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Abstract: Accurate estimation of above-ground biomass (AGB) in forested areas is essential for
studying forest ecological functions, surface carbon cycling, and global carbon balance. Over the past
decade, models that harness the distinct features of multi-source remote sensing observations for
estimating AGB have gained significant popularity. It is worth exploring the differences in model
performance by using simple and fused data. Additionally, quantitative estimation of the impact
of high-cost laser point clouds on satellite imagery of varying costs remains largely unexplored. To
address these challenges, model performance and cost must be considered comprehensively. We
propose a comprehensive assessment based on three perspectives (i.e., performance, potential and
limitations) for four typical AGB-estimation models. First, different variables are extracted from the
multi-source and multi-resolution data. Subsequently, the performance of four regression methods is
tested for AGB estimation with diverse indicator combinations. Experimental results prove that the
combination of multi-source data provides a highly accurate AGB regression model. The proposed
regression and variables rating approaches can flexibly integrate other data sources for modeling.
Furthermore, the data cost is discussed against the AGB model performance. Our study demonstrates
the potential of using low-cost satellite data to provide a rough AGB estimation for larger areas, which
can allow different remote sensing data to meet different needs of forest management decisions.

Keywords: airborne laser scanning (ALS); satellite imagery; forest above-ground biomass;
multi-source data; multiple regression

1. Introduction

Carbon peaking and carbon neutrality goals are currently popular topics all over the
world [1]. Forests account for a high proportion of global above-ground carbon stocks [2].
An accurate AGB estimation is the data basis for studying forest carbon stocks and investi-
gating their impact on climate change and ecosystem functions. However, traditional forest
inventory for biomass estimation includes inevitable drawbacks when taking large-scale
measurements [3], such as great time consumption and high costs, making it difficult to pop-
ularize. Remote sensing data contribute to obtaining spatially contiguous high-precision
data [4,5]. Among these, the cost and performance of the AGB estimation model are the
main factors determining the selection of remote sensing data sources.

The observational advantages of remote sensing, such as wide coverage and fast
operation, compensate for the shortcomings of traditional methods of measuring forest
biomass. Current remote sensing methods for estimating AGB mainly utilize optical
remote sensing and light detection and ranging (LiDAR). Optical images contain spectral
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information of the forest on a large scale. The spectral information obtained from satellite
images has a good correlation with AGB, representing its potential to inform predictors
in AGB regression. However, if the tree density is high it can be difficult to quantify a
reliable statistical relationship between spectral information and biomass [6]. Unlike optical
image systems, LiDAR systems capture the vertical distance between the sensor and the
object. The 3D structural data of vegetation generated by LiDAR has been adopted in many
applications [7]. Synthetic Aperture Radar (SAR) at lower frequencies (L and P bands) has
the ability to penetrate deep into the forest and interact with the trees, providing a better
correlation with AGB [8]. However, it has stronger ground effects than LiDAR. Owing to
their distinct features, optical images and laser scanning point clouds can be combined to
monitor forest AGB changes.

The synthesis of multi-source features for modeling AGB has been widely used for AGB
estimation [9]. For example, optical image data and ALS data [10]. de Almeida et al. [4] ex-
plore the combination of ALS and hyperspectral data, which showed significantly improved
performance in Amazon AGB estimation. It has been proved that remote sensing data
sources (ALS, Airborne hyperspectral imagery, or their combination) have a greater impact
on modeling outcomes than regression methods. In addition, there are many challenges in
the selection of suitable metrics, as well as many different models [9]. In contrast to deep
learning methods, various machine learning approaches have been explored to investigate
the importance of different variables in the estimation of AGB. The choice of parametric
and non-parametric statistical models is crucial for AGB estimation, as the performance
of models varies significantly in different modeling methods [3]. Previous studies have
claimed that their developed AGB estimation models can achieve satisfactory results using
variable selection, different regression models, and multi-source and multi-resolution data.
However, to the best of our knowledge, there has been little prior research on the fusion of
image data with different resolutions and ALS data in AGB modeling.

To address these knowledge gaps, our work combines medium- and high-resolution
satellite data with airborne point clouds. The impact of different resolutions of satellite
imagery on modeling performance is investigated. Satellites data have large coverage
and are publicly available, while ALS data can capture 3D tree morphology information
but usually cover a smaller area owing to budgetary limitations. This study proposes
a framework to leverage the different advantages of satellite imagery and ALS data in
estimating aboveground biomass. Specifically, instead of developing a new algorithm,
we assess several regression models using dual-source data. This assessment helps us to
identify the best regression model based on model performance and cost, which is then
used to estimate the aboveground biomass over large areas. AGB modeling is explored
in this paper to answer the following questions: (1) What impact does the integration of
ALS data variables and satellite imagery variables have on the precision and bias of AGB
estimations? (2) To what extent do the different regression methods affect the accuracy
and bias of AGB estimation? and (3) How does the spatial resolution of satellite imagery
influence the estimation of AGB?

The remainder of this paper is organized as follows. Section 2 describes the multi-
source data, the extracted variables, and the methods used to explore the AGB regression
modeling for forested areas. First, the vertical structure of the forest sample plots is obtained
by applying terrestrial laser scanning (TLS) and unmanned aerial vehicle laser scanning
(ULS) data on field plots. The extracted diameter at breast height (DBH) and tree height
of individual trees are then used to estimate plot-level AGB through allometric model
equations to obtain the AGB as a dependent variable. Independent variables are extracted
from the ALS data and images with different resolutions in order to explore the correlation
between the different variables and forest AGB. Section 3 describes the experimental results
and evaluation. A discussion is presented in Section 4, in which AGB models built by
the different methods and data sources are compared and analyzed. Finally, the paper is
summarized in Section 5. This study explores the performance of AGB modeling with a
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fusion data source and investigates the impact of integrating spectral information with
different cost considerations into high-cost ALS data.

2. Materials and Methods

As illustrated in Figure 1, the proposed method includes the following main steps:
(1) tree parameter and AGB calculation at the sample plot level; (2) extraction and selection
of variables from satellite images and ALS data; and (3) AGB regression model construction
and evaluation using four regression methods and multi-source data.

AGB calculation for Sample plot 

AGB of Sample plotULS and TLS data acquisition

Parameters extraction Individual tree AGB

Tree extraction Data summaries

Allometric equation

( , )W f H DBH=

Remote Sensing Data Processing

GF2  imagery LS8 imagery

ALS metrics

ALS data for the sample overlap area

ALS data

Data registration

Statistical  

transformation

DVI

Orthophoto

Pre-processing

Statistical  

transformation

Metric Filtering

Importance Ranking

Correlation Analysis

SRM

Boosting

SVM

Bagging

Method

GF2 model

LS8-ALS model

LS8 model

GF2-ALS model

Multi-source model

ALS model
Model analysis

Accuracy evaluation

Modeling

AGB prediction

AGB modeling

Height SAVI

NDVI ARVI
...

Figure 1. The workflow of the proposed method.

2.1. Study Areas and Datasets

Guangxi province, China, has a subtropical monsoon climate with abundant rainfall
and heat. Most of the forest plots are planted trees. In this study, four forested areas in
Guangxi province were selected, as listed in Table 1 and Figure 2. In the experiment, a total
of 68 plots of 15 × 15 m were set up. The experimental data included ULS data, TLS and
ALS data, Landsat 8 (LS8) data, and Gaofen2 (GF2) image data. The ULS and TLS data
were collected in June 2020. The ALS data and satellite images were collected in 2019 and
2020, respectively.

The ULS, airborne, and terrestrial LiDAR data allowed for complete scanning of the
internal and upper structure of the forest. An Austria RieglVZ-400 3D laser scanning
system, which scans 122,000 points per second, was used for the TLS data acquisition in
the experiment. A Netherlands Aerialtronics Altura AT8 ULS, which has a flight height
of about 50–70 m above the ground, was used for the unmanned aerial vehicle (UAV)
data acquisition. The ALS data were acquired using a fixed-wing manned P750 aircraft
equipped with an Austria RIGEL-VQ-1560i airborne LiDAR scanning system. The ALS
system was used at an average flight altitude of 2500 m above ground, with a full area point
density of over three points/m2. The ALS data were preprocessed to produce a digital
terrain model (DTM) and a normalized point cloud.

For the sample plots, the GF2 satellite images were downloaded from the China
Center for Resources Satellite Data and Application, which provides cloud-free images
at the sub-meter level. For the sample plots, the GF2 satellite provides cloud-free images
at the sub-meter level. The images have four spectral bands with a spatial resolution of
4 m (wavelength 0.45–0.9 µm) and one panchromatic band with a spatial resolution of 1 m.
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Similarly, the LS8 images have nine multispectral bands with a spatial resolution of 30 m
along with a panchromatic band with a resolution of 15 m. Pansharpening was performed
on the GF2 and LS8 data using the software Esri ENVI5.3 from Davis, CA, USA. After
pansharpening, the images were cut and mosaicked, then the preprocessed satellite images
of the study area were obtained.

Table 1. Study area description.

Area Tree Species Plots

Guigang Masson pine 20
Laibin-1 Masson pine 12
Laibin-2 Eucalyptus 16
Laibin-2 Masson pine 20

Eucalyptus plots

Masson pine plots

Qinzhou

Laibin

Guigang

Figure 2. The study areas in Guangxi Province, China.

2.2. Construction of Field Plots

According to Table 1, all TLS and ULS data in four forests in three cities were col-
lected. The distribution of sample plots is shown in Figure 3. The collected point clouds
can be used to segment and calculate individual trees. The accuracy of the point cloud
method for obtaining tree parameters has been verified in [11]. The AGB of an individ-
ual tree is the sum of the parts, including the stems, branches, and leaves. The AGB
sample plots were assessed based on the existing allometric equations [12], as shown in
Table 2. TLS obtains rich information on the bottom part of the tree, based on which the
DBH can be accurately calculated. ULS is able to capture information on the top of the
tree, the ground height, and the highest point of the tree, which are important for correctly
calculating H. The combination of TLS and ULS data can be used to obtain complete
information on the sample plots. First, the collected multi-station TLS point clouds were
co-registered to the same coordinate systems, then the TLS and ULS data were co-registered
using the Random Sample Consensus (RANSAC) method [13]. The average registration
residual for the TLS-to-TLS scenario was 0.049 m, while for the ULS-to-ALS scenario it
was 0.299 m. The fused point cloud was then used to automatically perform an accurate
individual tree extraction [14]. In addition, we used the TLS-to-ALS registration from [15].
The average registration residual for the TLS-to-ALS scenario was 0.049 m. The conversion
of ALS data to 1 m resolution imagery allowed for geographic registration of the ALS and
GF2 imagery using the geographic registration method in ENVI 5.3. Satellite image plots
with the same geographic extent were obtained from TLS point cloud plots.
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Table 2. Allometric equations used for AGB estimation from [12].

Tree Species Part W = a(DBH)b

a b r2

Masson pine
Stems 0.1615 2.2989 0.88

Branches 0.0763 1.8402 0.88
Leaves 0.3248 0.935 0.65

Eucalyptus
Stems 0.0702 2.5253 0.84

Branches 0.0452 1.794 0.74
Leaves 0.7392 0.2565 0.02

(a) (b)

(d)(c)

TLS collection location

Sample plot center

TLS collection location

Sample plot center

TLS collection location

Sample plot center

TLS collection location

Sample plot center

TLS collection location

Sample plot center

TLS collection location

Sample plot center

TLS collection location

Sample plot center

TLS collection location

Sample plot center

Figure 3. Distribution of sample sites and TLS collection locations: (a) Masson pine forest in Guigang
municipality; (b) Masson pine forest in Laibin municipality; (c) Eucalyptus forest in Laibin munici-
pality; and (d) Masson pine forest in Qinzhou municipality.

2.3. Variable Extraction and Selection
2.3.1. Satellite Image Processing and Metric Extraction

Several imagery spectrum variables or transformation results have been proposed as
potential AGB predictors. Based on the LS8 and GF2 images, some of the optical image
variables were obtained by principal component analysis (PCA) transformation, minimum
noise fraction (MNF) transformation, and transformation by various vegetation indices [5].
Descriptions of the variables and the calculation equations are provided in Table 3. All the
satellite image variables were obtained at the plot level.

For GF2 data and LS8 data, the raw bands have different spectral characteristics in
terms of the absorption and reflectance of vegetation, and are used as candidate variables,
as shown in Table 3. Here, ρB, ρG, ρR, and ρNIR correspond to Bands 1 to 4, respectively.
PCA is able to extract the most important components of the image, and is commonly used
to remove noise from satellite data. The first three principal components are not correlated
with each other after transformation. The data variance of the first principal component
(PC1) is the largest, then those of PC2 and PC3 decrease in turn. The retained three MNF
components arrange the components from largest to smallest according to the signal-to-
noise ratio. In addition, the raw bands can be combined to calculate vegetation indices in
order to highlight the vegetation. For example, the NDVI is used to provide an indication
of the health and growth of the vegetation; the EVI represents an improvement over
NDVI in terms of a decoupling the canopy background signal and reducting atmospheric
influences. The RVI and DVI reflect the difference between the reflection of vegetation in
the visible and near-infrared bands. The SAVI and MSAVI are used to reduce the effect
of the soil. The ARVI is insensitive to aerosols, and is particularly suitable for monitoring
areas with high atmospheric aerosol levels [16].
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Table 3. Metrics calculated from the satellite image data.

Abbr. Description Equation Reference

ρR , ρG , ρB , ρNIR Raw optical image bands
PC1, PC2, PC3 Extraction of the three band of PCA

MNF1, MNF2, MNF3 Extraction of the three band of MNF transformation
EVI Enhanced vegetation index EVI = 2.5 ∗ (NIR − R)/(NIR + 6.0 ∗ R − 7.5 ∗ B + 1.0) [17]

NDVI Normalized difference vegetation index NDVI = (NIR − R)/(NIR + R) [18]
RVI Ratio vegetation index RVI = NIR/R [19]
DVI Differential vegetation index DVI = NIR − R [20]
SAVI Soil-adjusted vegetation index SAVI = (1.0 + 0.5) ∗ (NIR − R)/(NIR + R + 0.5) [21]

MSAVI Modified soil-adjusted vegetation index MSAVI = NIR + 0.5 ∗
√
(NIR + 0.5)2 − 2 ∗ (NIR − R)) [22]

ARVI Atmospherically resistant vegetation index ARIVI = (NIR − (2.0 ∗ R − B))/(NIR + (2.0 ∗ R − B)) [23]

2.3.2. ALS Data Processing and Variable Extraction

A range of ALS variables are used to characterize the forest canopy and vertical
structures, including height percentile variables, canopy cover variables, and tree height
variables at the plot level. In this case, to construct the height percentile variables within a
sample plot, the height at a given percentile is extracted from the normalized point cloud.
The height percentile variables show the vertical division of the forest. All the extracted
ALS variables are listed in Table 4.

Table 4. Summary of the ALS metrics.

Abbr. Description

C Canopy cover.
hmax Maximum height of first returns above 2 m
hmean Mean height of first returns above 2 m
hstd Height standard deviation of first returns above 2 m.
hcv Height coefficient of variation (%) of first returns above 2 m.

h25, h50, h60, h75,h95
Xth (25, 50, 60, 70, 75 or 95th) percentile of height distribution of first

returns above 2 m
FR Percentage of first return points to total points

tmax Maximum of ALS tree height
tmean Average of ALS tree height
tmin Minimum of ALS tree height

In general, the first return points of ALS point clouds are the canopy points in the forest,
while the last return points are the ground points. The percentage of first return points to
total points (FR) variable describes the proportion of canopy points to the total number
of points in the forest. Further extraction of the canopy height variables can describe
the vertical distribution and variability of the forest canopy. Canopy cover is defined as
the percentage of vegetation returns to the total number of returns, which describes the
planting density of trees at the horizontal level.

2.3.3. Selection for Satellite Imagery and ALS Data Variables

As the extracted variables contain redundant information, variable selection is a key
issue. Importance ranking of variables and Pearson correlation analysis was used to filter
the variables. Finally, suitable optical image and ALS data variables, along with their
combinations, were added to the regression model.

After extracting variables from the preprocessed GF2, LS8, and ALS data, the random
forest (RF) importance ranking of the variables was calculated. The change in the mean
squared error (%IncMSE) can be considered as the contribution of the variable to the AGB
prediction and used to assess the importance of specific variables. In general, the %IncMSE
is used to interpret the decrease in the precision of the AGB prediction when the variable
is removed. When %IncMSE is higher than 4%, the variable is retained. Meanwhile,
the correlation between the extracted variables was calculated using Pearson correlation
analysis. In this paper, 0.7 was considered as the assumed threshold for a high correlation
coefficient. If the correlation coefficient exceeds 0.7, only the more important variables are
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kept. In this way, those variables with high importance and low correlation are selected for
modeling.

2.4. Regression Models

The regression methods considered in this study included both parametric and non-
parametric methods, namely, the stepwise regression method (SRM), support vector ma-
chine (SVM), boosting tree, and bagging tree approaches. Ten-fold cross-validation [24]
was employed to prevent overfitting of the models using all 68 plots.

Multiple variable regression analysis is a commonly used method in biomass model-
ing [25]. In this study, the SRM method was used to describe the relationship between the
independent variables and the dependent variable (AGB). When a new dependent variable
was introduced, the original variables were tested one at a time. Variables were retained
(p < 0.05) or removed depending on their significance level. The independent variables from
Tables 3 and 4 were filtered via SRM to build the final model, as shown in Equation (1):

AGB = a1 ∗ metric1 + a2 ∗ metric2 + · · ·+ an ∗ metricn + b (1)

where b is an intercept and an is the parameter for variablen fitting in the SRM. For metrics,
variablen is the one in Table 3 or Table 4 from the images and ALS data retained after feature
selection and the SRM.

The other three methods (SVM, boosting tree, and bagging tree) are all non-parametric
methods which use default parameters. The same type of learner was used in both the
bagging tree and boosting tree methods; the differences are shown in terms of sample
selection, sample weight, prediction function, and parallel computation. SVM is a dichoto-
mous classification method that separates two categories by seeking an optimal decision
boundary at a maximum interval.

The precision and bias vary depending on the different regression models. To assess
the results of the different regression models, the coefficient of determination (R2), root-
mean-square error (RMSE), and bias were calculated in order to evaluate the performance
of the models. The definitions for the calculation of each indicator are as follows:

R2 = 1 − (∑n
i=1(yi − ỹl)

2)/(∑n
i=1(yi − ȳl)

2) (2)

RMSE =
√
(∑n

i=1(yi − ỹl)
2)/n (3)

bias = ∑n
i=1(yi − ỹl)

2/(n − 1) (4)

where n is the number of samples, yi is the ground truth of the ith sample plot, ỹl is the
predicted value for the ith sample plot, and ȳl indicates the mean of the ground truth of the
sample plots.

3. Experiments Results
3.1. Variables Selection Results

Essentially, a simple model should be more stable and transferable than a complex
one. Therefore, variable selection is necessary before employing regression models for
AGB, as the complexity of the regression models depends on the number of input variables.
Potential variables were further selected from Tables 3 and 4 for AGB regression based on
the RF importance ranking and Pearson correlation analysis.

Concerning the outcomes of variable selection, the chosen variables for GF2 data
include PC3, EVI, MSAVI, PC1, and RVI. In the case of LS8 data, the selected variables
encompass DVI, EVI, MNF2, MNF3, and PC3. For ALS data, the selected variables
encompass hcv, tmax, FR, hmean, tmin, C, and hmax. Additionally, the GF2-ALS model incor-
porates hcv, PC3, tmax, hmean, EVI, RVI, and MNF3, while the LS8-ALS model integrates
hcv, tmax, PC2, hmean, FR, EVI, DVI, tmin, and C. The significance rankings and correlations
of the designated satellite image indicators, ALS data, and amalgamated data are illustrated
in Figures A1–A3, respectively, presented in Appendix A.
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3.2. Performance of the Four Regression Methods
3.2.1. AGB Prediction Using Only Image Variables

Following variable selection based on their correlations and significance, a perfor-
mance evaluation of multisource data modeling was conducted. In this paper, the AGB
regressions using only the GF2 variables or the LS8 variables are called the GF2 model
and LS8 model, respectively. The results of each regression model and their associated
statistical performance indicators are shown in Table 5. In the GF2 model depicted in
Table 5, the obtained R2 ranges between 0.54 (boosting) and 0.61 (SVM). For the bias and
RMSE, the model performance with the largest difference between the predicted value and
the ground truth is the boosting model (bias = −4.38 Mg/ha and RMSE = 44.21 Mg/ha),
while the lowest is the SRM (bias = −0.0003 Mg/ha) and SVM (RMSE = 40.72 Mg/ha). The
bold text in Table 5 is the best model result in this data source.

Table 5. AGB modeling performance of the ten-fold cross-validated regression methods.

(n = 68) R2 RMSE (Mg/ha) rRMSE bias (Mg/ha)

GF2 model

SRM 0.57 43.61 29.18% −0.0003
Boosting 0.54 44.21 29.58% −4.38

SVM 0.61 40.72 27.24% −1.50
Bagging 0.59 41.82 27.98% 0.16

LS8 model

SRM 0.44 50.01 33.46% −0.0002
Boosting 0.49 46.97 31.42% −5.81

SVM 0.42 49.88 33.38% −1.19
Bagging 0.52 45.40 30.38% 0.71

ALS model

SRM 0.78 31.85 21.31% 0.00008
Boosting 0.71 35.23 23.57% −5.09

SVM 0.67 37.63 25.18% −2.00
Bagging 0.70 36.04 24.11% 1.01

GF2-ALS model

SRM 0.82 28.85 19.30% 0.0002
Boosting 0.68 37.18 24.88% −4.01

SVM 0.66 38.29 25.62% −4.05
Bagging 0.74 33.69 22.54% −1.42

LS8-ALS model

SRM 0.78 31.85 21.31% 0.00008
Boosting 0.74 33.69 22.54% −6.27

SVM 0.65 39.21 26.23% −2.48
Bagging 0.70 35.93 24.04% 1.22

Figure 4 showcases the cross-validation outcomes pertaining to the AGB predictions
derived from the four models compared to the AGB estimates at the sample plot level.
Additionally, black linear trendlines and R2 have been incorporated into Figure 4 to depict
the trends for both predicted values and measured data points. As the slope approaches
unity and the intercept of the linear trendline diminishes, the determination coefficient
increases, signifying an improved fit. The observations in Figure 4 associated with the SVM
methods manifest a relatively concentrated distribution in closest proximity to the trendline.
Concurrently, Figure 5 elucidates the residual distribution exhibited by the four models
from diverse data sources. Verification of residual randomness can be conducted by means
of residual-versus-fitted-value plots. The presence and magnitude of heteroskedasticity can
be ascertained from these plots. An even distribution of the residuals on both sides of the
x-axis in such plots signifies a limited degree of heteroskedasticity, while a conspicuously
non-uniform distribution indicates a pronounced presence of heteroskedasticity. As can be
inferred from Figure 5, the SVM method exhibits a reduced number in comparison to the
other three methods, along with a more tightly concentrated residual distribution.
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Similarly, the five extracted LS8 variables were applied to the modeling using the
regression method. The results are visually depicted in Figures 4 and 5. Compared with
the GF2 model in Table 5, the rRMSE is higher, exceeding 30%. The proportion of explained
variation decreases, and the best fitting method is bagging, with an R2 of 0.52. The lowest
R2 of all the models is 0.42, resulting from the SVM method. The lowest values of RMSE
are obtained from the bagging (45.40 Mg/ha) and SRM (50.01 Mg/ha) methods. From
Figure 4, the bagging method of the LS8 model exhibits a notably clustered distribution of
observations in close proximity to the trendline compared to other methods. Meanwhile,
the residual distributions for the various methods demonstrate similarity in Figure 5, where
there is an uneven distribution of data on both sides of the x-axis.

3.2.2. AGB Prediction Using Only ALS Variables

The ALS model is a biomass regression model constructed using only ALS data. The
results of all four regression models are listed in Table 5 and in Figures 4 and 5. As can be
seen from Table 5, among the ALS models regressed by the four methods, SRM achieves the
best model performance, with the highest R2 at 0.78 and the lowest RSME of ±31.85 Mg/ha.
The boosting method achieves the highest absolute value (−5.09 Mg/ha) for bias, while
SRM achieves a low of 0.00008 Mg/ha. From Figures 4 and 5, it can be observed that the
SRM approach with the ALS model exhibits exceptional fitting performance and optimal
residual distribution performance. From Figure 4, it is evident that the observation points
of the SRM method are the closest to the trend line. The fitted line has a slope of 1, and the
intercept is minimal. In addition, it is noteworthy that this method tends to underestimate
values when AGB estimates are below 50 Mg/ha, as shown in Figure 4. From Figure 5, it is
evident that only the SVM method exhibits a noticeable imbalance in the distribution of
observation points on both sides of the x-axis. Meanwhile, the SRM method displays the
smallest range of variation along the y-axis.

3.2.3. AGB Prediction Using Multi-Source Data

The GF2-ALS and LS8-ALS models represent the utilization of ALS data in conjunction
with GF2 and LS8 data, respectively. For the models built by these two fusion data sets
as shown in Table 5, the rRMSE does not exceed 25%, except for the LS8-ALS model
using the SVM method. R2 ranges are 0.66 (SVM) to 0.82 (SRM), 0.65 (SVM) to 0.75
(SRM), and the absolute value of bias ranges from 0.0002 (SRM) to −4.05 Mg/ha (SVM),
0.00008 (SRM) to −6.27 Mg/ha (Boosting), the RMSE spans between ±28.85 (SRM) and
±38.29 Mg/ha (SVM), between ±31.85 Mg/ha and ±39.20 Mg/ha (SVM), respectively. For
the fusion data, the SRM achieves the best performance on both fused data. For both
mixed models, the observations of the SRM method are tightly clustered around the trend
line, with the best-fitting trend line. As delineated in Figure 4, when the field-estimated
AGB surpasses 250 Mg/ha, it is noteworthy that all models sourced from diverse data
origins tend to exhibit an AGB underestimation. Both of these fused data models also
show a tendency for underestimation by the SRM method for AGB measurements below
50 Mg/ha. Furthermore, Figure 5 demonstrates the use of the SRM method in the GF2-ALS
model results in a more favorable residual distribution compared to the LS8-ALS model.
Compared to the other three methods, the residual approach of SRM demonstrates a more
even distribution on both sides of the x-axis, with a narrower range of residual values.

3.2.4. Cost and Performance of AGB Modeling

The model performance and costs of the proposed method in this study were compared
with existing numbers from the literature [4,9,26,27], with the results shown in Figure 6 and
Table 6. As can be seen in Table 6, the source of the cost for satellite imagery per hectare
was derived from [28]. The cost per hectare for ALS point clouds represents the current
cost incurred for data acquisition. In Figure 6, the data sources in Table 6 are classified into
satellite image data, ALS data, and multisource data. The five models mentioned in this
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paper are depicted using points in their respective colors, combined with red circles for
emphasis.

Table 6. Comparison of image data source modeling performance and cost.

Source Sensors R2 RMSE (Mg/ha) rRMSE Costs (Dollars/ha) Tree Species

Rana et al. [27]
ALS 0.77 56 0.31 3.50

Mixed forests such as shorea robustaRapidEye 0.37 93 0.52 0.01
Landsat 5 TM 0.33 96.10 0.54 0

Han et al. [26] Gaofen1(GF1) 0.56 19.66 Unknown 0.02 Mix forest such as piceaGF1 + Sentinel1 0.70 16.26 Unknown 0.02

de Almeida et al. [4]
Airborne

hyperspectral
imagery + ALS

0.70 57.70 0.31 3.50 Mixed forest such as palms

Zhang and Shao [9] WorldView3 + ALS 0.69 26.98 0.44 3.84 Unknown
Yang et al. [29] UAV + Sentinel2 0.70 70.03 Unknown 1 Mixed forest such as Coniferous

This paper

LS8 0.44 45.40 0.30 0

Eucalyptus and masson pine
GF2 0.57 40.72 0.27 0.05
ALS 0.78 31.85 0.21 3.50

GF2 + ALS 0.82 28.85 0.19 3.55
LS8 + ALS 0.78 31.85 0.21 3.50

0.3
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(Multi-source data)
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Trendline (Multi-source data)

Trendline (Satelite imagery)

Our metheds

Figure 6. Scatterplot of R2 and cost. Cost results are for the multispectral products available from the
Apollo Mapping archives (Standard Tasking) [28].

4. Discussion
4.1. Data Source Selection for AGB Modeling

Appropriate choice of data sources for AGB modeling is one of the goals of this paper.
In this paper, the performance of ALS data is found to be better for AGB modeling than
that of GF2 and LS8 data, as indicated in Table 5. Although good model performance has
been achieved in this study, problems with ALS data, such as cost and flight conditions,
could affect the further application of ALS in forestry. Satellite images have the advantages
of large coverage and frequent monitoring. The issues worth investigating are whether
satellite imagery can be used as a single data source for the estimation of AGB, and the
impact of resolution improvement on AGB modeling of single data and fused data. We
hypothesize that if the image resolution can be further increased, this will provide richer
spectral details for the model and may significantly improve the results. In this paper,
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GF2 data with 1 m resolution and LS8 data with 30 m spatial resolution were used for
regression modeling. The spatial resolution of satellite imagery plays an important role in
AGB prediction; all of our models that used GF2 as the input achieved better performance
than those using LS8, as shown in Table 5. The experiment results demonstrate that GF2
imagery with 1 m resolution can provide more abundant spatial details than LS8 imagery
with 30 m resolution .

LiDAR data are expensive, while optical imagery are susceptible to saturation phe-
nomena. Therefore, the use of fused data is explored in this paper, with the results shown
in Table 6 and Figure 6. Rana et al. [27] used ALS data, RapidEye imagery and Landsat 5
TM imagery to predict AGB. RapidEye information at 5 m spatial resolution and Landsat 5
(TM) images at 30 m spatial resolution showed little improvement of the regression results,
as shown in Table 6, while the ALS data clearly enhanced AGB regression. I particular, the
R2 value witnessed an improvement of nearly 40%. Han et al. [26] tested combining the
LiDAR data with image data, but found no significant effect over the use of the GF1 image
data alone when including Sentinel 1 data. This may be due to the roughness of the forest
canopy provided by SAR data, which has little effect on AGB prediction. On this basis, our
study confirms the reliability of combining satellite imagery and LiDAR point clouds in
AGB estimation, which is consistent with previous study results [30]. Compared with the
multi-source data modeling results of de Almeida et al. [4] and Han et al. [26], we achieved
better AGB estimation results, as illustrated in Figure 6. Therefore, to further improve the
precision of ALS estimation of AGB, imagery with a high spatial resolution is needed in
order to provide more detailed spatial details.

4.2. Variable Selection for AGB Modeling

Another contribution of this work is the variable selection step using importance
ranking and correlation analysis. Remote sensing variables (spectral information, vegeta-
tion indices, structural information) are used to correlate with AGB biophysical variables.
Variable selection reduces high correlations between two or more predictors and identifies
valuable remote sensing variables.

In previous studies, spectral bands, vegetation index, and texture [5] have been the
main variables derived for use in AGB estimation in optical remote sensing. Height
variables [29] and laser penetration rate [3] are important variables for LiDAR. Based on
our exploration of the importance of different variables for AGB modeling, PC3 and hcv
are important and reliable variables with good generalizability. This is consistent with
previous research [31]. For satellite images, PC2 and PC3 generated by PCA perform best,
while PC1 performs poorly, as shown in the Appendix (see Figure A1). For ALS data, hcv
indicates the degree of dispersion of the data, which is more informative than the numerical
variation of the height. The important variables identified in this paper for the estimation of
AGB are comparable to the variables used in other research, such as height percentiles [30],
height variables [10], and canopy cover [3]. The type and complexity of the forest and the
growth of the trees may lead to differences in the structure and spectral information in
data from different areas. In future research, more types of variables could be used for
estimating AGB; the addition of new variables and groups of multiple variables are topics
worth exploring.

4.3. Improvement of AGB Modeling Performance

Model selection has been explored to find the most appropriate regression methods
for AGB modeling. de Almeida et al. [4] found that for high spectral resolution data,
the choice of regression model has almost no effect. They used six methods, including
linear models with (LMR) and without (LM) regularization, Support Vector Regression
(SVR), Stochastic Gradient Boosting (SGB), RF, and Cubist (CB) to regress the Brazilian
Amazon AGB. Their results were not consistent with previous research findings. They
explain that the reasons for the differences could include the number and type of indicators
selected as potential input data, the type of vegetation studied, the quality of the field,
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and the remote sensing data used to obtain the model. In addition, deep learning (DL)
methods have become very popular in recent years [32], although there are still several
limitations, such as high data requirements, model complexity, and low interpretability.
In this paper, there was no obvious difference between different regression models with
the same data source input, except that the SRM model achieved the best performance
with the highest R2 along with the lowest RMSE and rRMSE among the twelve regres-
sion models with input. However, SRM is more effective only when the ALS variable
is added. In the image data source model, SRM has average performance, as shown in
Table 4 and Figure 4. For the model with LiDAR variables, the regression performance
of the AGB model constructed by SRM is greatly improved, which has not been found
before. SRM adds the ALS variables that are important for AGB modeling and removes
the insignificant variables. The ALS variables are more correlated with AGB; therefore,
further screening of the variables could significantly improve the performance of the
model. Future studies should additionally consider modeling errors and the number of
increasing plots.

4.4. Cost vs. Performance

Cost is a critical factor in practical applications, as solutions that balance accuracy
and minimum cost are often preferred. While airborne LiDAR provides high accuracy,
its ability to improve the accuracy of images at different resolutions in the same scene
remains unknown. Therefore, the key issue is that estimating different costs affects the
accuracy of biomass estimation. All data sources have been categorized into satellite
imagery, airborne LiDAR, and fused data in Figure 6. A clear and intuitive representation
of their respective performance and cost is shown in Figure 6 and Table 6. In general, for
satellite imagery, higher data quality typically corresponds to an increase in the cost of
the image. From Figure 6, it can be observed that as data costs gradually increase, the
performance of models improves as well. The optimal results from free remote sensing
imagery are obtained through the LS8 model employed in this study, whereas the optimal
model performance for a fee is achieved using the GF2 model. Nevertheless, transitioning
from LS8 data to GF1 data leads to a cost increase of USD 0.02 per hectare, accompanied
by an improvement in R2 of 0.12. Shifting from the use of GF1 imagery to GF2 imagery
results in a cost increase of USD 0.03 per hectare, with an R2 improvement of 0.01. For
fused data, although our models accomplished the best model performance, there is an
issue to consider. The cost of fused data using SAR data and GF1 imagery is reduced by
USD 3.53 per hectare compared to the GF2-ALS model, with an R2 decrease of 0.12, though
it still achieves an R2 of 0.7. Furthermore, the free Sentinel-1 imagery is more cost effective
compared to ALS data. The process of choosing the most appropriate data source guided
by a combination of model performance and cost considerations can serve as a valuable
reference for fellow scholars embarking on future research. It is imperative to emphasize
that model performance is intricately linked to variables such as tree species and planting
density. Consequently, Figure 6 serves as an initial visual comparative reference, with
further detailed deliberation remaining essential.

4.5. Potential of Large Scale AGB Modeling

The current carbon sequestration potential of forests and their resilience against
geographical and climatic changes are often assessed on the basis of AGB levels, which
reflect forest productivity and resilience. In order to explore larger-scale forest AGB
estimation, additional factors need to be further explored. Future work should further
explore tree species diversity and heterogeneous forests for AGB prediction based on
current experiments. In addition, taking all factors into consideration, the type of dataset
closely determines the final performance of AGB estimation. Model precision is not the
only factor in data source selection; the update frequency, range cover, and cost of the
data are important as well [33]. Satellite imagery has a fixed revisit cycle, while low- and
medium-resolution satellite imagery such as Landsat series images can be obtained for free.
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The large-scale collection of ALS depends on the planning of data updated by the local
forestry or surveying and mapping department. Although in this paper the model built
using satellite imagery alone was less accurate compared to the best model built using ALS
data, satellite imagery is widely available and inexpensive, and may even be available free
of charge. With technological innovations, the cost of airborne point cloud data acquisition
has recently been decreasing. ALS data production for ALTM 1210 acquisition was about
USD 1100 per km2 in 2004 [34] and about USD 500 per km2 in 2010 [35]. Nevertheless,
ALS data costs remain high compared to satellite imagery. Regarding the selection of
image data sources for large-scale biomass modeling, further considerations can be made
based on the results in Table 6. Our study is the first to use a combination of medium- and
high-resolution satellite imagery and ALS data to investigate the cost and performance
of multi-source data for AGB modeling. This study demonstrates the potential of using
low-cost satellite data to provide a rough estimation of AGB nationally, and as such can
guide future forest management decisions.

5. Conclusions

In this study, medium-resolution and high-resolution satellite imagery were combined
with ALS data to estimate model performance and evaluate costs. First, TLS and ULS
data were used to acquire individual tree parameters and sample AGB plots, replacing
the traditional ground-measured data. The combination of ALS point clouds and satellite
images was then used to obtain structure and spectral information of the forested areas.
Satellite imagery, ALS, and fused features were extracted and filtered for AGB modeling
using four regression methods. The most important part of this paper is the exploration
of the performance of the different data sources, especially the performance of AGB esti-
mation combined with medium-to-high resolution imagery and ALS data. the ALS model
performed the best, followed by the GF2 model, while the LS8 model exhibited poorer
performance. Among the different methods, the GF2-ALS model developed using SRM per-
formed the best, with an R2 of 0.82. The cost needs to be considered during data selection
as well; thus, remote sensing data with different costs were used to explore the potential
of AGB estimation, including free and low-cost satellite data as well as more expensive
airborne point cloud data. Using imagery alone as the data source, the GF2 model provided
an increase in terms of R2 of 0.1 per square kilometer compared to the LS8 model, at an
additional cost of 1 USD. When using fused data, the GF2-ALS data model R2 increased
by 0.2, while the cost increased by USD 351 per square kilometer. Combining imagery
with high spatial resolution and ALS data significantly improved the performance of the
AGB model. Overall, it is necessary to comprehensively consider both cost and model
performance for large-scale estimation of AGB.
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Figure A1. Satellite imagery variables selection. Importance ranking of the variables in (a) the GF2
model and (c) the LS8 model. Correlation analysis for (b) the GF2 model and (d) the LS8 model. Dark
green and red indicate highly negative and positive correlations, respectively.
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Figure A2. ALS variables selection. (a) Importance ranking of the variables in the ALS model.
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correlations, respectively.
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Figure A3. Fused data variables selection. (c) Importance ranking of variables in (a) the GF2-ALS
model and (c) the LS8-ALS model. Correlation analysis for (b) the GF2-ALS model and (d) the
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