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Abstract: Cyanobacteria are harmful algae that are monitored worldwide to prevent the effects of
the toxins that they can produce. Most research efforts have focused on direct or indirect effects on
human populations, with a view to gain easy accurate detection and quantification methods, mainly
in planktic communities, but with increasing interest shown in benthos. However, cyanobacteria
have played a fundamental role from the very beginning in both the development of our planet’s
biodiversity and the construction of new habitats. These organisms have colonized almost every
possible planktic or benthic environment on earth, including the most extreme ones, and display
a vast number of adaptations. All this explains why they are the most important or the only
phototrophs in some habitats. The negative effects of cyanotoxins on macroinvertebrates have been
demonstrated, but usually under conditions that are far from natural, and on forms of exposure, toxin
concentration, or composition. The cohabitation of cyanobacteria with most invertebrate groups
is long-standing and has probably contributed to the development of detoxification means, which
would explain the survival of some species inside cyanobacteria colonies. This review focuses on
benthic cyanobacteria, their capacity to produce several types of toxins, and their relationships with
benthic macroinvertebrates beyond toxicity.
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Key Contribution: The biological role of cyanobacteria in benthic habitats remains to be determined.
Harmful bioaccumulation of cyanotoxins in benthic macroinvertebrates depends on the type of
exposure. Cyanobacteria in benthic habitats not only affect grazers but also shredders and collectors.
Detoxification processes could explain the different tolerance capacity of macroinvertebrates.

1. Introduction

Most published works on the interrelationships between cyanobacteria and other
freshwater organisms tend to demonstrate and quantify the harmful effect of cyanobacteria
and how other freshwater organisms attempt to survive them [1,2]. However, the stress
situations that cause massive cyanobacteria growth and the associated toxicity are usually
extraordinary in ecosystems: floods, droughts, eutrophication, deforestation, water tem-
perature changes, competition for nutrients, etc. [3]. Toxic events where cyanobacteria can
be found or are involved are not new, but have occurred since ancient times. For example,
molecular studies have revealed the presence of cyanotoxins in sediments dating back
to the ancient Mayan culture (550–1200 years ago), and are associated with algal bloom
episodes [4]. References to color changes to fresh water associated with fish mortality
appear in the Book of Exodus and are collected in 12th-century manuscripts in Scotland, in
which monks refer to these episodes as “sick lochs” [5] More recently, animal poisoning
or deaths related to cyanobacteria toxicity have been noticed worldwide, with examples
in Australia [6] and Poland [7]. In a climate or global change context, the stress situations
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that trigger the toxic response of cyanobacteria will probably become more frequent and
harmful worldwide in the future [8] and will continue to be extraordinary. Despite their
controversial reputation, cyanobacteria are among the first inhabitants on our planet, and
have contributed to create favorable environmental conditions for life on Earth and its diver-
sification [9], and have established numerous symbiotic relationships with other organisms,
from unicellular eukaryotes to aquatic and terrestrial metaphytes and metazoans [10]. They
also play a determinant role in the maintenance of freshwater ecosystems, especially lotic
ones, but this aspect is still poorly understood [11].

Cyanobacteria can be collected and might live in a wide variety of habitats, including
extreme conditions, because of their adaptations in nutrient storage, N fixation, buoyancy,
formation of resting cells, UVR-protective compounds or the production of wide sheaths [9].
It is important to remember that blue–green algae may capture atmospheric nitrogen (N) in
either specialized cells (heterocytes) or vegetative cells in special environmental conditions.
Cyanobacteria’s capacity to produce cyanotoxins was acquired very early on. Molecular
sediment studies evidence the presence of microcystins (MCs) and cylindrospermopsin
(CYN) 4700 years ago [12] and that of saxitoxins (SXT) 2.1 billion years ago [13]. This
ability to synthesize toxins was missed or retained by different taxa during the group’s
phylogenetic history [14].

The keenest interest shown in cyanotoxin studies has always been related to planktonic
species, such as animals (including humans) that depend on reservoirs and lakes for
water supply, yet this fact might lead to some bias in the knowledge and interpretation
of cyanotoxicity. For instance, besides believing that cyanotoxins are linked with stress
conditions in high eutrophic masses of water, the presence of these compounds has also
been reported in unpolluted calcareous rivers and oligotrophic reservoirs and lakes [15–18].
Although our understanding of benthic cyanobacterial species’ diversity and distribution
in freshwater streams is improving worldwide, their ability to produce cyanotoxins has
been poorly studied.

Among living organisms, cyanobacteria are one of those that produce a high diver-
sity of toxins, which vary in terms of both their molecular nature and their main effects.
Of cyanotoxins, MCs and nodularins (NODs) have been thoroughly studied, more than
246 isoforms of MCs have been identified [19], and both are cyclic peptides with hepatotoxic
activity. However, cyanobacteria may also produce: alkaloids, such as CYN, with hepato-
toxic, cytotoxic, dermatotoxic, and even possible carcinogenic properties [20]; anatoxins,
mainly anatoxin-a (ATX-a), with neurotoxic capacity [21]; SXT, which are one of the most
potent naturally-occurring neurotoxins, but have been associated only with marine environ-
ments and Dinophyta until quite recently [22]; and BMAA (β-N-methylamino-L-alanine), a
neurotoxic nonprotein amino acid related to several neurodegenerative diseases [23].

Vertebrate exposure to toxins occurs mainly through drinking water or food con-
sumption [20], with recreational water use as a secondary route in humans. The effects of
cyanotoxins on other organisms have been reported, and are positive or negative depend-
ing on the species, taxonomic group, or environmental conditions [24,25]. Nonetheless,
experimental design is sometimes not representative of what is expected to be found in
nature in terms of toxin concentration or potential synergistic or antagonistic relationships
if the production of several toxins happens at the same time [26]. As most data from toxico-
logical studies refer to very high concentrations (most unlikely under natural conditions)
and atypical exposure routes, future efforts should be made to observe environmentally
relevant concentrations and oral and chronic exposures [26,27] to gain a clearer idea of the
risks that biota and populations face.

The bioconcentration of toxins along food webs has long since been considered one
of the major environmental problems. Apparently however, it does not always occur and
biodilution might happen [28,29]. The intensity or frequency of both phenomena is poorly
known. However, the heterogeneous bioaccumulation levels that benthic macroinverte-
brates present, the different forms of exposure to cyanotoxins to which they are subjected,
and the purification and detoxification processes that are beginning to be known will
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condition the transfer capacity of toxicity in the freshwater food chain, and even its export
to the terrestrial food chain [30–32].

This review focuses on benthic cyanobacteria and their capacity to produce several
types of toxins, the dependence of aquatic macroinvertebrates on benthic cyanobacteria,
their biological relationships beyond toxicity, and future perspectives.

2. Results
2.1. Benthic Toxicity

The detection of MCs in benthic cyanobacteria was reported for alpine lakes in situa-
tions related to domestic animal deaths in 1997 [15]. At the beginning, most researchers
thought that this was an exceptional case. However, when more people became interested
in benthos, toxicity reports increased worldwide. Today, we know that benthic toxicity is
widespread in all continents (geological units) and in all, or almost all, sorts of habitats [33],
ranging from lagoons, rivers, springs, peat bogs and caves to a wide range of geographical
and environmental conditions. This is consistent with the fact that cyanobacteria may
colonize all types of substrata in all climatic and environmental conditions (except for
low-pH waters), and toxicity is likely to be much more commonplace than previously
thought. The concentration of toxins is always relatively low, but the presence of several
variants is common in most producer genera.

Wood et al. [2] compared the number of publications on benthic and planktonic cyan-
otoxicity. Although references to benthic communities have considerably increased lately,
there is still a huge difference between them. If we make a comparison of continents, the
image is similar, with North America and Europe presenting higher number of publications
on benthic cyanotoxins (Figure 1) but with numbers still very far from planktic studies.
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Figure 1. Distribution of papers published from 1997 on cyanotoxins and benthic cyanotoxins
referring to continents or geological units.

The level and concentration of toxicity and toxins vary vastly in different countries.
China and Canada host water bodies with the highest level of MCs [34], much higher than
the World Health Organization’s permissible level of 1 µg/L. In fact, countries like Canada
and Australia have raised the admissible MC concentration for drinking water to 1.5 and
1.3 µg/L, respectively [35,36], but the US National Center for Environmental Assessment
claims that the WHO drinking-water guideline value should be lower [37].

Comparison of quantitative data from the literature poses a problem, because neither
raw materials (from the field or grown in the laboratory) nor the identification and quantifi-
cation methodology (biochemical or genomic) is similar. In any case, current evidence for
the spread of benthic cyanotoxicity is overwhelming.
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Limnological or phycological studies have traditionally focused on lentic habitats,
and lotic environments have usually been much less studied [2]. However, almost all
possible cyanotoxins have been reported in rivers (Figure 2), and the number of studies
that detect several toxic compounds in the same benthic samples is increasing [38–43]. It is
not uncommon to find that several toxic congeners are present in the same localities and
biofilms, and subdominant taxa sometimes produce higher concentrations of toxins [43–46].
This highlights the need to monitor not only biofilms where cyanobacteria are dominant.
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Figure 2. Papers published from 1997 related to the main groups of cyanotoxins and their detection
in rivers.

Even when the parameters promoting toxin production are very likely the same,
the factors involved in toxin release may differ vastly between lentic and lotic habitats,
especially if the high diversity of aquatic system typologies is considered. Most lotic habitats
are exposed periodically to drought and floods, and not only does their physiognomy
change, but they have a marked effect on destruction and potential toxin release [9].

The detection of MCs in alpine lakes [15] was probably the first reference to MCs
under oligotrophic conditions. The presence of toxins in oligotrophic calcareous rivers was
reported later, and a correlation was then found between cyanobacteria biofilm toxicity
and macroinvertebrate diversity by the Photobacterium phosphoreum test [47]. Several MC
variants were identified in the same rivers, and significant negative correlations were
found between the total intracellular MC content and air temperature, flow, and depth,
while dissolved MCs increased with low depth and high flows but showed no significant
correlation [17]. This scenario suggests a potential relationship with several environmental
and climate-related variables rather than eutrophication, as confirmed later by paleolimno-
logical data [48–50].

Heterocystous cyanobacteria (Nostocales) may fix N from the atmosphere and become
independent of the N concentration of water [51], but Oscillatoriales and Chroococales
can also do this under conditions with a low oxygen concentration [52,53]. However, the
responses of fixing and non-fixing organisms to N/P ratios are sometimes paradoxical [54].
As the latter authors stated, the main problem is probably expecting homogeneous behavior
in such a diverse group of organisms.

2.2. Multitoxic Biofilms

Most research efforts have focused on the effect of selected toxins, and not on what
is probably the commonest case in nature: the presence of several toxins at the same
time [38]. The potential synergy among cyanotoxins or the presence of other unknown
toxic compounds cannot be ruled out, because the toxic effects of extracts are always
stronger than pure toxic compounds [44,45].
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Cyanobacteria blooms and biofilms are usually formed by several different strains,
with potentially distinct requirements, and are both toxic and nontoxic, although the
toxic ones are usually less frequent [55]. Detecting several toxic compounds in the same
benthic community is also becoming increasingly common: Bouma-Gregson et al. [40,41]
quantified MCs and anatoxin-a (ATX) in the Eel River (Angelo Coast Range Reserve, CA,
USA). Carpenter [42] identified and quantified SXT, MCs, ATX and CYL in different taxa
from the Clackamas Basin in Oregon (USA). Fadness et al. [38] quantified ATX, CYL, MC,
NOD and SXT in benthic cyanobacteria in several Northern California rivers (samples
from 2016–2019). The neurotoxins anatoxin-a (ATX), SXT and BMAA have also been
reported from freshwater cyanobacteria [22,56–58]. No clear relationship to nutrients and
cyanotoxicity has been found, as some other authors suggest [59].

Saxitoxin has been reported previously only from marine habitats, and anatoxin and
BBMA are only known to be produced by freshwater (or soil) cyanobacteria [58,60]. How-
ever, we are now aware that saxitoxin and anatoxin have a widespread distribution, with
reports on every continent, except Antarctica [22], but their distribution will very likely
grow when more research has been conducted. BMAA seems to be present in all the mor-
phological cyanobacteria groups from freshwater, brackish and marine environments [58].
As far as we know, there is no information about the effects of these toxins on river biota,
but BMAA is related to several neurodegenerative diseases and STX has not been related
to any human intoxication to date [1,58].

2.3. The Role of Mucilage

Mucilage production is important in the formation of cyanobacteria biofilms and
colonies attached to rocks in river riffles. Mucilage might also play a role in the reten-
tion of nutrients and water (upon emersion), but it would seem that it can also retain
toxins, as shown by Young et al. [61] and Marco et al. [62], who followed immunological
methods. The retention of toxins by mucilage also seems to be common in other toxic
groups, such as Dinophyta (very common in marine habitats) [63] and might represent a
defense mechanism.

The relationship of mucilage and phosphorus (P) deficiency and the activity of phos-
phatases (mono- or diesterases) have been verified in several algal and plant groups [64,65].
It is important for the survival of all microalgae, including cyanobacteria, in calcareous
habitats where P is retained in carbonate deposition.

2.4. Toxicity and Taxonomy

The generalization of applying the analysis of sequences to ensure the identity of
organisms has revolutionized the taxonomy of all groups, including cyanobacteria, where
the scarcity of diagnostic characteristics has always been a big problem and a challenge
for taxonomists.

The implementation of a multiphasic approach with taxonomic, biochemical, ecologi-
cal, and genomic information has been proposed in an attempt to gain a more complete
image of taxa and their requirements [66], but this path has not been followed by all
scientists. In the last few years, the genus Nostoc has been split into 15 genera: Aliinos-
toc, Amazonocrinis, Atlanticotrix, Compactonostoc, Dendronalium, Desikacharya, Desmonostoc,
Halotia, Komarekiella, Mojavia, Minunostoc, Parakomarekiella, Pseudoaliinostic, Purpureonostoc
and Violetonostoc. In addition, multiple new species have been described, with more than
100 recognized [67,68], which confirms much higher diversity than previously thought.
Thus, caution is recommended when interpreting the literature to take into account nomen-
clatural changes. Without a clear morphological description or images, and no genomic
information available, it is difficult to be sure of the names indicated in papers, and it is
even more difficult to accurately make comparisons of toxicological aspects.

Can we now be sure that similar morphotypes belong to the same species and have a
similar chemical composition and the ability to produce, or not, toxins?
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Conspicuous Nostoc pruniforme colonies play an important role in the physiognomy
and development of benthic communities in some lakes or rivers, and they may produce
toxins. Recently, Carpenter [42] reported the presence of several different types of toxins
in this species. In some Greenland lakes, N. pruniforme develops very big monospecific
communities that produce toxins, which are released in different ways: grazing, active
release, high nutrient concentration or physical disturbance [69].

There is a clear parallelism with calcareous streams, where floods that can seasonally
occur destroy colonies and mats by releasing intracellular toxins [70].

2.5. Relationships to Benthic Macroinvertebrates

The biological relationship between animals and cyanobacteria in freshwater ecosys-
tems remains intricate despite the numerous published studies that share both terms, or
their derivatives, as keywords (Figure 3). Most of these papers tend to study the noxious
effect (mainly lab-induced) of cyanobacteria on animals, their bioaccumulation or their pos-
sible transfer through the food chain [1,2,71]. Vertebrates, including humans, are the main
group in which cyanotoxicity has been studied. If we focus on aquatic species, references
accumulate from fish, while information about freshwater invertebrates is scarce (Figure 3),
especially about benthic fauna [3,72]. However, very little is known about the role that
benthic cyanobacteria–animal relationships play in the proper functioning of freshwater
ecosystems, even though they have normally cohabited in these habitats for a long time [2].
Indeed, the role played by cyanobacteria in freshwater ecosystems must definitely be more
important and complex than their simple capacity to produce toxins and to be harmful for
other organisms [1].
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Figure 3. Papers published from 1997 related to the effect of cyanotoxins on different group
of animals.

Dudley et al. [73] proposed three possible pathways of ecology interrelationships
among macroalgae, including cyanobacteria colonies, and macroinvertebrates in benthic
stream ecosystems: (a) food source; (b) altering the habitat’s physical conditions, and even
generating new ecological niches; and (c) competing for space. Food sources seem to be the
principal interaction between cyanobacteria and invertebrates, and defense against grazing
is one of the probable causes for which cyanobacteria may produce and secrete toxins to
the environment [74,75]. Some authors consider this factor to be the least important [2].
Cyanobacteria are important primary producers from aquatic systems and can sometimes,
in special environmental or seasonal circumstances, represent the main autotroph group
and be the only food resource for freshwater invertebrates [76–78]. Calcareous oligotrophic
rivers are colonized most of the year by a diverse cyanobacterial community, especially
in Mediterranean areas [11,17]. Cyanobacteria have been traditionally considered a poor
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food resource, not only because they may produce toxins or present morphologies that
are unappealing or difficult to ingest, such as long or thick filaments or mucilage, but also
because they have been considered to be of low nutritional quality [74,79–81]. However,
cyanobacteria contain nutrients and active macromolecules, such as pigments, carbohy-
drates, lipids (including essential fatty acids), proteins, vitamins, and minerals, which are
necessary for the growth and maturation of macroinvertebrates [76,77,81–83]. A gut content
analysis (microscopy, serology or DNA) has proven that certain grazer invertebrates feed
on cyanobacteria [30,78,83–92], and they even prefer filamentous species [84,86,90,93], but
their ingestion in other grazers may accidentally occur because some cyanobacteria species
are usually found as epiphytes of macrophytes, or as part of complex biofilms, periphyton
and detritus [2,3,83,94,95]. This dichotomy has led us to wonder whether the simple detec-
tion of cyanobacteria in grazers’ gut contents can be nutritionally considered by proposing
an enzyme analysis as the most appropriate way to confirm that invertebrates have the
capacity to digest cyanobacteria and to absorb their nutrients [84]. Cases of undigested
cyanobacteria being eliminated in feces are described, and the culture of such debris may
inform about the digestibility of ingested cyanobacteria [96,97]. Nevertheless, as certain
cyanobacteria are able to fix atmospheric N, the nutritional value of cyanobacteria in some
invertebrates, and also for the whole food web, has been revealed by studies of stable
carbon (C) and N isotopes [81,95,98–100]. Studies of protein and lipids, especially fatty
acid biomarkers, have also confirmed that cyanobacteria are essential for macroinverte-
brate survival, especially in winter when no other food is within reach [70,95]. Benthic
macroinvertebrates can eat cyanobacteria from benthos and plankton [101,102].

The trophic relationship between cyanobacteria and benthic invertebrates should
not be limited only to grazers, but extended to detritivores. Deposits of decomposing
organic matter in freshwater ecosystems may contain cyanobacteria in the form of living
colonies and organic debris or by-products, such as their toxins [80,103,104]. Although
some cyanotoxins released to the environment can be degraded through physical pro-
cesses, such as photodegradation, other cyanotoxins might remain active for long pe-
riods of time when they reach sediment [1,105–107]. Furthermore, this detritus is the
main way for benthic invertebrates to encounter planktonic cyanobacteria or their toxins,
especially in lentic habitats (lakes, dams, reservoirs, etc.) or larger rivers after bloom
episodes. Stepanian et al. [108] consider the presence of cyanotoxins in sediment to be
one of the factors that could explain the decline of some benthic macroinvertebrates in
lakes. Woller-Skar et al. [107] noted three factors that increase the likelihood of planktonic
cyanobacteria in benthos: (a) incomplete spring recruitment; (b) falling out of suspension
during the growing season; and (c) remaining viable after burial. Therefore, shredder and
collector macroinvertebrates can also ingest cyanobacteria because they do not usually
discriminate detritus components in food, which appear in gut contents as a minority
component [84,91]. Some of them, however, show preferential food selection for cyanobac-
teria mats [86]. The microorganisms present in detritus, such as fungi and bacteria, play a
fundamental role in not only the degradation and stabilization of organic matter, which is
necessary for its assimilation by some detritivores, but also in the detoxification caused by
the presence of cyanotoxins, especially MCs [109,110]. Several freshwater environmental
microorganisms are capable of completely degrading MCs, and even of acting on their
adda ring, and different enzymatic pathways have been found. Nonetheless, the most
studied pathway is that by which microcytinase (MlrA) forms a part and involves a cluster
of four genes (mlrABCD) [109,111,112].

The relationship between cyanobacteria and benthic macroinvertebrates is not only
trophic, but they can also interact biologically by simply living in the same habitat. As
is known, invertebrates can be affected by cyanotoxins through their ingestion, either
diluted in water and associated with particles (sediment or cyanobacterial cells) or by
contact and diffusion through integument, eggs or gill membranes [30,86,97,101–103,107].
The harmful effect of this cohabitation has been studied more in plankton than in ben-
thic invertebrates [72,94]. The colonial forms of cyanobacteria or assemblages with other
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algae in complex mats can act as effective ecological niches, which can be exploited by
macroinvertebrates. Some macroinvertebrates develop territorial behavior on cyanobac-
teria mats [79,113], while others prefer living among cyanobacteria colonies as a form of
defense [72,113,114] or settle on top of them to be more exposed to currents or the water
column [73]. In the most extreme case, a few macroinvertebrate species, such as chironomid
Cricotopus spp., must live in Nostoc spp. colonies to survive by establishing a mutualistic
relationship: the midge obtains shelter and an unlimited source of food, and cyanobacteria
gain a fixation to substrate thanks to the silk secreted by larva, an increased photosynthesis
surface and higher dispersive capacity [85,93,96,114–117]. Other dipteran species, like
Ephydridae, can pierce cyanobacterial mats to live in them and condition the physiostratig-
raphy of soil on the shores of lakes, even on a geological scale [118]. Oncoids (calcareous
stromatolites produced by cyanobacteria) and vertical rocky substrates (freshwater walls
extensively colonized by cyanobacteria) constitute real small-scale ecosystems where a
complex biocenosis, with a high diversity of invertebrates, establishes its own trophic
relationships [114,119]. Moreover, algae composition or abundance in benthic habitats may
condition macroinvertebrate biodiversity [94], and vice versa [79], but this ecological aspect
has been poorly studied.

Benthic cyanobacteria produce all the types of cyanotoxins described in planktonic
cyanobacteria, namely, hepatotoxins (MCs, NODs and CYN), neurotoxins (SXT, ATX-a
and homoanatoxin-a) and dermatotoxins (lyngbyatoxin) [2,44,69,94], which cause dif-
ferent kinds of damage in benthic macroinvertebrates; e.g., molecular, cellular, tissue,
metabolic, functional, developmental, etc. [2,32,105,120,121]. Interestingly, hepatopan-
creas seems to be the main target organ in Crustacea and Mollusca independently of
cyanotoxins [2,30,99,101,122–125], but only occurs in muscle when toxin exposure thresh-
olds are reached [30]. Curiously, some studies have highlighted that most cyanobacteria
extracts, and even those species or strains that do not produce toxin, are more harmful
than purified cyanotoxins by showing that cyanobacteria contain other toxic compounds
beyond known toxins [2,31,90,123]. Toxicity in cyanobacteria is not taxa- but clone-related,
and by considering the polyphyly in some genera like Nostoc, it should be elucidated if
toxin producers and nonproducers belong to the same species [126]. Studies have already
shown that the same species can produce toxins, or not, and even the same species may
produce different toxins according to the geographical location or the physic-chemical
parameter of habitats [2,80]. Although less studied than zooplankton, the harmful effects
of cyanotoxins on benthic habitats depend on toxin type, invertebrate species or life cycle
instars. However, the negligible presence or absence of mortality of some macroinverte-
brates exposed to free cyanotoxins or cyanobacteria extracts, or which feed directly on
cyanobacteria toxic strains, has suggested that they present a different degree of sensitiv-
ity, tolerance or resistance, and even certain species specificity [74,81,102]. Delaney and
Wilkins [127] noted that the lethality of MCs for several land insects (larvae and adults), also
observed in freshwater invertebrates, occurs in the long term after exposure or ingestion
compared to mammals. This finding demonstrates the existence of differences in sensitivity
or tolerance of animals to the toxicity of cyanotoxins. Crustacea, for instance, have survival
rates of 100%, even for exposures to concentrations of cyanotoxins like those in bloom
episodes [30,128]. Long-term macroinvertebrates exposure to cyanotoxins via feeding
may involve bioaccumulation levels higher than cell-free or dissolved exposures, which
suggests that different absorption and metabolization pathways likely exist [30,122,129].
However, another fact is that the macroinvertebrates that cohabit with cyanobacteria or are
long-term/chronically exposed to cyanotoxins show more tolerance to toxicity than those
that have not been exposed [47,130].

Although the tolerance and detoxification capacity of benthic macroinvertebrates are
still not completely elucidated, several studies into invertebrates and vertebrates tend to re-
late it to the enzymatic response against cellular oxidative stress or the activating immunity
system [32,102,105,129,131]. The role of glutathione (GSH) in MC detoxification has long
been known [132], but the effect of antioxidants as blockers of cyanotoxin accumulation
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and the metabolic pathways involved in detoxification processes have become particularly
interesting in the last decade, regardless of antioxidants being produced naturally by the
organism or obtained through diet, such as astaxanthins [31,32,133]. However, the detoxifi-
cation process against cyanotoxins could be more complex, because transcriptomic studies
have shown that exposure to these toxins triggers the activation of about 44 immune- and
redox-related genes associated with metabolic detoxification phases I and II [32]. Other
detoxification ways have also been proposed, such as accelerating intestinal food transit
or increasing the bacterial flora that degrades cyanotoxins [31,32]. Although the transfer
of toxins between trophic levels in relation to invertebrates is unquestionable [99,101,125],
the detoxification capacity observed in freshwater invertebrates is beginning to challenge
the established belief that they contribute to the biomagnification of toxins along the food
chain [1,29,101]. In fact, even at high concentrations of cyanotoxins, as measured in aquatic
consumers of different trophic levels, a meta-analysis based on the biomagnification factor
has confirmed biodilution, and not biomagnifications, as the dominant process in aquatic
food webs [28,29]. The toxicity transfer of some mayfly species to terrestrial predators,
such as bats, has led us to begin taking the aerial phases of hexapods as vectors of toxicity
transfer from fresh water to the terrestrial food chain [107,134]. Nevertheless, some stonefly,
shore fly and bug adults are capable of eating the cyanobacteria available in terrestrial
habitats [83,84,91].

The following Table 1 summarize cyanotoxin producers and main toxins synthesized.

Table 1. Main benthic cyanotoxin producers and main toxic compounds they produce.

Taxa MCs ATX STX CYN NODs

Anabaena [2,19,38,40,41,43,46,135] [19,22,40,41,43,135] [1,2,22,38,135] [19,38,135] -
Arthrospira [135] [135] - - -
Calothrix [17] - - - [2]

Cyanomargarita [136] - - - -
Cylindrospermum [19] [38,135] [38,137] - -
Dactylothamnos - - [136] - -

Fischerella [2,19] - - - -
Geitlerinema [2,18,33,38,44,136] [2,33,38] [2,38,137] - -
Gloeotrichia [33,38,135] - - - -

Hapalosiphon [135] - - - -
Kamptonema - [136] - - -
Leptolyngbya [18,28,136] - - - [2]

Lyngbya [2,17,22] - [1,22,38,93,135] [19,38,93] -
Microcoleus [2,17,38,42,46] [2,28,38,42,46,56,136] [38,42] [38,42] [2]
Microseira [2] - [2] [2] -
Nodularia - - - - [19,135]

Nostoc [2,19,33,38,42,93,135] [38,42] [42] [42] [2,38,135]
Oscillatoria [1,2,17,18,33,38,42,44,89,93,135] [19,22,38,42,135,136] - [38,42] -
Phormidium [2,15–18,33,40,44,51,93,135] [2,40,56] [22] [2] [2]
Plectonema [2,135] - - - -

Pseudanabaena [33,53] - - - -
Rivularia [16–19,33,62,135] - - - -

Schizothrix [33] - - - -
Scytonema [2,33,38,44] - [2,22,38,93,136] - -
Tolypothrix [16,17,39] - - - -
Trichormus [38] - - - -
Tychonema - [2,56,136] - - -

Westiellopsis [2] - - - -
Wollea [42] - [42] [42] -

A compilation of relationships between cyanobacteria and benthic macroinvertebrates
is shown in Table S1. Taxon names in the papers are maintained (independently of their
validity or update).
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3. Conclusions and Future Directions

On the one hand, benthic macroinvertebrates can feed on cyanobacteria, even toxic
strains, and are able to survive, grow or complete their life cycle, even by bioaccumulating
toxins. On the other hand, the cyanobacteria species or strains that are considered nontoxic
can be as harmful to, or are much more harmful than, macroinvertebrates than toxic ones,
which suggests that there are other still unknown and potentially toxic compounds. Despite
known or unknown toxicity, some macroinvertebrates use cyanobacteria as their main
food source, and even choose to live near, on, or in them. Therefore, toxicity should not
be the determining factor of the biological relationships between these organisms. The
tolerance acquired by benthic macroinvertebrates after millions of years of cohabitation
may possibly hold the answer, but the dispersion of currently available data is so wide that
it only allows speculation. Perhaps new studies that focus more on the biological synergies
of these organisms, rather than on antagonisms, are needed to clear up this mystery.

Exposure of macroinvertebrates to cyanobacteria toxicity can have different short- or
long-term effects depending on the way in which it occurs. It has been proven that survival,
growth, completing the life cycle, bioaccumulation and behavior can differ if cyanotoxins
are obtained through diet or if they are cell-free in water. Toxic effects tend to be generally
more lethal or intense with cell-free exposure than when obtained from food. The degree of
tolerance might also be responsible for this heterogeneity, and perhaps it can be explained
by the existence of different metabolic pathways that manage each exposure type.

Detoxification processes will also be a key factor in macroinvertebrates’ response to
cyanobacteria toxicity. These processes are being verified in more organisms, with the
activation of the main antioxidant enzymes being the focus of attention. However, it is
being shown that detoxification may involve a larger number of metabolic processes related
not only to antioxidant machinery but also to the immune system itself. This kind of study
will be decisive for unraveling what promotes tolerance in benthic macroinvertebrates,
especially as it is known in organisms with a close relationship to cyanobacteria, such as
those with a mutualistic relationship.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/toxins16040190/s1. Table S1: Compilation of data regard-
ing the relationships between cyanobacteria and benthic macroinvertebrates. References [138–259]
are cited in Table S1.
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257. Czyżewska, W.; Piontek, M.; Łuszczyńska, K. The Occurrence of Potential Harmful Cyanobacteria and Cyanotoxins in the
Obrzyca River (Poland), a Source of Drinking Water. Toxins 2020, 12, 284. [CrossRef] [PubMed]

258. White, S.; Duivenvoorden, L.; Fabbro, L. Impacts of a Toxic Microcystis Bloom on the Macroinvertebrate Fauna of Lake Elphinstone,
Central Queensland, Australia. Hydrobiologia 2005, 548, 117–126. [CrossRef]

259. Caro Borrero, A.; Carmona Jiménez, J.; Márquez Santamaría, K.; Elvira, P. Relationships between environmental conditions and
macroalgae structure on the benthic macroinvertebrate establishment: Diversity and conservation in rivers of central Spain and
Mexico. J. Insect Conserv. 2021, 25, 769–781. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10750-011-0685-5
https://doi.org/10.1016/j.jhazmat.2018.01.001
https://www.ncbi.nlm.nih.gov/pubmed/29306814
https://doi.org/10.1016/j.hal.2007.10.004
https://doi.org/10.1016/j.toxicon.2005.12.011
https://www.ncbi.nlm.nih.gov/pubmed/16564064
https://doi.org/10.1016/j.etap.2018.04.024
https://doi.org/10.1897/06-222R.1
https://www.ncbi.nlm.nih.gov/pubmed/17269475
https://doi.org/10.1016/j.ecoenv.2008.05.014
https://www.ncbi.nlm.nih.gov/pubmed/18635263
https://doi.org/10.1016/j.toxicon.2006.11.004
https://www.ncbi.nlm.nih.gov/pubmed/17187838
https://doi.org/10.1016/j.etap.2014.07.006
https://www.ncbi.nlm.nih.gov/pubmed/25129375
https://doi.org/10.3390/toxins12050284
https://www.ncbi.nlm.nih.gov/pubmed/32354080
https://doi.org/10.1007/s10750-005-4756-3
https://doi.org/10.1007/s10841-021-00342-7

	Introduction 
	Results 
	Benthic Toxicity 
	Multitoxic Biofilms 
	The Role of Mucilage 
	Toxicity and Taxonomy 
	Relationships to Benthic Macroinvertebrates 

	Conclusions and Future Directions 
	References

