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Abstract: Powdery mildew significantly impacts the yield of natural rubber by being one of the
predominant diseases that affect rubber trees. Accurate, non-destructive recognition of powdery
mildew in the early stage is essential for the cultivation management of rubber trees. The objective
of this study is to establish a technique for the early detection of powdery mildew in rubber trees
by combining spectral and physicochemical parameter features. At three field experiment sites
and in the laboratory, a spectroradiometer and a hand-held optical leaf-clip meter were utilized,
respectively, to measure the hyperspectral reflectance data (350-2500 nm) and physicochemical
parameter data of both healthy and early-stage powdery-mildew-infected leaves. Initially, vegetation
indices were extracted from hyperspectral reflectance data, and wavelet energy coefficients were
obtained through continuous wavelet transform (CWT). Subsequently, significant vegetation indices
(VIs) were selected using the ReliefF algorithm, and the optimal wavelengths (OWs) were chosen
via competitive adaptive reweighted sampling. Principal component analysis was used for the
dimensionality reduction of significant wavelet energy coefficients, resulting in wavelet features
(WFs). To evaluate the detection capability of the aforementioned features, the three spectral features
extracted above, along with their combinations with physicochemical parameter features (PFs)
(VIs + PFs, OWs + PFs, WFs + PFs), were used to construct six classes of features. In turn, these
features were input into support vector machine (SVM), random forest (RF), and logistic regression
(LR), respectively, to build early detection models for powdery mildew in rubber trees. The results
revealed that models based on WFs perform well, markedly outperforming those constructed using
VIs and OWs as inputs. Moreover, models incorporating combined features surpass those relying on
single features, with an overall accuracy (OA) improvement of over 1.9% and an increase in F1-Score
of over 0.012. The model that combines WFs and PFs shows superior performance over all the other
models, achieving OAs of 94.3%, 90.6%, and 93.4%, and F1-Scores of 0.952, 0.917, and 0.941 on SVM,
RF, and LR, respectively. Compared to using WFs alone, the OAs improved by 1.9%, 2.8%, and 1.9%,
and the F1-Scores increased by 0.017, 0.017, and 0.016, respectively. This study showcases the viability
of early detection of powdery mildew in rubber trees.
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1. Introduction

The rubber tree (Hevea brasiliensis), a valuable economic crop, produces milky latex,
which serves as the primary source of natural rubber. Originating in the tropical rainforests
of the Amazon River basin, it thrives in tropical and subtropical regions. Powdery mildew,
resulting from infestation by the pathogen Oidium heveae Steinmann, is among the prominent
diseases impacting rubber trees [1]. It is commonly found in the spring during the period of
bud break and leaf spread, primarily damaging the young leaves, shoots, and inflorescences,
leading to secondary leaf fall. This results in a delayed onset of rubber tapping and
significantly impacts the production of natural rubber [2]. Early on in the infectious
process, rubber tree leaves begin to show a small amount of scattered radial silver-white
mycelium, which can rapidly spread across the entire plantation area under suitable climatic
conditions [3]. Traditional detection of powdery mildew primarily relies on experienced
professionals conducting periodic leaf surveys to assess the disease’s severity. However,
this method is labor-intensive, lacks strong representativeness, and suffers from incomplete
and untimely data submissions from some sites, diminishing its effectiveness in offering
timely scientific guidance. Therefore, achieving accurate detection in the early stages of
powdery mildew occurrence could effectively control its outbreak, holding significant
importance for agricultural production.

In recent years, hyperspectral remote sensing technology has acquired widespread
usage in crop disease detection, leveraging its benefits of swift measurements and its
non-destructive nature [4,5]. After being infected by pathogens, crops typically do not
exhibit obvious visual symptoms in the early stages. However, a series of physiological
and biochemical changes begin to occur, leading to different spectral responses. Therefore,
disease identification can be accomplished through the analysis of crop spectral reflectance.
Common hyperspectral-based methods for detecting crop diseases include vegetation
indices, optimal wavelengths selection from original spectra, and continuous wavelet trans-
form (CWT), among others. Vegetation indices (VIs), by combining sensitive bands and
abnormal changes in spectral response, highlight the spectral characteristics of diseases,
representing a simple and effective method for characterizing spectral changes. Ashour-
loo et al. measured the hyperspectral data of wheat leaves and identified three sensitive
wavelengths (605 nm, 695 nm, and 455 nm) for wheat leaf rust disease [6]. Based on this,
they developed two vegetation indices, LRDSI_1 and LRDSI_2, enabling the monitoring of
wheat leaf rust disease. Abdulridha et al. investigated and assessed 29 vegetation indices
extracted from indoor hyperspectral data of squash leaves, discovering that the water index
and the photochemical reflectance index could facilitate early detection and classification
of squash powdery mildew [7]. Optimal wavelength (OWs) selection, by analyzing in-
teractions between wavelengths, extracts a small number of sensitive wavelengths from
abundant spectral data as the optimal feature combination, reducing redundancy between
data and amplifying spectral differences between samples. Zhou et al. utilized hyperspec-
tral reflectance data from barley leaves and employed competitive adaptive reweighted
sampling (CARS) to extract 30 feature wavelengths [8]. Coupled with linear discriminant
analysis (LDA), they achieved early identification of symptoms of Magnaporthe oryzae
infection in barley leaves. Guo et al. employed the successive projection algorithm (SPA) to
extract six feature wavelengths sensitive to wheat stripe rust, facilitating the extraction of
stripe rust lesions on wheat leaves [9]. CWT is a burgeoning spectral analysis technique
that decomposes spectral data across multiple scales, enabling the capture of intricate
spectral variations. Shi et al. introduced a methodology employing wavelet features (WFs)
to elucidate the mechanisms associated with wheat stripe rust [10]. Zhang et al. combined
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CWT with partial least squares regression using hyperspectral information from infected
leaves, facilitating the evaluation of winter wheat powdery mildew [11].

Compared to spectral features, physicochemical parameter features (PFs) of crops
more directly reflect the physiological and chemical changes occurring after crop infection,
garnering increasing attention in crop disease detection [12,13]. Wu et al. extracted mul-
tiple PFs including chlorophyll content and LAI from hyperspectral images captured by
unmanned aerial vehicles during the fruit expansion period of jujube trees and established
a health assessment model based on these features [14]. Liu et al. conducted a comprehen-
sive analysis of hyperspectral data and chlorophyll content to assess the severity of Apple
mosaic virus (ApMV) infection in apple leaves at the leaf scale [15]. The above studies all
utilized hyperspectral data to invert PFs. In addition, portable hand-held optical leaf-clip
meters such as SPAD and Dualex, owing to their advantages of real-time, accurate, and
non-destructive measurement of PFs such as chlorophyll and anthocyanin content in leaves,
are also commonly employed for on-site acquisition of PFs in field experiments [16]. Sims
et al. conducted the detection of cassava brown streak disease and cassava mosaic disease
based on SPAD measurements, demonstrating that the utilization of SPAD devices can
enhance the precision of translating disease assessments from leaf-scale to landscape-scale,
consequently augmenting the sensitivity of field evaluations [17]. The above studies in-
dicate the advantage of PFs in crop disease detection. Nevertheless, there is presently a
lack of research on using PFs for detecting powdery mildew in rubber trees. Therefore,
further exploration is necessary to unlock the potential of PFs in identifying rubber tree
powdery mildew.

The process of crop pathogen infection leading to disease is complex. Therefore, us-
ing only a single type of feature as input may not adequately characterize the complex
responses of crops to diseases. In recent years, the utilization of combined features has
become prevalent in early crop disease detection owing to their exceptional detection capa-
bilities [18,19]. Tian et al. extensively utilized the rich spectral information from a two-year
dataset and selected 21 features sensitive to rice blast disease from the perspectives of
individual reflectance bands, spectral indices, and wavelet coefficients [20]. These features
were employed for detecting rice blast disease at asymptomatic, early, and mild-infection
stages, achieving detection accuracies exceeding 66%, 80%, and 95%, respectively. Zhu et al.
explored the early detection of tobacco disease through hyperspectral imaging, incorporat-
ing both spectral and texture features [21]. Their findings revealed that models integrating
spectral and texture features surpassed those relying solely on spectral or texture features,
achieving detection accuracies exceeding 80%. The aforementioned studies provide the
foundation for our research, demonstrating the superiority of utilizing combined features in
the early detection of crop diseases. However, there is currently insufficient attention given
to the remote sensing early detection of powdery mildew in rubber trees using combined
features, particularly the combination of spectral and physicochemical parameter features.
Further research in this area is warranted.

To address this research gap, especially the limited exploration of early detection
methods for powdery mildew in rubber trees and the lack of studies employing combined
features incorporating physiochemical parameters for this detection, this paper employs
hyperspectral reflectance data and physiochemical parameter data from rubber tree leaves
as data sources to propose an effective method for the early detection of powdery mildew
in rubber trees by integrating spectral and physiochemical parameter features. The specific
aims of this research were (1) to assess the efficacy of VIs, OWs, and WFs individually, as
well as their combinations with PFs, in the early detection of powdery mildew in rubber
trees; and (2) to construct an early detection model for powdery mildew in rubber trees
by merging spectral and physiochemical parameter features using machine learning tech-
niques. This research provides valuable insights for the early detection and management of
powdery mildew in rubber trees.
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2. Materials and Methods
2.1. Study Area

The study area, situated in the Dai Autonomous Prefecture of Xishuangbanna, Yunnan
Province, China, is part of the rubber research region of the Tropical Crops Research
Institute of Yunnan Province. Its geographical coordinates are 22°2'N, 100°52'E, and it
sits at an elevation of 852.2 m. The year-round climate of Xishuangbanna is warm and
humid, with temperatures typically ranging from 18.9 to 23.5 °C and annual precipitation
of 1214.8 to 1615.9 mm. The experiment took place from 28 February to 2 March 2023,
conducted both in the field and indoors. The three field experiment sites were located
in Sandashan of Jinghong City (22°3’49”N, 100°53/32"E), Ganlanba Farm (21°47'42""N,
100°46'20"E), and Dongfeng Farm (21°43'41”N, 100°44/32"E). During this period, the
rubber tree phenology was mainly characterized by leaves transitioning from bronze to
pale green, which represents a crucial phase for identifying and managing powdery mildew
in rubber trees.

2.2. Data Acquisition
2.2.1. Collection of Leaf Reflectance Spectra

Hyperspectral reflectance data from rubber tree leaves were collected using the Field-
Spec Pro FR spectrometer (ASD, Boulder, CO, USA). The device spans a spectral range
from 350 to 2500 nm and provides resolutions of 3 nm and 10 nm in the respective ranges
of 350 to 1000 nm and 1000 to 2500 nm [22]. To mitigate the impact of the solar zenith angle
on measurement outcomes, outdoor experiments were conducted between 10:00 and 14:00
local time with clear skies. During measurements, the leaves were placed flat on a 1 m by
1 m black cloth, and the probe of the spectrometer was positioned 0.5 m directly above the
leaves for spectral acquisition. Each sample underwent five measurements to determine
the average leaf spectral reflectance. Before each measurement, spectral calibration was
performed on a 40 cm by 40 cm BaSOy reference panel. During indoor measurements, the
leaves were placed horizontally on the working surface, and each sample underwent five
measurements to calculate the average leaf spectral reflectance. Before measurements, a
standard white reference board was used for spectrum calibration, and recalibrations were
conducted every 10 to 20 min. Finally, precise spectral reflectance data were acquired, and
the spectral curve was resampled to ensure a precision of 1 nm.

Samples were categorized according to the size of lesions and the visual appearance
of rubber tree leaves when gathering leaf hyperspectral reflectance data, following the
technical guidelines for predicting powdery mildew in rubber trees established in China in
2015 (NY/T1089-2015) [23]. Healthy (H) leaves exhibited no disease lesions, while leaves
with early-stage disease (E) had lesions covering less than one-eighth of the total leaf area
(Figure 1). A total of 263 leaf samples’ spectral reflectance data were collected, comprising
152 H and 111 E samples. The specific sample distribution is shown in Table 1.

JUAL LY

Figure 1. Examples of rubber tree leaves: (a) healthy; (b) early.
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Table 1. Sample distribution was obtained at each experimental site.

Number of Field Survey Samples

Experimental Site

Healthy Early Sum
Sanda Mountain 43 21 64
Ganlanba Farm 30 30 60
Dongfeng Farm 29 10 39
Indoor Laboratory 50 50 100

2.2.2. Collection of Leaf Physicochemical Parameters

The leaf physicochemical parameter measurements were performed using the Dualex 4
(Force-A, Orsay, France), a portable optical leaf-clip meter capable of non-destructively
and accurately evaluating chlorophyll and epidermal flavonol content [24]. During the
measurement process, five measurements were taken at positions 1/3 (upper), 1/2 (middle),
and 2/3 (lower) from the leaf tip for each sample, with the average subsequently calculated
(Figure 2). The measurement results were displayed in units of nug/cm?. Chlorophyll and
anthocyanin content were measured and selected as the physicochemical parameters.

Figure 2. Physicochemical parameter measurement of rubber tree leaves.

2.3. Feature Extraction and Analysis

Figure 3 shows the flowchart for identifying rubber tree powdery mildew using
spectral and physicochemical parameter features (VIs, OWs, WFs, and their combinations
with PFs). The process comprises three steps: (1) collection of hyperspectral reflectance
data and physicochemical parameter data of rubber tree leaves; (2) extraction of spectral
and physicochemical parameter features (VIs were chosen using the ReliefF algorithm,
OWs were selected via CARS, WFs were derived through PCA dimensionality reduction
on significant wavelet energy coefficients, and PFs were obtained through measurements
using the Dualex 4); (3) utilization of machine learning models to establish detection models
employing various features, with model performance assessed through confusion matrices,
overall accuracy, and F1-Score.



Remote Sens. 2024, 16, 1634 60f 18

Data Acquisition
Sanda Mountain

Ganlanba Farm Healthy: 152

Rubber tree

Data acquisition

Experimental Site

leaf samples
Dongfeng Farm Farly: 111
Indoor Laboratory
Feature Extraction and Selection
Vegetation index Feature weight ranking Vi ion ind
(Vs) RelicfF egetation index
Optima] wavelengths Selection of wavelength Wavel th H ral reflect dat
(OWs) CARS avelengths yperspectral reflectance data
Feature fusion R o .
Wavelet features Signifcant correlation features | Wavelet power
(WFs) PCA scalograms
|| Physicochemical parameter . ] )
features (PFs) Physicochemical parameter data

Model Building and Evaluation

Accuracy evaluation
Input Fes . SVM RF LR
Sinele feature mput Feature T G S FiScore H E DA(%) FlScore H  E OA[%) Fl-Score
g Vis ]‘l 7 1 689 0.740 o 77 0.758 s 1 (9.5 0.738
E 19 26 16 29 16 29
3 3 Vis + FFs Hoar 4 708 0.752 f 10 745 079 15 N 711 0.750
Feature input Machine learning models B 17 o P MO gy oy &
cature mpu —> H 48 13 FEET] 5110
is 7 5. 7 A
(SVM’ RF’ LR) OWs E o1 oM 774 0.800 P 5.1 0718 n om 802 0.829
OWs + PFs H 51 10 802 0829 47 14 679 073 5 9 821 0816
* T E 11 34 - 20 25 o T 10 35 -
1 WFs Hosr + us 0.934 8 3 877 0899 5 s 915 0926
Combined features B4 4 0 % T T
H 59 2 55 a 56 5
iFs + PFs 3 5 . 3 .S
WFs + PF: E n " 9.3 0852 s a1 A6 0917 2 P 934 0.941

Figure 3. Flowchart of data analysis and processing.

2.3.1. Vegetation Indices Extraction and Selection

Vegetation indices play a crucial role in enhancing spectral disparities by combining
and transforming wavebands, making them extensively utilized in crop disease remote
sensing detection studies. In this research, we curated 39 VIs associated with pigment,
structure, physiology, and water content from the pertinent literature for the early de-
tection of powdery mildew in rubber trees, drawing upon previous studies. Table 2
presents a detailed summary of these 39 features, complete with definitions, descriptions,
and references.

Table 2. Vegetation indices selected in the study.

Index/Spectral

Category Feature Definition Description or Formula Reference
ARI Anthocyanin reflectance index (Rs50) "1 — (Rypg) ~? [25]
Antgitelson Anthocyanin (Gitelson) (1/Rs50 — 1/Rygg) x Rygo [25]
Clgreen Green chlorophyll index (Rys0 — Rss0)/Rss0 [25]
Pigment Clred-edge Red-edge chlorophyll index (Rys0 — Ryps)/Ryps [26]
. . I(a x 670 + Rgzp +b) | /(a2 + 1)1/2) x
Chlorophyll absorption ratio (
CARI PRy P (R700/Re70) [27]

index a = (Ryop0 — Rs50)/150, b = Rs50 — (a x 550)
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Table 2. Cont.
Category Index/Spectral Definition Description or Formula Reference
Feature
Transformed chlorophyll
TCARI absorption and reflectance 3 % [(R700 — Re70) — 0.2 X (Rzpo — [28]
index Rs00)1/(R700/Re70)
Modified chlorophyll [(R701 — R671) —0.2 x (R701 —
MCARI absorption ratio index Rs49)1/ R700/Re70) [29]
NRI Nitrogen reflectance index (Rs70 — Rey0)/ (Rs70 + Rezo) [30]
Normalized pigment chlorophyll
NPCI P P (Reso — Raz0)/ (Reso + Ruzo) [31]
PSSRa Pigments specific simple ratio a Rgoo/Reso [32]
PSSRb Pigments specific simple ratio b Rgpo/Rezs [32]
Photochemical/physiological
PRI reflectance index (Rs31 — Rs70)/ (Rs31 + Rszp) [33]
Pigment Plant senescence reflectance
PSRI Index (Reso — Rsp0)/Rzso [34]
PPR Plant pigment ratio (Rs50 — Rys50)/ (Rs50 + Rysp) [35]
RGI Red green index Rgo0/Rs50 [36]
Ratio analysis of reflectance
RARSa spectra a Re75/R700 (37]
Ratio analysis of reflectance
RARSb Slyoectra b Re75/(Rz00 % Res0) [37]
Ratio analysis of reflectance
RARSc spectra c R760 /R500 [37]
OSAVI Optimized .soil.-adjusted (1 + 016) X (Rgoo — R670)/(R800 + R670 [38]
vegetation index +0.16)
Structure insensitive pigment
SIPI o epe (Rsoo — Rass)/ (Rsoo + Reso) [31]
Normalized difference
NDVI vegetation index (Rgoo — Re70)/ (Rgoo + Rez0) [39]
Narrow-band normalized
NENDVI Difference vegetation index (Res0 — Reso)/ (Reso + Reso) (401
Red-edge normalized difference
ReNDVI vegetation index (R7s50 — R705)/ (Rzs0 + R7os) [41]
Green normalized difference
Structure GNDVI vegetation index (R750 — Rsao + Rs70)/(Rys0 + Rsao — Rsyo) [42]
GI Greenness index Rs54/Rg77 [36]
SR Simple ratio Roggo/Regso [43]
TVI Triangular vegetation index 0.5 x [120(R750 — Rs50) — 200(Re70 — Rs50)]1 [44]
Modified triangular vegetation
MTVI e E 1.2 x [1.2(Rg00 — Rss0) — 25(Re70 — Reso)] [45]
Red-edge vegetation stress
RVSI gevee [(R71a + Rys2)/2] — Rz [46]
Index
FRI1 Fluorescence ratio index 1 Re90/Re30 [47]
FRI2 Fluorescence ratio index 2 R750/Rggo [48]
FRI3 Fluorescence ratio index 3 Rgo0/Rep0 [49]
FRI4 Fluorescence ratio index 4 Ry40/Rspo [49]
; 2
oy " Hemececumaue ey o/t * e v
mRESR ind;gx p (R750 — Rags)/ (R7os + Rygs) [50]
Normalized Pheophytization
NPQI da (Ra1s — Razs)/(Rzs + Razs) [51]
PhRI Physiological reflectance index (Rs50 — Rs31)/(Rs31 + Rssp) [33]
WI Water Index Rogo/Royg [52]
Water Water Stress and Canopy
content WSCT Temperature (Ro70 — Rss0)/ (Ro7o + Rgs0) (53]

Note: Rx represents the reflectance at a wavelength of x nm.
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The aforementioned four types of vegetation index features may not all contribute
to early detection. Reducing redundancy and selecting optimal features will enhance the
model’s accuracy. Therefore, the ReliefF algorithm was utilized in this study to compute
the weight of each feature, retaining a small number of important features.

The ReliefF algorithm is widely employed as a feature weighting method, assigning
distinct weights to features depending on their correlation with the classes [54]. Features
with weights below a specific threshold are eliminated, making this approach suitable for
handling data with two or more classes. The algorithm first chooses a sample R at random
from the training sample set D, then retrieves k nearest neighbor samples H from the set of
samples belonging to the same class as R, and k nearest neighbor samples M from the set of
samples belonging to different classes than R. Subsequently, it updates the weight of each
feature. The following formula is used to determine the feature weight:

P(C)

k k
W[A] = W[A] — Zdiff(A, Ry, Hj)/mk+ Y ngiff(A,Ri,Mj(C)) /mk, (1)
1 j=

j=1 C#class(R;)

where dif f (A, R;, Hj) represents the Euclidean distance between sample R; and H; on
feature A; class(R;) denotes the class label to which sample point R; belongs; P(C) denotes
the probability of occurrence of class C; P(class(R;)) denotes the probability of occurrence
of the random sample R; and m denotes the number of sampling times.

2.3.2. Optimal Wavelengths Selection

Rubber tree leaf hyperspectral reflectance data contains rich spectral information,
which aids in disease identification. The original spectral data cover a range from 350 to
2500 nm, with a total of 2151 wavelengths. Due to the data’s high dimensionality, spectral
redundancy and collinearity exist, which not only increase the complexity of the models
but also affect their computational efficiency. Therefore, it is essential to extract the sensitive
wavelengths for powdery mildew before conducting early disease detection, to diminish the
dimensionality of the original spectral information, and to amplify the spectral disparities
between samples. For this study, the OWs were chosen using the CARS algorithm.

The CARS algorithm [55], rooted in the Darwinian principle of “survival of the fittest”,
is an iterative statistical information-based method used for selecting variables, widely
utilized for selecting characteristic spectral wavelengths in crop disease detection. This
algorithm integrates Monte Carlo sampling with an exponential decay function in the
partial least squares (PLS) model. It retains wavelength points with larger absolute re-
gression coefficients in the PLS while discarding those with smaller weights. Through
cross-validation, it identifies the subset of wavelength variables with the lowest root mean
square error of cross-validation (RMSECV) as the best feature wavelengths.

2.3.3. Continuous Wavelet Transform and Features Extraction

CWT [56] is a signal processing technique rooted in the Fourier transform, allowing
for the simultaneous analysis of signals in both the frequency and time domains. Utilizing
CWT, the correlation analysis of original spectral curves and Gaussian functions at various
positions and scales produces a set of continuous wavelet energy coefficients. As a newly
emerging spectral analysis approach, it has been applied to the detection and identification
of crop diseases.

The principle of CWT involves transforming hyperspectral reflectance data f(A) into a
set of wavelet coefficients through the application of a mother wavelet function. Continuous
wavelets §, ;,(A) are obtained by shifting and scaling the mother wavelet function (1),
with a general form as follows:

Yas (V) = jﬁw(“b), )

a
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where “a” denotes the scaling factor, indicating the width of the wavelet, while “b” rep-
resents the shifting factor, signifying the position of the wavelet. The output during the
transformation process is as follows [57]:

—+oo
Wela,b) = [ F(N)gap(D)dA, ®
where W¢(a, b) represents the wavelet coefficients that constitute a scalogram; f (1) denotes
the reflectance spectrum, A =1, 2, ..., m, with m representing the number of bands—here,
we set m as 2151. We selected the Mexican hat wavelet (mexh) as the foundational mother
wavelet function due to its analogous vegetation absorption properties [58]. To optimize
computation while maintaining the effectiveness of CWT, we focused on wavelet powers
at specific scales known as dyadic scales (i.e.,, 2",n=1, 2, ..., 10) [59].

In this study, based on CWT, we conducted a correlation analysis between the calcu-
lated wavelet energy coefficients and disease. Multiple significant results were observed
across various wavebands and scales. Then, using principal component analysis (PCA) to
decrease the dimensionality of the significant results relying on specific contribution rates,
the resulting features from this procedure are called WFs. MATLAB 2016a was employed
for all analyses of CWT.

2.4. Model Construction

In this study, the extracted VIs, OWs, WFs, and their combinations with PFs (VIs + PFs,
OWs + PFs, WFs + PFs) were employed as feature variables. Six classes of feature variables
were combined with support vector machine (SVM), random forest (RF), and logistic
regression (LR) to establish early detection models for rubber tree powdery mildew.

SVM, a supervised learning algorithm [60], employs a kernel function to implicitly
transform vectors of inputs into a high-dimensional feature space [61]. Subsequently,
it seeks the best hyperplane in this feature space to accurately classify data, allowing
for the modeling and classification of intricate data relationships [62]. SVM efficiently
mitigates overfitting and has exceptional performance with small sample numbers and in
high-dimensional spaces. Even when faced with limited training data, it is still capable
of producing robust models. RF is a classifier rooted in bagging ensemble learning [63]
that consists of a collection of independent, unpruned decision trees. Through random
sampling with replacement, multiple sample sets are generated, and classification trees are
built via a fully split method. A majority vote of the classifications from each individual
binary decision tree determines the final classification result. It demonstrates relatively
simple parameter tuning, good anti-overfitting characteristics, and increased robustness.
LR is a classical supervised learning algorithm [64]. Assuming data follows a Bernoulli
distribution, LR utilizes the Sigmoid function to constrain the results of linear regression
within the (0,1) interval, representing the probability of a sample belonging to a certain
class. By maximizing the likelihood function using gradient descent to solve parameters,
LR achieves the objective of classifying data. LR is characterized by its simplicity, good
interpretability, low computational cost, robustness to small noise in the data, and immunity
to minor multicollinearity effects.

2.5. Accuracy Assessment

In order to more thoroughly assess the precision and stability of the models mentioned
above, the study employed a 60:40 stratified sampling on the original dataset, dividing it
into 60% for the training set and 40% for the testing set based on sample categories. The
grid search method was utilized for hyperparameter tuning on the training set. The models
were trained and validated using k-fold cross-validation, where the dataset was randomly
partitioned into five folds. In each iteration, four folds were allocated for training and one
fold was set aside for validation. To ensure comprehensive assessment, this procedure was
carried out five times, with each fold acting as the validation set once. Ultimately, model
performance was depicted by computing the average of evaluation metrics. The optimized



Remote Sens. 2024, 16, 1634

10 of 18

models were then tested on the testing set, and a confusion matrix was created utilizing
true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN), with
overall accuracy (OA) computed as an evaluation metric to gauge model performance.
Given the mild data imbalance, F1-Score was also incorporated into the study to provide a
more comprehensive evaluati