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Abstract: Pre-fire environmental conditions play a critical role in wildfire severity. This study
investigated the impact of pre-fire forest conditions on burn severity as a result of the 2020 Bighorn Fire
in the Santa Catalina Mountains in Arizona. Using a stepwise regression model and remotely sensed
data from Landsat 8 and LiDAR, we analyzed the effects of structural and functional vegetation traits
and environmental factors on burn severity. This analysis revealed that the difference normalized
burn ratio (dNBR) was a more reliable indicator of burn severity compared to the relative dNBR
(RdNBR). Stepwise regression identified pre-fire normalized difference vegetation index (NDVI),
canopy cover, and tree density as significant variables across all land cover types that explained burn
severity, suggesting that denser areas with higher vegetation greenness experienced more severe
burns. Interestingly, residuals between the actual and estimated dNBR were lower in herbaceous
zones compared to denser forested areas at similar elevations, suggesting potentially more predictable
burn severity in open areas. Spatial analysis using Geary’s C statistics further revealed a strong
negative autocorrelation: areas with high burn severity tended to be clustered, with lower severity
areas interspersed. Overall, this study demonstrates the potential of readily available remote sensing
data to predict potential burn severity values before a fire event, providing valuable information for
forest managers to develop strategies for mitigating future wildfire damage.

Keywords: wildfire; burn severity; pre-fire conditions; dNBR; Sky Islands; Arizona; Landsat

1. Introduction

Wildfires are an essential forest process, but contemporary fires pose significant chal-
lenges to forests, resulting in substantial alterations to their structure and function [1–3].
Fires can contribute to soil erosion, reduced capacity for carbon storage, and changes
in ecosystem processes and forest health [4,5]. The Southwestern U.S. has witnessed a
substantial increase in wildfire occurrence, generally attributed to extreme droughts and
the accumulation of uncharacteristically abundant fuels [6]. Additionally, the legacy of
past fires (or their suppression) can impact the severity of subsequent fires by influencing
vegetation types and the time available for fuels to regenerate [7].

Burn severity, defined as the extent of environmental change caused by fire [8], carries
multiple ecological implications. Severity is the direct consequence of fire behavior, exhibits
a direct correlation with carbon emissions [9], and has significant impacts on vegetation
and soils as well as the potential to profoundly influence the trajectory of ecosystem
responses [10]. Given the extensive damage caused by uncharacteristically high-severity
contemporary fires, accurately revealing the relationship between pre-fire conditions and
burn severity could provide a valuable method to anticipate wildfire impacts [11] that
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is crucial for prioritizing fuel management efforts [12], refining the quantification of fire-
carbon dynamics [13], and forecasting ecosystem impacts [10]. The magnitude of burn
severity is co-influenced by environmental factors that regulate fire behavior including
wind, relative humidity, fuel loads, forest density, live and dead fuel moisture content, and
terrain characteristics, making it challenging to attribute specific variables to variations in
burn severity [14].

Prior studies have demonstrated that burn severity hinges strongly on the dominant
vegetation cover types and forest structure because these factors are central to fire be-
havior [15,16]. Research focusing on the spatial variability of burn severity commonly
represents vegetation and fuels primarily through digital maps of vegetation types, land
cover, and terrain factors [17] including slope, aspect, and the eastness and northness of the
slope. In areas with rugged terrain, these maps are sometimes supplemented with a limited
set of stand structural variables measured in the field [12]. However, this is frequently
accomplished using plot data, which only sample a small fraction of the landscape. The
increasing availability of light detection and ranging (LiDAR) data presents an opportunity
to obtain additional insights into the horizontal and vertical structure of pre-fire vegetation,
which can significantly enhance our understanding of how vegetation and fuels contribute
to fire severity [18].

The influence of topography on fire severity is intricate and variable, often yield-
ing conflicting findings. These intricacies arise from the complex interactions between
topography, fuels, and fire behavior [19,20]. Some research has indicated that extreme
fire weather conditions can override or alter the relationships between topography and
fire severity [21]. Assessing the robustness of these findings can be challenging, as only a
limited number of studies have incorporated fire progression data to evaluate the alignment
between topographical features and the advancing fire front [19].

To establish the relationship between pre-fire forest attributes and burn severity, it
is essential to explore their connections to the actual expressed severity. Finer spatial
resolution forest structure datasets, obtained through CubeSats, UAVs, or LiDAR, are
becoming increasingly available as well as the traditional coarser multispectral remotely
sensed datasets [22]. Coupled with machine learning classification methods and various
resolution datasets, forest structural classification can help explain the variations in burn
severity by focusing on pre-fire structural diversity [23].

The primary aim of this research was to investigate how pre-fire forest conditions
impacted the burn severity in a study landscape and to identify which pre-fire variables
accounted for variations in fire severity across the landscape. To achieve this objective,
we identified a suite of pre-fire structural and functional traits using aerial LiDAR and
Landsat 8 data. These traits were used as predictor variables to model the burn severity
of the 2020 Bighorn Fire in the Santa Catalina Mountains (SCMs), one of the Sky Island
mountain ranges in southern Arizona, USA. Understanding the relationship between these
variables and severity, by modifying fire behavior, is crucial for managing and mitigating
the impact of wildfires on our forests.

2. Study Area and Methods
2.1. Study Area and Fire Regime

For centuries up until the late-19th century, the southwest region of the United States
experienced a fire regime very different from the present day. At that time, fires were
frequent, occurring every 5–20 years, and typically of low intensity. These fires were
predominantly ignited by lightning strikes [24] or by Native American practices [25].
Because fires were frequent, often burning for weeks under moderate conditions, fuel
accumulation was limited, and consequently, the fire severity was generally moderate [26].
However, toward the end of the 19th century, changes in land management such as livestock
grazing and fire suppression policies brought about a significant transformation in the
fire regime [27,28]. Urban expansion and agricultural activities further altered landscapes,
disrupting natural fire cycles and fuel distribution [29]. During the mid-20th century,
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aggressive fire suppression efforts became commonplace, with the aim of extinguishing
all wildfires, regardless of their natural role or size [30]. The combined impact of fire
suppression, overgrazing, and changes in land use resulted in a reduced area being burned,
leading to the accumulation of fuel and the uniformity of landscapes. This led to a decrease
in vegetation diversity and an increase in the prevalence of fire-prone species like Bromus
tectorum (cheatgrass) and other non-native grasses, contributing to more widespread and
devastating fires [31].

In 2020, the southwest region of the United States, comprising Arizona and New
Mexico, experienced a substantial wildfire season that led to the burning of 432,355 ha and
the average area burned annually in the two states over the preceding ten-year period [32].
Wildfires in Arizona covered a significantly larger area (376,164 ha) in 2020 compared to
its ten-year annual average of 123,681 ha. New Mexico recorded a lower area (56,191 ha)
burned by wildfires in 2020 compared to its ten-year average of 121,313 ha.

At the onset of 2020, southern Arizona including the SCM experienced a severe
drought, reflecting below-average precipitation levels in the region during the preceding
winter and spring seasons as well as the effect of rising temperatures. In June 2020, the
Palmer drought severity index (PDSI) registered at −2.2 near Mt. Lemmon, indicative of
severe drought conditions. Conversely, June 2019 exhibited a PDSI value of −0.88, reflecting
a state of neutrality regarding drought conditions [33]. Preceding the occurrence of the
fire, the mean temperature exceeded the typical average by more than 5.6 ◦C, accompanied
by gusty winds surpassing 40 miles per hour colliding with the mountain ridges [34].
Insufficient rainfall in the second half of 2019 initially resulted in a reduction in the growth
of fine fuels and below-average levels of warm-season fine fuel carryover, along with low
soil moisture. However, above-average winter precipitation in Tucson, Arizona during the
2019–2020 season (11 mm monthly average, exceeding the historical average by 9 mm) led
to increased fine fuel growth [35].

The study site (Figure 1) is located in the SCMs, one of the Arizona Sky Islands (Lat:
32.4◦N, Long: −110.8◦E) [36]. The SCMs exhibit a rugged topography characterized by
steep slopes and deep canyons [37]. The highest point in the Catalinas is Mt. Lemmon,
which sits at an elevation of 2791 m above sea level; the elevation change from the base
is 1942 m. The mountains have a semi-arid climate, with an average annual precipitation
varying from 300 mm at the mouth of Sabino Canyon to 750 mm on Mt. Lemmon [38].
Precipitation is generally bi-seasonal, with two modes in winter (December to March) and
summer (June to September) [39]. Winter precipitation typically comes from Pacific storms,
while summer precipitation comes from monsoonal moisture from the Gulf of Mexico. The
vegetation in this region showcases remarkable diversity, supporting mixed coniferous
forests on north facing slopes at high elevations comprised of mixed stands of Douglas fir
(Pseudotsuga menziesii), Southwestern white pine (Pinus strobiformis), and white fir (Abies
concolor). On many south facing slopes at higher elevations, mixed-conifer forests including
stands of Ponderosa pine (Pinus ponderosa) form a landscape mosaic. The deep canyons
at higher elevations, particularly those with flowing water, provide ideal conditions for
thriving hardwood forests consisting of Bigtooth maple (Acer grandidentatum), Aspen
(Populus tremuloides), New Mexico locust (Robinia neomexicana), Arizona walnut (Juglans
major), Gambel oak (Quercus gambelii), and Velvet ash (Fraxinus velutina) [40]. A species-rich
zone of Madrean oaks dominates middle elevations, and lower elevations are covered
mostly by desert scrub vegetation dotted with saguaros (Carnegiea gigantea) [41].

The Catalina Mountains have experienced multiple landscape fires in the past
20 years (Figure 1). In 2002, the Bullock Fire burned approximately 11,722 ha, affect-
ing the eastern half of the Catalinas. The following year, the Aspen Fire perimeter included
around 28,081 ha, primarily targeting the western half. These two events burned extensive
portions of the mountain range with varying severity [42]. Much of the vegetation on the
mountain persisted through these fires, where fire severity was low to moderate; in areas
that experienced higher severity, vegetation has recovered in some areas by seedlings or the
root sprouts of some species such as aspens, oaks, and shrubs, which are now regenerating



Remote Sens. 2024, 16, 1803 4 of 20

in the previously mixed-conifer forests [43,44]. In areas of high tree mortality, conifers
(which rely on seed regeneration) may recover slowly, or the vegetation may convert to an
alternative state [45]. In 2009, the Guthrie Fire perimeter covered 1966 ha, and in 2017, the
Burro Fire burned through 11,059 ha, re-burning a section of the Bullock Fire’s footprint and
most of the Guthrie Fire area. The most recent event is the 2020 Bighorn Fire, which burned
an area of 48,157 ha, encompassing the majority of mid- and upper-elevation forest areas
over the period 5 June–23 July 2020 (https://en.wikipedia.org/wiki/Bighorn_Fire) [32].
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Figure 1. Boundaries of significant fires since 2002 in the Santa Catalina Mountains north of Tucson,
AZ, USA. The area of the 2020 Bighorn fire (red polygon) encompassed most areas that had already
experienced burning within the last two decades. The study area (black outline) is located on the
south side of the mountain.

The analysis area for this research was determined by the availability of geographically
concurrent aerial LiDAR before and after the 2020 Bighorn Fire. It primarily covered the
southern portion of the mountains and included land burned in the Bighorn, Aspen,
Bullock, Guthrie, and Burro Fires. The total area of study was approximately 22,000 ha,
which was covered by the pre-fire LiDAR flight in 2019.

The Bighorn Fire reburned nearly two-thirds of the 2017 Burro Fire [35]. While the
Burro Fire was the only fire to have burned a portion of the area affected by the Bighorn
Fire in the previous ten fire seasons, it is probable that areas that burned in other events
more than 10 years ago were still in a state of post-fire recovery. Therefore, it is likely that
the condition of the areas affected by the Bighorn Fire had been significantly impacted by

https://en.wikipedia.org/wiki/Bighorn_Fire
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previous fires, affecting the vegetation composition and fuel loads, and thus the current
wildfire severity [46].

2.2. Vegetation Structural and Topographical Variables Derived from Aerial LiDAR

Figure 2 shows the workflow and data sources, processing, and analysis steps that
were performed to conduct this research. The study utilized a pre-fire LiDAR dataset
obtained from the USGS 3DEP, which meets the quality standard of level 2 (0.7 nominal
pulse spacing, NPS) and has an average point density of 2 points per square meter. The lidR
package in R was employed to extract individual trees from the point cloud [47]. Using the
package, we executed a sequence of processing steps including ground classification [48],
digital terrain and surface model (DEM) generation [49], height normalization, canopy
height model (CHM) generation [50], and individual tree segmentation [51]. Elevation,
slope, aspect, eastness and northness were derived from the LiDAR data, as shown in the
below (Equations (1)–(4)):

Slope (degrees) = ATAN

(√(
dz/dx)2 +

(
dz/dy)2

)
× 57.29578 (1)

Aspect = (57.29578 − ATAN2([dz / dy]− [dz / dx] )) (2)

Eastness = Sin(Aspect) (3)

Northness = Cos(Aspect) (4)
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Figure 2. Structural and functional traits of the forest and topographic variables were extracted from
multiple data sources (marked with blue circles) including aerial LiDAR point cloud and multispectral
Landsat 8 satellite spectral surface reflectance data.

DEM data allow for the direct calculation of slope and aspect by analyzing the infinites-
imal changes in elevation (dz) along the x and y cell directions ( dx, dy) within the dataset.
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Eastness is determined by computing the sine of the aspect, revealing the east-to-west
orientation of the slope, while northness is derived from the cosine of the aspect, indicating
the north-to-south orientation of the slope [52].

CHM generation in LiDAR deploys triangulation-based algorithms that differ from
point-to-raster algorithms. While point-to-raster algorithms are straightforward and enable
user-defined resolution, they may produce empty pixels when the grid resolution is too
fine for the available point density [47]. In contrast, triangulation-based algorithms utilize
a Delaunay triangulation to interpolate first returns, which is more intricate but eliminates
empty pixels irrespective of the input data resolution.

Tree density, tree height, canopy cover, and canopy diversity (standard deviation of
canopy height) are estimated from a 1-m CHM, which is adopted by the individual tree
segmentation (ITS) method [53]. To calculate tree density, tree top points are identified
directly from the straightforward method from the CHM and canopy coverage [54]. These
methods operate on the premise that the apex of a tree is the tallest point within its crown,
and the crown’s periphery is comparatively lower [55]. A local maximum (LM) filter,
typically with a designated size sliding window, is employed in a CHM, derived from a
point cloud to pinpoint LMs that indicate treetops [56]. Despite the perceived challenge of
CHM-based techniques in identifying overshadowed trees, they can serve as initial points
for algorithms that outline tree crowns in a CHM or point cloud space [57]. Information
for each treetop was recognized as a point feature and transformed into density features
once placed on a grid with a 30 m × 30 m fishnet pattern. This was conducted to facilitate
a comparison with the burn severity derived from the Landsat 8 data. Each tree height
estimate can be used to indicate canopy diversity by calculating the standard deviation of
each tree height in the grid [58].

2.3. Spectral Indices to Derive Burn Severity and Vegetation Functional Variables Using
Satellite Imagery

Satellite-derived burn severity data are typically quantified by spectral changes be-
tween the pre-and post-fire satellite images. We acquired Landsat 8 satellite images of
the study area for 14 July 2019 and 1 August 2020, which represent the pre- and post-fire
conditions, respectively. There is an active debate regarding which of the two main equa-
tions, the delta normalized burn ratio (dNBR) and its relativized form (RdNBR), or other
newer formulations (RBR) is most suitable for quantifying burn severity [59]. We used
fire severity indices generated from multi-date LANDSAT data, published by the Burned
Area Emergency Response (BAER) program at the Geospatial Technology and Applications
Center in the USDA Forest Service. The program released normalized burn ratio (NBR) and
dNBR burn severity datasets based on Landsat 8 imagery. The RdNBR index is available
through RAVG (Rapid Assessment of Vegetation Condition after Wildfire), which was
published in Aug 2021, one year after fire containment [60–62].

Burn ratio calculations are based on the NBR index. The NBR uses near-infrared
(ρNIR) and shortwave infrared (ρSWIR) spectral reflectance data to highlight the difference
between healthy vegetation (which reflects NIR radiation strongly and absorbs SWIR
radiation) and burned areas (which reflect both types of types of radiation more evenly) [62].
The NBR is calculated using the following formula:

NBR = (ρNIR − ρSWIR) / (ρNIR + ρSWIR)

The NBR values range from −1 to 1. A value of −1 indicates the absence of vegetation
such as in areas severely affected by fire. On the other hand, a value of 1 indicates areas
with dense vegetation with no reduction in reflectance. The differenced NBR (dNBR),
which is adjusted with the amount of pre-fire vegetation, is calculated using the following
formula and has a broader range (−2 to +2):

dNBR = (PreNBR − PostNBR)× 1000
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Sites that have experienced severe burning are represented by high positive values
within this range (Table 1). It would be biased in areas with low pre-fire biomass, where
even a high-severity fire might result in a low dNBR simply because there was not much
vegetation to burn in the first place. In this study area, the area already burned by previous
fire would be biased when only using dNBR. To address this issue, the relativized differ-
enced NBR (RdNBR) normalizes the dNBR by the square root of the pre-fire NBR. This
normalization reduces the bias in the dNBR, making the RdNBR a more accurate measure
of burn severity in areas with low pre-fire biomass [59]. The relative dNBR is computed by
applying an offset and a scale factor to the dNBR [62]:

RdNBR = dNBR/
√

|(PreNBR/1000 |)

Table 1. Description of burn severity based on the magnitude of landscape changes [8].

Burn Severity dNBR Range (Scaled by 103) Ecological Description

Unchanged −100 to +99
Indicates that the area one year after the fire was
indistinguishable from pre-fire conditions. This

may indicate that the area did not burn.

Low +100 to +269
Areas of surface fire with little change in cover

and little mortality of the structurally
dominant vegetation.

Moderate −270 to +659 A mixture of effects on the structurally
dominant vegetation.

High +660 to +1300 Areas of high to complete mortality of the
dominant vegetation.

The RdNBR is a measure of the change in burn severity relative to the amount of
vegetation that was present before the fire. This generally provides a more representative
measure of the actual impact of the fire on the landscape [61].

To understand the functional traits of the mountain ecosystem, we calculated the pre-
fire normalized difference vegetation index (NDVI) and normalized difference moisture
index (NDMI) using red, NIR, and SWIR reflectance values. These vegetation indices are
commonly used to characterize plant health, biomass, and water content [63]. These indices
quantify the density and greenness of vegetation based on the difference in reflectance
between the near-infrared (NIR) and red bands of the electromagnetic spectrum. It has
been suggested that shortwave infrared is well-suited for the remote sensing of the canopy
water content [64]. Consequently, it might also reflect the pre-fire canopy conditions [65].

By analyzing the NDVI and NDMI values of an area before a fire, we can understand
the baseline vegetation conditions when comparing them with structural traits from a
LiDAR dataset and quantify how these vegetation and structural variables interact with
each other to affect the burn severity. The indices were derived from Landsat 8 satellite
imagery from the pre-fire scene in July 2019, prior to the 2020 Bighorn Fire, and were
calculated using the following formula:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

NDWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

The highest NDVI of 2019, a year prior to the fire, was determined by comparing the
mean NDVI values over the year using Landsat 8 images of the boundary of the burned
area. This analysis was performed through Google Earth Engine. The maximum index
was included to represent the fuel loads and vegetation conditions before the fire. As a
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result, the Landsat 8 image from 2 October 2019, displays the peak mean NDVI value for
the region. All spectral indices used in the analysis are shown in Figure 2.

2.4. Pre-Fire Land Cover Classification

Burn severity is significantly influenced by pre-fire environmental conditions, with a
particular emphasis on land cover. As illustrated in Figure 1, a substantial portion of the
study area had experienced multiple previous fires, leading to varying rates of recovery
across different locations. Consequently, we used thematic land cover classification results
to represent the pre-fire conditions of the forest.

To conduct thematic imagery classification and estimate basic land cover categories
throughout the entire SCMs over a pre-fire time series, we employed a combination of
passive and active remote sensing data sources (Figure 2). These sources included Planet
Scope satellite images (4-band, 3-m resolution) and the USGS 3DEP LiDAR canopy height
model. The Planet Scope satellite imagery was chosen for its frequent temporal coverage
before as well as its relatively high spatial resolution of 3 m, surpassing that of Landsat 8.

We utilized pre-fire aerial LiDAR data to generate canopy height models for use as
input in our classification process. Our approach involved employing these remote sensing
data sources in a supervised thematic classification task, wherein individual pixels were
categorized as belonging to either a vegetation or abiotic feature type. To accomplish this,
we utilized the C5.0 decision tree classifier algorithm, implemented within RStudio, to
assign pixels into one of four distinct classes (Table 2).

Table 2. Thematic classes for vegetation cover classification.

Thematic Classes Feature Properties

Alive Tree/Shrub Green vegetation spectral signature and
have heights associated with it (>1 m height).

Bare Ground/Rock/
Sparse Vegetation

No green vegetation spectral signature and do have low
canopy heights (<1 m height).

Dead Tree/Shrub No green vegetation spectral signature, but do have
canopy heights (>1 m height).

Herbaceous Green vegetation spectral signature but have low height
(<1 m). This includes green grasses, forbs, and ferns.

Decision trees represent a class of supervised learning algorithms employed exten-
sively for the purposes of both classification and regression [66]. The C5.0 algorithm
employs an iterative, top-down, and recursive approach in the construction of decision
trees [67]. This method initiates the process by designating the entire dataset as the root
node of the tree and subsequently divides the data into subsets based on the attributes
or features, seeking to optimize the maximization of information gain or minimization of
impurity as its guiding principle. In the context of our study, this functionality of C5.0 was
harnessed to effectuate the classification of distinct land cover classes with the overarching
goal of maximizing the information gain across these varying categories.

Given the acknowledged risk of overfitting stemming from an imbalanced distribution
of samples [68], we adopted a training-validation sample ratio of 75% to 25% for each class.
Additionally, we employed 58 reference points distributed across the study area to assess
the overall accuracy of the final classification outcome. The land cover data were a crucial
factor in quantifying the regression results, enabling us to discern variations in these results
based on the attributes of the land cover classification outcomes.

2.5. Correlation Analysis and Stepwise Regression Using Mallow’s C(p)

We employed Pearson correlation analysis to investigate the interrelations among
various environmental factors (Figure 2). We used hierarchical clustering based on cor-
relation coefficients among these variables based on the coefficient of correlation among
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the environmental variables. This analytical approach facilitated the discernment of linear
relationships among paired variables. Moreover, it assisted in selecting the burn severity
index (be it RdNBR or dNBR) that most accurately encapsulated the dominant trends and
relationships within the dataset.

We used stepwise regression as a statistical method to select a subset of relevant
predictor variables from a larger set of variables in a linear regression model. The objective
was to identify a subset of predictors that would optimally explain the variation in the
response variable while maintaining model simplicity [69]. The leaps package in R provided
tools to perform stepwise regression with different selection criteria such as the Akaike
information criterion (AIC) or Bayesian information criterion (BIC) [70]. We used this
routine to perform stepwise regression, exhaustively exploring all possible combinations
of predictor variables to identify the best subset based on the selected criterion (AIC or
BIC). The best subset was the one that provided the best trade-off between model fit and
complexity. We evaluated the best combination of regression model using Mallows’ Cp,
also known as “Mallow’s C(p)” statistic [71,72], which measures the predictive accuracy
used in the context of linear regression and model selection. It is used as part of the process
for selecting the best subset of predictor variables in stepwise regression. The purpose of
Mallows’ Cp is to assess the goodness-of-fit of a model while considering its complexity. It
is particularly useful when comparing different subsets of predictor variables in stepwise
regression, where subsets with different numbers of predictors are evaluated.

The formula for Mallows’ Cp statistic is as follows:

Cp =

(
SSEp

σ2

)
− (n − 2p)

where:

SEEp is the sum of squared errors (residual sum of squares) for the model with p
predictor variables;
σ2 is the estimated error variance for the full model (model with all predictor variables);
n is the number of observations in the data;
p is the number of predictor variables in the model.

Mallow’s Cp value is contingent upon the variance between the anticipated error of a
model with p predictors and the error variance of the complete model. A lower Mallows’
Cp value signifies an optimal balance between the model’s fit and complexity. When the Cp
value is proximate to, or slightly exceeds, the number of predictors (p), it indicates a model
that strikes a balance between complexity and simplicity. In our research, we examined
many environmental variable combinations to identify the most suitable regression model
that could account for variation in fire severity using this criterion.

2.6. Analyzing Residual Values with Geary’s C

We used the regression model results to compute the residual values for dNBR, which
represent the difference between the estimated burn severity value obtained from the
stepwise regression model and the actual burn severity value derived from the Landsat
satellite data (Figure 2). These residual values exhibit natural autocorrelation, as described
by Legendre [73], due to the inherent spatial autocorrelation in ecological data. Spatial au-
tocorrelation in burn severity arises because species at one location are strongly influenced
by both biotic and abiotic factors, which tend to be spatially coherent over a landscape area.

Since wildfires cannot be replicated, it is crucial to maximize the number of data
points (N) and implement blocking within burn severity categories to ensure that our
statistical analysis yields valuable insights without being affected by pseudoreplication or
spatial autocorrelation. This challenge is further complicated by landscape heterogeneity,
which varies depending on the scale of analysis [74]. Therefore, our approach in this study
involved analyzing all residuals to identify potential autocorrelation patterns, rather than
relying on small plots that may not adequately capture such autocorrelation.
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Global Moran’s I and Geary’s C are spatial autocorrelation coefficients used to assess
the degree of spatial dependency among observations in geographical space [75]. Global
Moran’s I quantifies the overall spatial autocorrelation within a dataset, indicating whether
adjacent observations tend to exhibit similar (positive autocorrelation) or dissimilar (neg-
ative autocorrelation) values [76]. While both metrics evaluate spatial autocorrelation,
they exhibit differences in sensitivity and focus. Moran’s I is generally more suitable for
capturing global spatial trends, while Geary’s C tends to be more responsive to local spatial
patterns and variations because it utilizes the sum of squared distances, in contrast to
Moran’s I, which relies on standardized spatial covariance [77]. Geary’s C, due to its use
of squared distances, is less influenced by linear associations and may detect autocorrela-
tion that Moran’s I might underweight [77]. These two coefficients offer complementary
insights into the underlying spatial structures and dependencies inherent in geographical
data. In this study, we employed Geary’s C to quantify the spatial pattern of residual
values in relation to the final coefficient of determination obtained from the stepwise
regression analysis.

3. Results
3.1. Correlation between Environmental Variables and Burn Severity Indices

The relationship between RdNBR and dNBR from Landsat 8 images in 2020 was
generally linear (Figure 3), with some outliers exceeding index values of 2000. Positive
dNBR values signified a rise in near-infrared radiation reflectance post-fire compared to its
pre-fire state. For both dNBR and RdNBR, most areas exhibited positive values.
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Figure 3. dNBR and RdNBR for the Bighorn Fire for the Santa Catalina Mountains (2020).
The values of dNBR and RdNBR were multiplied by 1000 for visualization purposes. A total of
138,312 points were extracted from a 30-m grid derived from Landsat 8 images. Negative values
indicate regrowth following the fire, while positive values indicate a higher degree of burn severity.

We found a robust correlation (r = 0.83) between the two burn severity indices, RdNBR
and dNBR. This implies that employing either index for regression analysis might produce
analogous outcomes. Vegetation indices manifest higher correlation coefficients, in contrast
to the lower coefficients among terrain attributes such as eastness or northness (Figure 4).
Notably, elevation emerged as a pivotal variable correlating with alterations in the vegeta-
tion indices (r = 0.85 with NDVI and r = 0.78 with NDMI). This may be attributed to the
properties of the study locale, often referred to as a “Sky Island”, which possesses clines in
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abundance of vegetation and fuel along the elevation gradient [36,78]. In contrast, when
comparing the burn severities with all other environmental variables, dNBR consistently
exhibited higher correlation coefficients compared to the RdNBR across nearly all variables.
Thus, dNBR appears to better represent the entire set of variables.
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Figure 4. Correlation of all structural and functional variables. Correlations among the topographic
and pre-fire vegetation explanatory variables and the two burn severity indices (RdNBR and dNBR),
where the dNBR represents a higher correlation coefficient overall.

3.2. Stepwise Regression Analysis Using Land Cover Classification Results

The transitional zone (Figure 5), which lies between elevations of 1500 to 1800 m and
is characterized by yellow and light blue colors, was previously affected by the Aspen Fire
in 2003. The vegetation of this area is a mix of desert, woodland, and montane plants, many
of which recovered during the post-fire era after the Aspen Fire. However, the northeast
side of the mountain, which is highlighted by the red and orange colors in Figure 5, was
previously damaged in 2002 by the Bullock Fire and showed more difference compared
to the mid-elevation transition area. This area is mostly classified as a mixed-conifer and
subalpine forest range, covered by tall trees.
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Figure 5. Vegetation classification map, classified by Planet Scope and USGS LiDAR using
classification and regression tree (CART), prior to the Bighorn Fire (overall accuracy 0.88). This
indicates a variety of vegetation types across the study area. Lower elevations are characterized by
sparse vegetation, whereas as the elevation increases, a richer diversity of vegetation species can
be observed.

Considering the heterogeneous vegetation coverage within the study area, we evalu-
ated areas with diminished residual values in a regression model. To gauge the sensitivity
of dNBR to various environmental factors, we developed a stepwise regression model with
dNBR values as the dependent variable and 13 other environmental factors as independent
variables to elucidate disparities in the residual values amongst the groups.

The results show that different types of land cover contained different combinations
of important variables in the stepwise regression model (Table 3).

Vegetation-associated indices and variables including the NDVI prior to the fire,
canopy cover, tree density, and the standard deviation of tree height were significantly
associated with burn severity across all land cover types. However, variables such as the
NDMI and the maximum NDVI (NDVI_Max) did not exhibit a significant relationship
with burn severity within areas covered by healthy vegetation. In unclassified land cover
areas, aspect was incorporated within the amalgamation of variables within the stepwise
regression model. Because most of the study area has a south-facing slope, the variable
northness was not significantly correlated with burn severity of the Bighorn Fire across any
classifications. Given the considerable discrepancy in sample sizes amongst the herbaceous
(n = 4249), ground (n = 68,754), and alive tree (n = 65,611) areas, a direct comparison was
not feasible.



Remote Sens. 2024, 16, 1803 13 of 20

Table 3. Stepwise regression model result based on land cover classification. The significance of
variables depends on differences in cover types; not all variables are always significant. (* indicates
significance, p < 0.05).

Land Cover Alive
Tree/Shrub

Ground/Rock/Sparse
Vegetation Herbaceous AllL

and Cover

Slope * *

Aspect *

NDVI * * * *

Canopy Cover * * * *

NDMI * * *

Northness

Eastness * *

NDVI_Max * * *

Elevation * * *

Tree Density * * * *

Standard
Deviation of

Canopy Height
* * *

Tree Height * * *

R2 0.30 0.28 0.29 0.36

Correlation analysis indicates that NDVI exhibited the strongest correlation with
changes in dNBR. Additional comparisons emerged when contrasting the outcomes of
the regression model solely utilizing NDVI with those of the stepwise model. A simple
linear regression analysis encompassing all land cover types using only NDVI as the
predictor variable produced a lower coefficient of determination (r2) compared to the
coefficient derived from the stepwise model. Specifically, the coefficient obtained from the
model employing solely NDVI was 0.33, compared to 0.16 for herbaceous cover, 0.26 for
ground, and 0.25 for the live vegetation area. In general, these coefficients were marginally
low; however, we noted more pronounced disparities in the case of the herbaceous area
compared to the other two land cover categories.

The outcomes derived from the stepwise regression analysis indicated a notable
association between all environmental variables and the dNBR burn severity index (Table 3).
Each land cover type exhibited a comparable coefficient of determination, yielding a value
of 0.30, while the significant variables within the stepwise regression model varied among
the cover types. Notably, NDVI, canopy cover, and tree density emerged as significant
variables across all land cover types, underscoring their substantial influence on burn
severity outcomes. Consistent with findings from the correlation analysis, vegetation-
related variables such as NDVI prominently featured in the stepwise regression, whereas
terrain variables such as slope and aspect demonstrated a negligible impact on burn severity,
at least within the context of this study.

The frequency and spatial distribution of the residual values derived from the regres-
sion models were specific to three distinct land cover types (Figures 6 and 7). These residual
values elucidate the disparities between the predicted and observed burn severity indices.
In Figure 6, the distribution of residual values across all classes demonstrated adherence
to a normal distribution, as evidenced by their alignment with the theoretical quantiles.
These quantiles were calculated based on the assumed parameters of the distribution such
as mean and standard deviation. However, deviations from this expected pattern were
observed among the three different land cover classes. The residual values associated
with the alive trees and shrubs class exhibited a departure from the expected straight line,
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indicating a discrepancy between the predicted and observed values. Conversely, the
herbaceous class displayed a downward trend, suggesting lighter tails, while the bare
ground/rock/sparse vegetation class exhibited an upward trend, indicative of heavier tails.
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Figure 6. Distributions of residuals of all classes. It is pertinent to acknowledge that the three land
cover types under consideration exhibited unequal population sizes. The live trees/shrubs class
demonstrated the smallest residual errors in contrast to the remaining two vegetation types.

Figure 7 provides a spatial representation of these residual value patterns. Elevated
regions tended to display higher residual values, correlating with more severe burn severity
indices. Lower elevation areas showed minimal differences between the predicted and
observed residual values. These spatial trends aligned with the terrain characteristics of the
sky island; areas of higher elevation typically featured larger biomass coverage, whereas
lower elevation areas were characterized by shrubs and bare ground.
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Figure 7. Residual values representing the difference between the predicted and observed burn
severity index values. Larger values were observed in higher elevation areas, where more severe
burn severity was observed. Smaller differences were observed between the predicted and observed
dNBR values in the lower elevation area.

3.3. Calculating Spatial Distribution Using Geary’s C

To ascertain the relationship between the residual values and land cover types, we
evaluated the spatial autocorrelation within the dataset. The absence of spatial autocorrela-
tion implies that the residual values were randomly distributed without interdependencies
among the neighboring data points. Given that the land cover data indicated areas of
homogeneous or similar cover types, we anticipated the presence of spatial autocorrelation
within the dataset.

In the present study, Geary’s C was computed to evaluate the spatial characteristics of
the residual values, specifically investigating the presence or absence of spatial autocorrela-
tion. Given that each set of residual values was derived from distinct regression models,
each corresponding to a specific land cover type, we anticipated that spatial autocorrelation
would manifest across all classes (Table 4). All Geary’s C values were notably larger than 1,
suggesting a strong negative spatial autocorrelation within each category.

Table 4. Comparison of spatial autocorrelation between land cover types.

Land Cover Geary’s C Expectation Variance p-Value

Live vegetation 185.9120 0.5192856 1 0
Ground 134.4589 0.6440652 1 0

Herbaceous 55.8227 0.4406085 1 0
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4. Discussion

When comparing dNBR and RdNBR through the distribution plots, we found that
dNBR exhibited fewer outlier values in the examined study area. The results indicate that
dNBR generally aligned more closely with the actual burn severity than the RdNBR for
this area. However, as previously mentioned, the accuracy can fluctuate based on various
environmental factors. While this study primarily examined the correlation between
burn severity and pre-fire conditions, future research could benefit from comparing the
burn severity to the actual changes in biomass. Such an investigation could shed light
on the effectiveness of different burn severity indices in environments like sky islands,
characterized by a diverse gradient of pre-fire vegetation types and structures with variable
fire return histories.

Through our correlation and regression assessments, we found that certain vegetation
and biomass attributes exhibited a stronger relationship with burn severity compared to
other factors such as terrain. Prior research primarily concentrated on evaluating the fuel
structure and loading solely through the utilization of dNBR indices [79], in contrast to
the present investigation, which integrated an expanded array of structural and functional
variables encompassing terrain and canopy attributes. Despite the relatively diminished
overall predictive precision concerning the potential burn severity discerned within this
study, it offers a means of identifying variables with greater likelihoods of predicting the
burn severity. Additionally, the predictive accuracy exhibited variability, contingent upon
the distinct ecosystem types that typify diverse landscapes [80,81]. This study delineated
the distinctive attributes of sky islands in the southwestern United States, characterized by
a blend of vegetation amidst rugged mountainous terrain.

It is axiomatic that regions with more vegetation inherently have more fuel, leading to
heightened burn indices [82]. Previous studies have shown that densely forested areas with
conifer trees have a higher regression value, while Mediterranean shrublands have a lower
one. Generally, the correlation coefficient (r2) for NDVI and dNBR values ranges from 0.5
to 0.8 [62,83,84]. Given that our study zone encompassed a range from shrublands to thick
forests situated on steep terrain, the derived R2 value of 0.358 might appear counterintuitive
at first glance. In a corresponding investigation, specifically in the context of a comparative
analysis involving a field-based fire severity index (GeoCB)I and dNDVI derived from
Landsat TM data, the R2 value fell within the range of 0.3 to 0.5, aligning closely with the
outcomes obtained within the present study [85]. Nevertheless, the precise regression value
can fluctuate based on various determinants such as the nature of pre-fire vegetation, burn
severity, and the specific remote sensing equipment utilized.

The study indicates that the residuals of the stepwise regression model exhibit spatial
variability across mountainous terrains. As the elevation increased, there was a marked
increase in the residual values. This trend aligns closely with the inherent attributes of sky
island mountains. Specifically, regions at lower elevations consist predominantly of sparse
shrublands, while higher elevations are characterized by a dense canopy of coniferous trees.
Notably, an intriguing pattern discerned from the vegetation classification map indicates
a prevalence of herbaceous species at higher elevation areas. These herbaceous regions
overlapped predominantly with zones that experienced previous fire events, notably the
Bullock and Aspen Fires, indicating a possible post-fire community. Residual errors tended
to be lower in proximity to these herbaceous zones in comparison to densely forested areas,
even at comparable elevations.

Accurate discrimination between rocks and exposed terrain presented inherent chal-
lenges, necessitating their amalgamation into a unified classification category. Notably, the
discernment of sparse vegetative features, particularly arid shrubs lacking pronounced
green pigmentation, proved to be a formidable task, with heightened complexity observed
at lower elevations within the cartographic representation. Consequently, the category en-
compassing sparse vegetation was amalgamated with the class designated for bare ground
and rock. We acknowledge the potential for the occasional misclassification of isolated
boulders as deceased arboreal or shrub entities.
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5. Conclusions

This study presented a novel approach for investigating the predictability of post-fire
burn severity using pre-fire structural and functional vegetation traits. We leveraged a
well-established regression model retrospectively to identify a viable methodology for such
predictions. Among the various factors analyzed, vegetation attributes emerged as the
most significant predictors of burn severity. Stepwise regression analysis revealed that
vegetation-related indices, NDVI, canopy cover, and tree density were significant variables
across all land cover types. These variables were highly correlated with burn severity values
throughout the mountain range. In the scope of fire behavior, NDVI acts as a proxy for
essential functional traits influenced by drought conditions, and tree density and canopy-
related variables reflect the available fuel loads in the mountain ranges. It also implies that
the areas with denser vegetation and higher levels of greenness in this mountain range
had experienced more severe burns. It is worth noting that the study sites have a history
of multiple fires, resulting in more diverse environmental conditions compared to other
potential areas. Despite this, we successfully extracted variables indicative of functional
traits from the LiDAR and satellite datasets, demonstrating valuable methods for future
research in this direction.

Not all study locales consistently furnish adequate geospatial data, thus imposing
limitations on the evaluation of post-fire severity. Nevertheless, the judicious adoption
of the stepwise regression methodology, as demonstrated in this investigation, offers a
viable means to retroactively estimate the impact of pre-fire conditions on post-fire burn
severity by utilizing widely accessible satellite datasets such as Landsat or CubeSat. In this
framework, these findings underscore that a comprehensive array of pre-fire vegetation
structural, functional, and environmental variables can effectively facilitate the estimation
of burn severity. However, caution must be exercised in extrapolating these methodologies
to other regions and ecosystem types, as variations in tree species and terrain characteristics
necessitate nuanced adaptations.

While this study examined numerous variables, the advent of newly developed sensors
and satellites promises a wealth of additional information. It is imperative, however,
to scrutinize these advances to learn more about what they may tell us regarding the
factors that govern burn severity and ascertain the extent of their influence, particularly
amidst the backdrop of recent extreme climate patterns in the southwestern United States.
These insights not only augment our comprehension of burn severity dynamics, but also
catalyze further inquiry in this field, thereby fostering advancements in both knowledge
and methodology.
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