Figure 8 shows the corresponding PSD analysis curves. From the PSD curves, it can
be observed that the main peak appears at the spatial frequency position of about 1 mm−1,
which corresponds to the 1 mm path spacing. In Figure 8, it can also be seen that the
amplitude of the main peak under the “W” shape removal profile is the largest, followed
by the trapezoidal shape removal profile, and the amplitude of the main peak under the
Gaussian-like shape removal profile is the smallest. The simulation demonstrates that the
use of the Gaussian-like shape removal profile can reduce the generation of ripples in the
polishing process.
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spacing using TIFs at different precession angles: (a1,a2) at 3◦; (b1,b2) 7◦; (c1,c2) 11◦.

3.2. Path Spacing Optimization Method

From the above analysis, it can be seen that the generation of MSF errors can be
suppressed using a smaller path spacing and a Gaussian-like removal profile through the
control of the polishing precession angle. However, a smaller path spacing will increase the
polishing time, and requires a higher dynamic performance and positioning accuracy of the
machine tool, meaning that the path spacing cannot be set too small. In addition, as the path
spacing decreases, the RMS shows an overall decreasing trend; however, it shows a serrated
change locally. Even with a larger path spacing, a relatively smaller RMS can be obtained
at some specific spacings, which provides the necessary conditions for optimizing the
path spacing. Therefore, an optimal path spacing selection method considering polishing
efficiency is proposed. Figure 9 shows the process of finding the optimal path spacing.
To evaluate the MSF error, some scholars have introduced different metrics, such as RMS
value [31], PSD [32], and peak-to-valley (PV) value [33]. In this process, the RMS is used to
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evaluate the MSF error, and the maximum path spacing that satisfies the desired RMS is
found through the iterative decrease in the path spacing step by step so that the polishing
efficiency can be improved under the premise that the MSF error is effectively controlled.
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4. Experiments
4.1. Experiment Setup

To verify the effect of the removal profile on the MSF error and the proposed optimal
path spacing selection method, eight 50 × 50 mm square planar-fused silica glasses with
a relatively uniform initial surface form were used for uniform polishing experiments to
analyze and compare the MSF error under different path spacings and different removal
profiles. The experimental parameters are similar to the simulation parameters, and the
specific experimental parameters are shown in Table 2. The polishing fluid used was a
slurry with a 3.5% mass fraction of CeO2. The experiments were carried out on a six-axis
CNC machine with a spherical polishing tool and a Zygo laser interferometer was used
to measure the surface form of the workpiece, as shown in Figure 10. To facilitate the
observation and analysis of the MSF error on the surface of the polished workpiece, a
band-pass filter with a frequency range of 0.2–10 mm−1 was used to filter the surface form.
To avoid the influence of edge effects, the center area of the workpiece with a range of
about 10 × 10 mm was extracted for the analysis.

Table 2. Experimental parameters.

Experiment No. 1 No. 2 No. 3

Tool radius (mm) 20 20 20
Tool offset (mm) 0.2 0.2 0.2

Precession angle (◦) 3 11 11
Rotation rate (rpm) 300 300 300

Scanning velocity (mm/min) 6.2 7.5 7.5
Path spacing (mm) 0.3, 0.5, 1 0.3, 0.5, 1 0.2, 0.4
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4.2. Influence of Material Removal Profile on MSF Error

In optical component sub-aperture polishing, the path spacing used is generally no
larger than 1/4~1/3 of the size of the TIF. Therefore, the 0.3 mm, the 0.5 mm, and the
1 mm path spacings were selected for uniform polishing experiments to analyze and
compare the influences of the “W” shape removal profiles and the Gaussian-like shape
removal profiles on the MSF errors. The relevant experimental parameters are shown
in the No.1 and No. 2 experiments in Table 2. The experimental results are shown in
Figure 11. Figure 11a,b show the surface morphology after polishing with the “W” shape
and Gaussian-like shape removal profiles at a 1 mm spacing, with an RMS of 2.95 nm and
2.57 nm, respectively. Figure 11c,d show the surface morphology after polishing with the
“W” shape and Gaussian-like shape removal profiles at a 0.5 mm path spacing, with an
RMS of 2.02 nm and 1.73 nm, respectively. Figure 11e,f show the surface morphology after
polishing with the “W” shape and Gaussian-like shape removal profiles at a 0.3 mm path
spacing, with an RMS of 1.59 nm and 1.36 nm, respectively. The experimental results show
that the Gaussian-like shape removal profile is more conducive to RMS convergence than
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the “W” shape removal profile. Figure 12 shows the PSD curves orthogonal to the scanning
direction of the polishing path under the corresponding conditions in Figure 11. From
the figure, it can be seen that, compared with the “W” shape removal profile, under the
same path spacing, the PSD curve of the Gaussian-like shape removal profile has a smaller
peak amplitude at the characteristic frequency corresponding to the pathing spacing, and
the PSD curve amplitude changes steadily at other frequency components, except the
characteristic frequency. This indicates that the Gaussian-like shape removal profile can
effectively reduce the generation of surface ripples compared with the “W” removal profile,
which is consistent with the trend of the simulation results.
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Figure 11. Surface morphologies obtained under different path spacings and precession angles: (a) 3◦,
1 mm; (b) 11◦, 1 mm; (c) 3◦, 0.5 mm; (d) 11◦, 0.5 mm; (e) 3◦, 0.3 mm; (f) 11◦, 0.3 mm.
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Figure 12. PSD curves under different path spacings and precession angles: (a) 1 mm; (b) 0.5 mm;
(c) 0.3 mm.

4.3. Validation of Path Spacing Optimization Method

The previous experiments and simulations have shown that the Gaussian-like shape
removal profile can reduce the MSF error generated by the polishing process compared
with the “W” shape removal profile and the trapezoidal shape removal profile. To further
suppress the MSF error and ensure polishing efficiency, the polishing path spacing needs
to be optimized. In the task of MSF error control within a reasonable range at the same
time, a larger path spacing is required, if possible, to improve polishing efficiency. Here,
it is assumed that the RMS in the MSF error range needs to be controlled below 2 nm.
According to the simulation results in Figure 6 and the path spacing optimization method
in Figure 9, the theoretical maximum path spacing for uniform polishing simulation using
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Gaussian-like shape removal profiles is about 0.4 mm under the condition that the RMS of
the workpiece surface after uniform polishing simulation is less than 2 nm. In addition,
the theoretical RMS of a uniform polishing simulation with a Gaussian-like shape removal
profile at 0.2 mm path spacing is 1.67 nm. To verify the effectiveness of the path spacing
optimization method, the surface MSF errors after uniform polishing using Gaussian-like
shape removal profiles at these two path spacings are compared. The relevant experimental
parameters are shown in the No. 3 experiment presented in Table 2.

The experimentally obtained surface morphology is shown in Figure 13. The corre-
sponding PSD curves orthogonal to the scanning direction are shown in Figure 14. The
RMS of the MSF range at the 0.2 mm path spacing is 1.42 nm, and the peak amplitude of its
PSD curve at the 5 mm−1 characteristic frequency is about 8 × 10−4 nm2·mm. The RMS of
the MSF range at the 0.4 mm path spacing is 1.28 nm, and the peak amplitude of its PSD
curve at the 2.5 mm−1 characteristic frequency is about 6 × 10−3 nm2·mm. The RMS after
polishing with both path spacings meets the required requirements, but the 0.4 mm path
spacing should be preferred to ensure polishing efficiency. The effectiveness of the path
spacing optimization method is experimentally verified.
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4.4. Application of Path Spacing Optimization Method

In Section 4.3, the effectiveness of the path spacing optimization method was experi-
mentally verified. In this section, polishing experiments are performed on single-crystal
silicon to further illustrate the practicality of the path spacing optimization method. Before
to the polishing experiments, TIF generation experiments were conducted on single-crystal
silicon to obtain TIFs with two different shape removal profiles, as shown in Figure 15.
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The polishing solution used in the experiment was 3.5% CeO2 slurry with mass fraction,
and citric acid was added to make its PH 5. The specific parameters of the tool influence
function generation experiment are shown in Table 3. Here, it is assumed that the RMS
within the MSF error range needs to be maintained below 1.5 nm. The path spacing was
optimized according to the path spacing optimization method in Section 3.2, and the
theoretical maximum path spacing for the uniform polishing simulation using the TIF
with the Gaussian-like shape removal profile in Figure 15b was about 0.36 mm. Uniform
polishing experiments were performed at a 0.36 mm path spacing using the TIFs of two
different shape removal profiles in Figure 15. To ensure consistent material removal, the
scanning rates for polishing using the TIF of the “W” shape removal profiles and the TIF of
Gaussian-like shape removal profiles were 15.9 mm/min and 17.3 mm/min, respectively.
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Table 3. Process parameters for generating TIFs.

Parameter Value

Tool radius (mm) 20
Tool offset (mm) 0.6

Precession angle (◦) 5, 18
Rotation rate (rpm) 300

Dwell time (s) 10

Figure 16 shows the surface morphology after polishing using two TIFs with different
shape removal profiles. The RMS after polishing using the TIFs of the “W” shape removal
profile and Gaussian-like shape removal profile is 1.67 nm and 1.33 nm, respectively, which
indicates that polishing at the maximum theoretical path using the Gaussian-like shape
removal profile can keep the RMS in the MSF error range within the desired range. On
the other hand, it can be observed from the PSD curves in Figure 17 that, compared with
the “W” shape removal profile, the PSD curve of the Gaussian-like removal profile has a
smaller peak at 2.8 mm−1 frequency, which also indicates that the use of the path spacing
optimization method is effective in suppressing the MSF error on the polished surface.
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5. Conclusions

Elastic spherical polishing tools have a high material removal efficiency and a good
fit to the workpiece surface, and are especially suitable for polishing curved optical com-
ponents. However, the polishing tool produces more severe MSF errors in the polishing
process. This paper analyzes the source of MSF errors when polishing with elastic spheri-
cal polishing tools based on the material removal convolution effect, and suppresses the
generation of MSF errors through the optimization of the material removal profile and the
path spacing. The main conclusions of this paper are as follows:

(1) The formation mechanism of MSF error is analyzed based on the material removal
convolution effect, and it is found that the material removal profile and path spacing have
an important influence on the generation of MSF errors.

(2) A uniform polishing simulation was carried out using different removal profiles
with different path spacings, and the results show that, compared with the “W” shape
removal profile and trapezoidal shape removal profile, the Gaussian-like shape removal
profile is more effective in minimizing MSF errors.

(3) Focusing on the characteristics that the RMS decreases in a serrated trend with the
decrease in path spacing in the simulation analysis, a path spacing optimization method
was proposed. The effectiveness of the path spacing optimization method is verified by
polishing fused silica glass and single-crystal silicon, and it was shown that the MSF error
can be effectively controlled even under a larger path spacing.

This paper provides process guidance for the suppression of MSF errors generated
during the polishing process of spherical polishing tools.
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