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Abstract: Plasticized polyvinyl chloride (PVC) gel is a new soft and smart material, whose potential
in electroactive variable stiffness can be used for vibration control in soft robotic systems. In this
paper, a new semi-active vibration absorber is developed by stacking PVC gel actuator units. The
absorption bandwidth of a single PVC gel absorber covers the range of three natural frequencies
(76.5 Hz, 95 Hz, 124 Hz) of a rectangular steel plate in vibration attenuation. The maximum reduction
percentage in acceleration amplitude is 63%. With stacked PVC gel actuator units, the absorption
bandwidth can be shifted and obviously broadened.

Keywords: PVC gel; stacked PVC gel actuator; variable stiffness; vibration absorber

1. Introduction

The research on smart material-based actuators has flourished in recent years, among
which PVC gel is one of the most promising, owing to characteristics of softness, large
deformation, lightness, variable stiffness, long lifecycle, and low power consumption [1].
In existing research, PVC gel actuators have been applied to many fields, such as wearable
medical devices [2–5], adaptive micro-lenses [6], and polymer brakes [7,8]. In addition,
there are a number of studies on the static properties of synthesis [9–15], fabrication
technology [16,17], material modification [14,16], actuation structure modularization [18],
and modeling [19–21]. All these studies have validated that PVC gel is a new type of smart
material with great application prospects.

A century ago [22], a dynamic vibration absorber (DVA) was proposed as an effective
element in vibration control [23–26]. However, traditional DVA generally worked in a
relatively narrow frequency range, which limited its application and lowered its stability.
To solve the problem, researchers have devoted themselves to developing the functions
of wide absorption bandwidth and tunable natural frequency in the next generation of
DVA. For instance, different kinds of absorbers based on magnetorheological elastomers
(MRs) [27–33], shape memory alloys (SMAs) [24,34], piezoelectrics (PZTs) [35–37], and
other mechanical structures [38–46] all have relatively wide absorption bandwidths and the
ability of shift frequency. Although the new generation of DVAs demonstrates advantages
over the original, more effort could be contributed to further improvement.

In this study, a novel absorber is fabricated by stacking PVC gel actuators. As demon-
strated in the frequency response curves of the absorber, the reduction in amplitude
between its two natural frequencies is barely visible. This feature allows the absorber to
work both at and between the two frequencies, broadening the absorption bandwidth of
the absorber. One PVC gel absorber can attenuate the vibration of a steel plate at three
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natural frequencies, simultaneously. In addition, PVC gel’s ability of variable stiffness gives
the absorber a frequency-shifting function. The natural frequencies of PVC gel absorber can
be regulated by DC voltage when units of PVC gel are stacked. These results indicate that
the PVC gel absorber offers the potential for applications of semi-active vibration control.
A method of absorber selection is designed for a vibration absorption system based on a
PVC gel absorber. This method can guide us to fabricate and combine appropriate PVC gel
absorbers during the establishment of an absorption system.

2. Fabrication and Mechanism of PVC Gel Actuator
2.1. Composition and Fabrication of PVC Gels

The main composition of PVC gels is PVC and dibutyl adipate (DBA) plasticizer. DBA
is a typical plasticizer. During the process of preparation (see Figure 1), the commercial PVC
powder is first mixed in the DBA with a certain weight ratio. Then, the mixture is dissolved
in tetrahydrofuran (THF) solvent by thoroughly stirring for 4 h. Thirdly, the solution is cast
in Petri dishes. The thickness is adjusted through solution amount adjustment. Finally, we
obtain the PVC gel membranes after the evaporation of the THF at room temperature two
days later [7–13].
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Figure 1. Preparation of PVC gel membrane.

The weight ratio of PVC to DBA affects the performance of the PVC gel [11,12]. The
stiffness of PVC gel increases while the weight ratio of DBA decreases. In this paper, the
PVC gel in the actuator has a weight ratio of PVC to DBA of 1:4 [11,12]. The thickness of
PVC gel can be regulated by adjusting the height of the solution in Petri dishes. In addition,
the thickness is set at 0.4 mm here.

2.2. Deformation Mechanism of PVC Gel Actuator

A single-layer PVC gel actuator is a sandwich structure that consists of an anode, gel,
and a cathode. The fabricated PVC gel membrane is soft, light, and highly transparent. The
anode is made from a stainless mesh (0.2 mm thick). The cathode is a copper foil (0.02 mm
thick). The gel is 35 mm in length, 35 mm in width, and 0.4 mm thick.

PVC gel responds to an applied electric field by deformation. As sketched in Figure 2,
when a DC field is applied, the PVC gel creeps up the anode and moves into the holes in
the mesh [7–13]. As a result, the material shrinks in the thickness direction. The elasticity
of the gel makes it return to its original shape upon removal of the DC field.
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Figure 2. The principle of single-layer PVC gel actuator and the stacked actuator unit.

2.3. Structure of a Stacked PVC gel Actuator

To increase the deformation in the thickness direction, the actuator is stacked up.
Figure 2c presents a photograph of the stacked PVC gel actuator unit, which has 11 layers
of PVC gel membranes. In this paper, four stacked actuator units are chosen randomly as
the testing samples. Table 1 shows the parameters of the four samples. The weight of one
stacked unit is only 8.8 g.

Table 1. Compositions and conditions of one stacked PVC gel unit.

PVC Gel Membrane Anode Cathode

Material PVC:DBA = 1:4 Stainless mesh (#60) Copper foil
Size 35 × 35 × 0.4 mm 32 × 32 × 0.2 mm 32 × 32 × 0.02 mm

Number 17 9 9
Unit’s height 9.2 mm Unit’s weight 8.8 g

3. Mechanical and Actuating Characterization of the Stacked PVC Gel Actuator

In this section, we measured the deformation and dynamic properties of actuators
in the thickness direction under DC voltage. Three stacked PVC gel actuator units are
randomly chosen from a batch of actuator units, which are fabricated at the same time with
the same parameters.

3.1. Deformation Measurement

The illustration of test equipment is shown in Figure 3a. In the measurement, the
DC voltage was applied first to make the stacked unit reach its new stiffness under this
condition. A DC voltage signal is generated by a computer (NI-PXIe 8840, National
Instrument, Austin, TX, USA) and sent via a DAQ card (NI-PXIe-6363). The stacked unit
shrinks in thickness direction under the high DC voltage amplified by the Trek 610E. Then,
a mechanical load is put on the top surface of the unit. The displacement of the top surface
in the thickness direction is measured using a laser displacement sensor (LK-G150, Keyence,
Osaka, Japan).
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Figure 3. Deformation measurement. (a) Illustration of the equipment. (b) Contraction rate of one
stacked PVC gel unit.

It can be observed in Figure 3b that the deformation in the thickness direction is
increased with the voltage. Under 800 V DC voltage, the shrinkage of one unit is 1.08 mm,
which means the contraction rate of the PVC gel actuator is 12%. The deformation of four
stacked units is almost the same.

3.2. The Vertical Stiffness of the Stacked PVC Gel Actuator Units

As shown in Figure 2, the voltage-induced force compresses the stacked unit to become
a closely packed structure. We measure the stiffness of the unit to find the dependency of
the stiffness on the applied DC voltage.

The DC voltage was applied first to make the actuator reach its new stiffness under this
condition, and then, a 100 g mass (F = 0.98 N) is placed on a black plastic sheet that is fixed
on the top surface of the PVC gel unit. The displacement (∆z) of the plastic sheet under
different DC voltages is measured using a laser displacement sensor (Keyence LK-G150)
(see Figure 4a). The vertical stiffness (k) is calculated using Equation (1), and the result is
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displayed in Figure 4b. The stiffness of the unit is positively correlated with the increase in
DC voltage.

k =
F

∆z
(1)
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Figure 4. Vertical stiffness measurement. (a) Schematic diagram of stiffness equipment. (b) Vertical
stiffness of stacked PVC gel unit.

3.3. The Damping Ratio Test of the Stacked PVC Gel Actuator Units

In this section, we measure the damping ratio of the stacked PVC gel actuator unit
to find the dependency of the damping ratio on the applied DC voltage. The schematic
diagram of the measure is shown in Figure 5a. A set of step voltage signals are separately
applied to the unit (see Figure 5b). The unit vibrates under a step signal, and the amplitude
decreases gradually under the damping effect. The damping ratio ζ of the unit is obtained
by measuring the logarithmic attenuation rate of the amplitude. The rapid attenuation of
amplitude in Figure 5c indicates that the material has large damping. We performed the
same measurements five times at each voltage and finally calculated the damping ratio ζ
of the stacked PVC gel actuator unit. The damping ratio ζ is calculated using Equation (2).
Ai in the equation represents the maximum amplitude in each vibration period. As shown
in Figure 5d, the increase in the damping ratio is highly correlated with the increase in
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the voltage. The damping ratio ζ shows nonlinear characteristics with the increase in the
voltage when the voltage is high.

ζ =
1

2π
· ln

Ai
Ai+1

(2)Micromachines 2024, 15, x FOR PEER REVIEW 6 of 16 
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of stacked PVC gel unit.
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3.4. Dynamic Response of the PVC Gel Absorber

In this section, the PVC gel absorber consists of a mass block on the top of stacked PVC
gel actuator units. Four kinds of absorbers (A1, A2, A3, A4, see Figure 6), which contain
different numbers of stacked PVC gel units, were measured separately in this section. The
acceleration frequency response under different DC voltages is investigated in this section.
Figure 6b exhibits the schematic diagram of test equipment. The PVC gel absorber is placed
on the plate, which is fixed on a shaker. The DC voltage signal is generated by a computer
(NI-PXIe 8840) and transmitted to the higher voltage amplifier (Trek 610E) throw DAQ
card (NI-PXIe-6363). After applying DC voltage, a sweep frequency signal is transmitted
from the NI-PXIe 8840 to the shaker to excite the absorber. We record the acceleration of
the mass in the vertical direction by the DAQ card.
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3.4.1. Characterization of Wide Absorption Bandwidth

Figure 7 plots the acceleration frequency response of absorber A1 under 200 VDC. The
sweep frequency signal ranges from 0.1 Hz to 200 Hz, and the sweep time lasts 500 s. The
results show that the structure has more natural frequencies, such as 39 Hz, 97 Hz, and
117 Hz. Due to the damping effect of the unit, the reduction in amplitude between the two
frequencies is barely visible. This feature indicates that the PVC gel absorber can work both
at and between the two natural frequencies, broadening its absorption bandwidth.
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Figure 7. Frequency response of absorber A1 under 200 VDC: time domain (gray area), frequency
domain (blue curve).

The results of other DC voltages demonstrate the same feature. When the DC voltage
is 400 V (see Figure 8), the two natural frequencies are 47 Hz and 137 Hz, and the amplitude
in this interval [47 Hz, 137 Hz] remains unchanged.

To validate the authenticity of the results that the vibration amplitude in the interval
is almost equal to that at the two endpoints, we measure it under a set of different single
frequencies under 400 V. From 10 Hz to 200 Hz, the amplitude is measured every 5 Hz,
and each frequency is recorded three times. The result in Figure 8b proves the increase in
amplitude in the interval.
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3.4.2. Alterable Absorption Bandwidth

Subsequently, the sweep frequency vibration response of absorber A1 under different
DC voltages is measured in sequence. As sketched in Figure 9, the two natural frequencies
vary with DC voltage. The increase in DC voltage brings the same variation to the values
of two frequencies.
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Figure 9. Frequency response of absorber A1 under different DC voltages.

With the increase in the voltage, the red bar in Figure 10 floats upward and becomes
longer. We regard the frequency range between the two natural frequencies as the absorp-
tion bandwidth of absorber A1. The results in Figure 10 demonstrate that the bandwidth
of the absorber is alterable. The width of the bandwidth correlates positively with the DC
voltage. Noticeably, there is an obvious variation in the second natural frequency. It is
tuned from 70 Hz to 142 Hz by increasing the VDC.
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3.4.3. The Influence of Unit Numbers in the Stacked PVC Gel Actuators

The further study is the relationship between unit number and vibration absorption
bandwidth. The results are shown in Figure 10. With the increase in the unit number, the
value of two endpoints under the same VDC both decline, and the absorption bandwidth
becomes narrow. In other words, the two natural frequencies of the absorber decrease with
the increase in the unit number. This feature of the stacked structure has been studied
and reported in previous work [11]. It means that fewer PVC gel units are involved in the
absorber, and the higher vibration absorption frequency will be achieved.

3.4.4. Selection of PVC Gel Absorber

According to Figure 10, we propose a selection method for PVC gel absorbers during
the establishment of the vibration absorption system. When the target frequency range is
determined, the method can guide us to select the number of absorbers in the system and the
number of PVC gel units in each absorber, as well as the DC voltage applied to each one.

For instance, we choose a structure whose natural frequency is concentrated in the
range of 60–100 Hz. As is described in Figure 11, the light blue area is the target frequency
range (INVLTarget). The red bars plot the absorption bandwidth of the absorber A1
(INVLA1) under different voltages. When the DC voltage is 0, 100 V, the absorption
bandwidth (first two red bars) cannot cover the entire target frequency range. This means
that the absorber has no effect at certain frequencies. As for 200–500 VDC, the vibration of
the target structure can be dampened by absorber A1 because the absorption bandwidth
can totally cover the target frequency range. The design scheme of the absorption system
is proposed in Table 2. Similarly, Figure 12 and Table 3 tell us that the absorber A2 can
restrain the structure’s vibration when the DC voltage is 400–500 V.
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Table 2. Design scheme of absorption system based on absorber A1.

Target Frequency
Range (INVLTarget)

DC Voltage Absorption Bandwidth of
Absorber A1 (INVLA1)

INVLA1 Covers
INVLTarget or Not?

(60 Hz, 100 Hz)

0 V (27 Hz, 70 Hz) No
100 V (37 Hz, 90 Hz) No
200 V (39 Hz, 117 Hz) Yes
300 V (43 Hz, 130 Hz) Yes
400 V (47 Hz, 137 Hz) Yes
500 V (51 Hz, 142 Hz) Yes
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Table 3. Design scheme of absorption system based on absorber A2.

Target Frequency
Range (INVLTarget)

DC Voltage Absorption Bandwidth of
Absorber A2 (INVLA2)

INVLA2 Covers
INVLTarget or Not?

(60 Hz, 100 Hz)

0 V (22 Hz, 59 Hz) No
100 V (26 Hz, 67 Hz) No
200 V (33 Hz, 80 Hz) No
300 V (38 Hz, 95 Hz) No
400 V (43 Hz, 110 Hz) Yes
500 V (48 Hz, 118 Hz) Yes

When the target frequency range of the structure is too wide to be covered by one
absorber’s absorption bandwidth, the method can instruct us how to establish a vibra-
tion absorption system by choosing two or more absorbers. Here, we choose the target
frequency range of 35 Hz to 124 Hz (this frequency interval is the target frequency range
in Section 4). The absorption bandwidth of absorbers A1, A2, A3, and A4 cannot cover
the target frequency range alone. Hence, the absorption bandwidth of A1 and A2 under
different DC voltages is chosen to form a set of new absorption intervals (see Table 4). Every
interval is a union of the absorption bandwidth of A1 and A2 under different DC voltages.
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Table 4. Union of the absorption interval of A1 and A2 under different DC voltages.

DC Voltage Applied to A1/V

0 100 200 300 400 500

D
C

vo
lt

ag
e

ap
pl

ie
d

to
A

2/
V 500 (27, 118) (37, 118) (39, 118) (43, 130) (48, 137) (48, 142)

400 (27, 110) (37, 110) (39, 117) (43, 130) (43, 137) (43, 142)

300 (27, 95) (37, 95) (38, 117) (38, 130) (38, 137) (38, 142)

200 (27, 80) (33, 90) (33, 117) (33, 130) (33, 137) (33, 142)

100 (26, 70) (26, 90) (26, 117) (26, 130) (26, 137) (26, 142)

0 (22, 70) (22, 90) (22, 117) (22, 130) (22, 137) (22, 142)
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4. Application of PVC Gels Absorber in Semi-Active Vibration Control

In this section, we established an absorption system guided by the absorber selection
method in Section 3.3. The experiment results demonstrate that the chosen absorber can
greatly restrain the first four natural frequency resonances of a rectangular thin steel plate
with a free boundary. The reliability of the method is verified in experiments.

4.1. A vibrating Plate as a Platform

Because the structure of the steel plate is the most elemental mechanical structure,
it is chosen as the object of vibration damping in this paper. The schematic diagram of
the measurement is shown in Figure 13a. A stainless steel frame supports the structure.
The plate is horizontally lifted from the frame. Free boundary conditions are realized
by connecting the frame and the four corners of the plate with elastic cords and nylon
wires, which undergo negligible tension. The parameters of the steel plate are 3 mm thick,
600 mm long, and 400 mm wide.
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The first four normal modes of the plate are extracted from the modal analysis via ANSYS
WORKBENCH (Figure 13b). The frequency response of the plate is measured and shown in
Figure 13c. The first four natural frequencies are 35 Hz, 76.5 Hz, 95 Hz, and 124 Hz.

The first four normal modes of the structure are chosen as representatives of the low-
frequency response of the plate and, therefore, as targets of semi-active vibration control.

4.2. Semi-Active Vibration Control Strategy

Figure 13d shows the first four mode nodal lines of the plate and the positions of the
excitation, absorbers, and acceleration sensor. The exciter is hung by elastic cords. The
excitation point is set at point E. This point is not positioned on any nodal line of the first
four modes of the plate. The position of the absorber (A1, A2) and acceleration sensor
(point S) also avoid the nodal line of the lowest modes of the plate. Please note that no
absorber is needed at point A2, except in the final experiment.

4.3. Results and Discussion

In Section 3.3, Figure 11 shows the absorption bandwidth of absorber A1. The bandwidth
is presented in Table 5. By comparing the data, we find that the natural frequencies of modes
II, III, and IV fall in the interval when the voltage is 300 VDC to 500 VDC. Additionally, the
first natural frequency only appears in the interval when the DC voltage is 0 V.

Table 5. Absorption bandwidth of absorber A1.

VDC (V) Absorption Bandwidth (Hz) Natural Frequency of the Plate (Hz)

0 27–70

35 (I) 76.5 (II) 95 (III) 124 (IV)

100 37–90
200 39–117
300 43–130
400 47–137
500 51–142

The experiment results are shown in Figure 14. When the DC voltage is 0 V, the interval
is [27 Hz, 70 Hz], and only the first natural frequency of the plate is within the interval. The
corresponding vibration absorption effect at 35 Hz (mode I) is shown in Figure 14a. The
reduction percentage in the amplitude of the first mode is approximately 50%.

Subsequently, the second, third, and fourth mode frequencies of the plate fall within
the corresponding frequency intervals, as the DC voltage increases from 300 V to 500 V.
The absorption effect at the three frequencies is that the amplitude is reduced by 46% to
63% (see Figure 14b–d). What is noticeable is that one PVC gel absorber can weaken the
vibration of a plate at three natural frequencies, simultaneously.

To dampen the first four natural frequencies at the same time, the method of absorber
selection in Section 3.3 tells us that a second absorber must be introduced to the vibration
absorption system. We have two choices, at least. The first one is an absorber with two
PVC gel units under 0–100 VDC; the other one is an absorber with one PVC gel unit under
0 VDC. The two ways are both verified in experiments. We only show the first one here.

At first, the absorption performance of the absorber with two PVC gel units is mea-
sured on the plate. The absorber is positioned at point A2, but no absorber is placed at
point A1. When 100 VDC is applied to A2, the vibration amplitude of the steel plate at the
first natural frequency (35 Hz) is reduced by 57.4% (see Figure 14e).

Then, the two absorbers are both positioned on the steel plate. In the experiment, the
absorber with one PVC gel unit under 500 VDC is placed at point A1, and the absorber with
two PVC gel units under 100 VDC is placed at A2. Figure 14f describes that the vibration
amplitude of the plate is attenuated by about 50% to 63.1% at the first four frequencies.

This new absorber favors a broadened and tunable bandwidth thanks to its adjustable
natural frequency and the negligible reduction of the amplitude between two natural
frequencies. Because the stacked PVC gel actuator has variable stiffness and a variable
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damping ratio, the absorber benefits from these two features. The maximum absorption
effect is that the amplitude at 124 Hz is reduced by 63% at 124 Hz.
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Figure 14. Vibration absorption of the plate. Performance of the absorber, which has one stacked PVC
gel unit under (a) 0 VDC; (b) 300 VDC; (c) 400 VDC; and (d) 500 VDC. During these experiments, the
absorber is placed at point A1. (e) Performance of the absorber, which has two stacked PVC gel units
under 100 VDC. During this experiment, the absorber is placed at point A2. (f) Absorption effect
when two absorbers are both placed on the plate.

5. Conclusions

In this paper, a novel absorber is designed by stacking PVC gel actuator units. The
frequency response curves of the absorber demonstrate that it has a relatively wide absorp-
tion bandwidth. The vibration absorption experiments of a steel plate exhibit that one PVC
gel absorber has an absorption effect on the vibration of three natural frequencies (76.5 Hz,
95 Hz, 124 Hz) concurrently. The max percentage of amplitude reduction is 63%. In addi-
tion, the PVC gel’s feature of variable stiffness gives the PVC gel absorber the capability
of shift frequency. The absorption bandwidth of the PVC gel absorber can be regulated
using DC voltage and the number of PVC gel units. The second natural frequency of the
absorber with one PVC gel unit can be enhanced from 70 Hz to 142 Hz. Finally, we propose
a method to establish a vibration absorption system. This method guides us to determine
the number of absorbers and design each absorber with the proper parameters.
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