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Abstract: The dust originating from the extinct lake of the Aral Sea poses a considerable threat to
the surrounding communities and ecosystems. The accurate location of these wind erosion areas is
an essential prerequisite for controlling sand and dust activity. However, few relevant indicators
reported in this current study can accurately describe and measure wind erosion intensity. A novel
wind erosion intensity (WEI) of a pixel resolution unit was defined in this paper based on deformation
due to the wind erosion in this pixel resolution unit. We also derived the relationship between WEI
and soil InSAR temporal decorrelation (ITD). ITD is usually caused by the surface change over time,
which is very suitable for describing wind erosion. However, within a pixel resolution unit, the ITD
signal usually includes soil and vegetation contributions, and extant studies concerning this issue are
considerably limited. Therefore, we proposed an ITD decomposition model (ITDDM) to decompose
the ITD signal of a pixel resolution unit. The least-square method (LSM) based on singular value
decomposition (SVD) is used to estimate the ITD of soil (SITD) within a pixel resolution unit. We
verified the results qualitatively by the landscape photos, which can reflect the actual conditions of
the soil. At last, the WEI of the Aral Sea from 23 June 2020, to 5 July 2020 was mapped. The results
confirmed that (1) based on the ITDDM model, the SITD can be accurately estimated by the LSM;
(2) the Aral Sea is experiencing severe wind erosion; and (3) the middle, northeast, and southeast
bare areas of the South Aral Sea are where salt dust storms may occur.

Keywords: Aral Sea; InSAR temporal decorrelation; backscattering coefficient; wind erosion; dust storms

1. Introduction

The fine particles produced by wind erosion are essential for wind-blown sand activity.
Sand and dust activities, especially salt dust activities, are a disaster for surrounding
residents and ecosystems of the Aral Sea [1]. Wind erosion accelerated the desertification
process and promoted the formation of the Aralkum Desert. Sufficient fine particles from
this new desert provide favorable conditions for sand and dust activities. The salt storms
generated by winds caused various diseases among the surrounding residents and resulted
in the death of a large area of vegetation, especially that of crops. Accurate localization
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of these wind erosion areas is necessary for human intervention in salt and dust storms.
Scientists have developed numerous models based on traditional experimental physics and
remote sensing technology to distinguish different degrees of wind erosion.

Wind erosion research results based on traditional experimental physics provide a
solid theoretical foundation for wind erosion research. According to the study of Liu and
Zobeck, based on experimental physics methods, wind blowing, impact, and abrasion
of moving particles are the three primary forms of particle moving and separation [2,3].
Bagnold derived the threshold of the starting wind speed of a particle fluid according to
a moment balance equation [4]. The research results of Lu and Shao show that when the
ground particles are mainly dust, the vertical dust flux caused by the impact is proportional
to the 3–4 power of the wind speed [5]. Numerous scientists have studied the forms and
laws of the movement of sand and dust and provided many physical models of different
forms of movement [3,6–15]. Particles suspended in the air fall to the ground mainly
through dry and wet sedimentation. The physical processes involved in dry and wet
sedimentation are relatively complex, and there are no effective means to describe the dry
and wet sedimentation process [6,16–18]. Clarifying the influencing factors of the wind
erosion process is the basis for establishing the wind erosion model. Chepil’s classification
of wind erosion factors plays an essential role in advancing the research on the wind
erosion process [19]. Based on Chepil’s research results, subsequent researchers have
proposed many well-known wind erosion models [20–25]. The research of wind erosion
processes based on traditional experimental physics has essential value and significance
for human understanding of the fundamental laws of wind erosion activity. However, the
uncertainty of the wind erosion model itself and the difficulty in obtaining high spatial
and temporal resolution data greatly limit the wind erosion model in the application of
describing large-scale wind erosion scenarios.

InSAR (interferometric synthetic aperture radar) decorrelation can be used to de-
scribe random changes in the surface due to wind erosion, expecting to solve the problem
of quantitative characterization of wind erosion intensity [26]. Coherence is commonly
employed to assess the similarity of InSAR echo signals. It quantifies the correlation be-
tween two complex InSAR echo signals by calculating their correlation coefficient. The
computation of radar echo signal coherence typically involves the spatial averaging of
the radar echo signals within a moving window. Decorrelation, numerically equal to
1 minus the coherence coefficient, denotes the loss of coherence. Various factors contribute
to decorrelation, including temporal, thermal, and spatial ones. Estimating temporal decor-
relation involves eliminating the impacts of thermal and spatial decorrelation from the total
decorrelation [27].

In 1992, Zebker and Villasenor studied the relationship between ITD and the surface
erosion of Death Valley in California, and the results showed that ITD and wind erosion de-
grees have a negative linear correlation. In another study in 2000, Wegmuller confirmed this
relationship, and he pointed out that the above relationship is still valid when vegetation
coverage is less than 40% [28]. Later, InSAR decorrelation was used to study desertification
due to wind erosion, also showing that this technology has the ability to detect ground
changes due to wind erosion [29–31]. In some other studies related to dune stability, it has
been confirmed that temporal decorrelation technology can detect changes in the surface of
dunes due to wind erosion [32,33].

Although many indicators in this current study were proposed to describe WEI, few
can be used to describe and measure the WEI of a pixel resolution unit accurately. This
paper proposed a novel WEI of a pixel resolution unit based on the surface deformation
caused by wind erosion. Zebker’s research shows that the ITD in a pixel resolution unit is
related to the displacement of scatters in it [26]. Based on the relationship between scatters’
random displacement and the surface random deformation within a pixel resolution unit,
we related the WEI with the SITD of a pixel resolution unit. In fact, a pixel resolution unit’s
ITD often involves the contribution of soil and vegetation in the bare lands of the Aral Sea.
Wegmuller’s study indicates that the ITD of a pixel resolution unit was equal to the sum
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of the weighted ITD of all scatterers within the pixel resolution unit [28]. However, few
studies have been conducted to decompose the ITD contributions of all scatterers within a
pixel resolution unit. Therefore, this paper focuses on the following:

1. Modeling the WEI of a pixel resolution unit and relate the WEI with the SITD of this
pixel resolution unit.

2. SITD estimation within a pixel resolution unit.
3. Mapping the WEI of the dry lakebed of the Aral Sea.

2. Study Area

Part of the Aral Sea is in southern Kazakhstan, and the rest is in northern Uzbekistan.
Due to the extended distance from the sea, the Aral Sea has a classical continental dry
climate. The study area is shown in Figure 1.
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Figure 1. Study area and the corresponding land types. The 2017 land surface coverage map with a
resolution of 10 m is from Tsinghua University (https://data-starcloud.pcl.ac.cn/zh/ (accessed on 15
May 2024)).

In the Aral Sea, the maximum temperature difference between spring and summer
can reach 60 ◦C, and the average annual precipitation is about 100 mm, which is very
rare. The significant temperature difference and scarce rainfall are very conducive to wind
erosion. Furthermore, as shown in Figure 1, this area is dominated by bare land. These
things considered, the desertification of the dry lakebed is very severe, and the loose soil
is vulnerable to erosion. Thus, the dry climate, sparse vegetation coverage, and loose soil
properties make this area a potential wind erosion area. Sampling data were from a field
survey about the Aral Sea’s desertification in November 2018, and parts of the sampling
sites are listed in Figure 1.

Two factors closely associated with wind erosion include the abundance of fine parti-
cles on the soil surface and wind conditions. The presence of abundant fine particles on
the surface of the Aral Sea and strong wind conditions create highly favorable conditions
for wind erosion. Soil particle size analysis results from sampling points U5, U6, and U7

https://data-starcloud.pcl.ac.cn/zh/
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indicate that the majority of soil particles fall within the range of 2 µm to 63 µm, providing
a rich source of material for wind erosion activity. Simultaneously, we conducted a simple
investigation of wind conditions in the South Aral Sea, which was experiencing severe
wind erosion, during the study period (23 June 2020 to 5 July 2020). Wind conditions based
on GLDAS-2.1 dataset (https://developers.google.com/earth-engine/datasets/catalog/
NASA_GLDAS_V021_NOAH_G025_T3H (accessed on 15 May 2024)) are illustrated in
Figures 2 and 3. Results from Figure 2 demonstrate that the daily average wind speeds
in the Aral Sea remained relatively high over the two-week period, with 5 days having
average wind speeds above 6 m/s, 4 days between 4 and 6 m/s, and only 3 days between 3
and 4 m/s. Results from Figure 3 indicate that there was no significant spatial variation
in average wind speeds within the South Aral Sea during the two-week period, ranging
from 4.8 m/s to 6 m/s, except for slightly lower wind speeds (below 5 m/s) along the
entire southern coastal region of the Aral Sea. Wind speeds in the remaining areas were
consistently above 5 m/s.
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3. Method and Data
3.1. Soil Sampling and Volumetric Soil Moisture Data

We obtained soil data at the sampling point in this field survey, including soil photos
and soil salinity data. The landscape photos can visually indicate whether the soil is
vulnerable to wind erosion. Therefore, we can use these data to qualitatively assess the
ITDDM model and the estimation results of SITD. The volumetric soil moisture (topsoil
from 0 to 7 cm) data comes from the EAR5 dataset on the Google Earth Engine platform
and is used to extract potential dust emission areas.

3.2. Vegetation Fraction Coverage Data

Vegetation fraction coverage (VFC) is related to the vegetation and soil’s backscattering
weights under the assumption that only these two land types are in this pixel resolution
unit [34]. We can use VFC to estimate the soil microwave backscattering coefficient (SMBC)
and vegetation microwave backscattering coefficient (VMBC) related to the ITD weights of
vegetation and soil. In this paper, we used the NDVI of Landsat 8 to compute VFC based
on the Pixel dichotomy [35], and the spatial resolution of NDVI data was 30 m.

3.3. Microwave Backscattering Data

Sentinel-1 dataset C-band synthetic aperture radar (SAR) dataset is used to estimate
SMBC and VMBC of a pixel resolution unit. The spatial resolution of this data is about
10 m. Usually, the normalized microwave backscattering coefficient (NMBC) is between 0
and 1. The NMBC and the microwave backscattering coefficient (MBC) described in dB
have a relationship as follows [28]:

σdB = 10log10σN , (1)

where σdB denotes the MBC in dB, and σN is the NMBC. Due to the very sparse vegetation
coverage in the arid and semi-arid areas, the volume scattering is very weak. Thus, we
use the ITD of VV polarization to characterize wind erosion of topsoil. The ITD weights
of vegetation and soil are related to the SMBC and VMBC in the pixel resolution unit.
Therefore, the SMBC and VMBC in a pixel resolution unit are estimated firstly by the VFC
and the total MBC. The backscattering images with VV polarization taken on 23 June 2020,
and 5 July 2020 (https://code.earthengine.google.com/ (accessed on 15 May 2024)) were
obtained, and this time interval is the same as that for calculating the VFC.

3.4. Soil Sampling Data

We used the Sentinel-1A satellite C-band single-look complex (SLC) SAR images to cal-
culate the ITD of a pixel resolution unit. In this study, the satellite mode was right-looking,
and the orbit cycle was 12 days. We acquired two SLC image pairs with a descending
strip-map pattern on 23 June 2020 and 5 July 2020. The incident angle was about 34.23◦,
and the spatial resolution was 20 m after multi-look processing. Other information on two
SLC image pairs is shown in Table 1.

Table 1. Information and interferometry pattern of two SLC image pairs.

Footprint Acquisition Date Obit Number Combination Mode Time Baseline Normal Baseline

North Aral Sea
23 June 2020 33,138 master 12 days −33.064 m5 July 2020 33,313 slaver

South Aral Sea
23 June 2020 33,138 master 12 days −35.154 m5 July 2020 33,313 slave

The Sentinel-1A data are from the Copernicus dataspace (https://dataspace.copernicus.eu/).

As is shown in Table 1, the SLC images acquired on 23 June 2020 were set as the master
images, and the others were set as slave images. The absolute time baseline of these two

https://code.earthengine.google.com/
https://dataspace.copernicus.eu/
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SLC image pairs is 12 days, and the normal baseline is about −33.064 m and −33.154 m
for the SLC image pairs of the study area, respectively. The relatively short time baseline
setup mainly meets the assumption of identical backscattering levels for acquisitions 1 and
2 [28]. The short spatial baseline is much smaller than the critical baseline, indicating that
the influence of the spatial baseline on ITD is negligible [26].

3.5. Method
3.5.1. Wind Erosion Intensity Modeling

Generally, the areas where wind erosion occurs within a pixel resolution unit are
randomly distributed. Therefore, the degree of wind erosion of the 1D soil profile can help
us analyze and define a pixel resolution unit’s degree of wind erosion. Figure 4 shows the
deformation of the soil surface in the pixel resolution unit after wind erosion.
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The ground surface will sink slightly and randomly after wind erosion for most arid
bare lands, except for desert regions. Due to particles’ deposition or surface movement,
the ground surface may slightly uplift after wind erosion in desert areas. Fortunately,
there are few active deserts in the study area. The deformation of different positions in the
pixel resolution unit can be regarded as a random signal δ(x, y) at position (x, y). Since
the root mean square can describe the intensity of the random signal, we can use the root
mean square of the erosion depth at different locations within the pixel resolution unit to
define WEI.

WEI =

√
1
S

x
δ(x, y)2dxdy, (2)

In order to simplify this process, we only consider the discrete case. Assuming that
there are N differential elements in a pixel resolution unit, the wind erosion intensity of the
pixel resolution unit can be simplified as

WEI =

√
1

Nds∑N
i=1 δ2

i ds =

√
1
N ∑N

i=1 δ2
i , (3)

3.5.2. InSAR Temporal Decorrelation

Coherence is used to measure the similarity of the InSAR echoes and is often used to
describe different degrees of terrain changes. The coherence between two complex echo
signals (s1 and s2) is defined as their correlation coefficient γ.

γ = E{s1·s∗2}/
√

E
{
|s1|2

}
·E
{
|s2|2

}
, (4)

Decorrelation ρ, which is equal to 1 − γ, is usually caused by thermal decorrela-
tion ρthermal , spatial decorrelation ρspatial , and temporal decorrelation ρtemporal . Temporal
decorrelation due to environmental changes over time can be described by the following
formula [26]:

ρtemporal = ρ/ρthermal/ρspatial , (5)
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3.5.3. The Relationship between InSAR Temporal Decorrelation and Wind
Erosion Intensity

According to the microwave backscattering theory, the differential element’s random
subsidence in the pixel resolution unit can be equivalent to the random displacement of the
scatterers (or scattering differential bins) in a vertical direction (Figure 5).
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Zebker derived the relationship between the root mean square (RMS) displacement of
scatterers and ITD [26]:

ρtemporal = exp

{
−1

2

(
4π

λ

)2(
δ2

ysin2θ + δ2
z cos2θ

)}
, (6)

where ρtemporal is the ITD for scatterers within a pixel resolution unit, δy denotes the
horizontal displacement of the scatterer, δz denotes the vertical displacement of the scatterer,
and θ is the incident angle. Since wind erosion in a pixel resolution unit can be equivalent
to the vertical displacement of the scatterers within the pixel resolution unit, Equation (6)
can be simplified to the following:

ρtemporal = exp

{
−1

2

(
4π

λ

)2
δ2

z cos2θ

}
, (7)

However, it must be noted that the vertical displacement of the scatterers may be
positive or negative because of the existence of horizontal displacement of the scatterers
or the deposition of the soil particles. In fact, except for the more mobile deserts, most of
the bare land in the Aral Sea exhibited random subsidence rather than uplift under wind
erosion. Furthermore, the ground uplift caused by the particles’ horizontal displacement
and the particles’ deposition is so tiny that it can be ignored. We plotted the relationship
between the ITD of the C-band and the wind erosion intensity when the incident angle was
34◦, and the results are shown in Figure 6.

According to Figure 6 and Formula (7), ITD and WEI have a non-linear negative
correlation, which coincides well with Wegmuller’s field survey [28]. However, in the bare
land of the Aral Sea, a pixel resolution unit usually contains soil and vegetation. Therefore,
we must decompose these contributions and estimate the SITD, which can be used to
describe the wind erosion degree of soils.
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3.5.4. InSAR Temporal Decorrelation Decomposition Model

Usually, there is sparse vegetation on the arid bare lands. According to Wegmuller,
the ITD of a pixel resolution unit can be decomposed into the contributions of soil and
vegetation when there is only soil and vegetation within it [28].

γ =
σv

σ
γv +

σs

σ
γs, (8)

σv, σs, and σ are the VMBC, SMBC, and total MBC of this pixel resolution unit, respec-
tively. γs, γv, and γ denote the SITD, vegetation ITD (VITD), and total ITD of this pixel
resolution unit, respectively. However, before Formula (8) can be used to estimate the SITD,
we must know the backscattering coefficient of soils and vegetation of a pixel resolution
unit. Therefore, a backscattering contribution decomposition (MBCD) model within a
pixel resolution unit proposed in our previous work is used to unmix the backscattering
contributions of vegetation and soil and estimate the VMBC and SMBC within a pixel
resolution unit [34].

3.5.5. Backscattering Contribution Decomposition and Estimation within a Pixel
Resolution Unit

In our previous work about the backscattering contribution decomposition within a
pixel resolution unit, we reached an important conclusion: the SMBC, VMBC, and total
MBC of a pixel resolution unit satisfy a simple linear relationship. This relationship can be
expressed as follows [34]:

σveg fveg + σsoil
(
1 − fveg

)
= σ, (9)

σveg, σsoil , and σ are the VMBC, SMBC, and total MBC of a pixel resolution unit,
respectively. fveg is the VFC of this pixel resolution unit. Our previous work also provided
the estimation method of VMBC and SMBC, which will be used to estimate the SITD [34].

3.5.6. SITD Estimation Based on LSM-SVD Method

The continuity of the spatial distribution of soil and vegetation allows them to have
nearly the same temporal decorrelation in adjacent pixel resolution units. Thus, the temporal
decorrelation of a pixel resolution unit can be estimated by the sample points within the buffer
of this pixel resolution unit. If n sample points around the pixel resolution unit (resolution
P) were used to estimate the ITD of vegetation and soil of this pixel resolution unit, n linear
equations can be written as follows:
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w1
vγv + w1

s γs = γ1
w2

vγv + w2
s γs = γ2

...
wi

vγv + wi
sγs = γi

...
wn

v γv + wn
s γs = γn,

(10)

where wi
v and wi

s are the ITD weights of vegetation and soil of the ith sampling point, γv
and γs denote VITD and SITD of the pixel resolution unit P, respectively, and γi is the
composite ITD of the ith sampling point. The system equations (Formula (10)) can also be
written in the form of a matrix:

w1
v

w2
v

...
wi

v
...

wn
v

w1
s

w2
s

...
wi

s
...

wn
s


[

γv
γs

]
=



γ1
γ2
...

γi
...

γn


, (11)

Let w be the ITD weight matrix, γp be the InSAR temporal decorrelation decomposi-
tion matrix of the pixel resolution unit P, γ be the InSAR temporal decorrelation composite
matrix, and make the following conventions:

w =



w1
v

w2
v

...
wi

v
...

wn
v

w1
s

w2
s

...
wi

s
...

wn
s


, γp =

[
γv
γs

]
,γ =



γ1
γ2
...

γi
...

γn


, (12)

Then, Formula (10) can be simplified as follows:

wγp = γ, (13)

Then, the least-square estimation of γp can be expressed as follows:

γ̂p =
(

wTw
)−1

wTγ, (14)

Considering the huge computational load, we can use the SVD method to estimate
SITD. Assume that w can be decomposed as follows:

w = MSET, (15)

The SVD-based least-square estimation of γp can be expressed as follows:

γ̂p = E2×r(Sr×r)
−1(Mn×r)

Tγn×1, (16)

When the first singular value of w is greater than or equal to 90% of the sum of all its
singular values, the value of r is 1, and S has the following form:

S = ϵ1, (17)

where ϵ1 is the first singular value of w. Otherwise, S has the following form:

S =

[
ϵ1 0
0 ϵ2

]
, (18)
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where ϵ2 is the second singular value of w.

4. Results
4.1. VFC and MBC of the Study Area

VFC with a resolution of 30 m calculated by Landsat 8 NDVI and the Sentinel-1A
C-band microwave backscattering coefficient of VV polarization with a resolution of 10 m
from the Google Earth Engine platform was used to estimate the VMBC and SMBC. To
evaluate the vegetation’s influence on SITD estimation, we also calculated the SMBC-to-
VMBC (SDV) ratio. Suppose the total ITD of the pixel resolution unit replaces the SITD of a
pixel resolution unit. In that case, the error mainly depends on the VMBC and SMBC in the
pixel resolution unit. The VFC, total MBC, SMBC, VMBC, and SDV are shown in Figure 7.
As shown in Figure 7a, vegetation coverage in the Aral Sea and its surrounding areas is
very sparse. The vegetation coverage of most of the study areas is between 0 and 0.1608. In
comparison, vegetation coverage is relatively high in the northwest and northeast (VFC
ranges from 0.1608 to 0.3137) and the southern part of the study area (VFC is between
0.3137 and 1).
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Figure 7. The VFC, total MBC, SMBC, VMBC, and SDV of the study area. (a–e) VFC, total MBC, SMBC,
VMBC, and SDV, respectively. Due to the widespread presence of artificial forests, the estimated
SMBC and VMBC in regions A, B, and C may be erroneous.

It can be seen from Figure 7b that, except for the area around the east branch of the
South Aral Sea, the backscattering coefficients in other regions are relatively low. Figure 7c
shows that the soil’s backscattering coefficient is very close to the total backscattering
coefficient of the pixel resolution unit. However, there are obvious errors in estimating
soil backscattering coefficients in the northwest and northeast of the study area, most
probably due to the uniform spatial distribution of vegetation [34]. In addition, the results
of backscattering coefficient estimation have been fully verified in our previous work,
so this paper does not refer to the verification of backscattering coefficient estimation
results [34]. Furthermore, the areas with incorrect backscattering coefficient estimation
results often have relatively high soil water content or vegetation coverage, so we can
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remove these places from the study area, which will be discussed in Section 4.2. Figure 7e
shows that the backscattering coefficient of soil is much higher for most of the study area
than that of vegetation. According to Formula (9) and SDV shown in Figure 7, the influence
of vegetation on the SITD in the pixel resolution unit may be negligible. However, when
the SMBC in a pixel resolution unit is close to the VMBC (such as in severely desertified
areas), the ITD weights of vegetation and soil are almost the same. In this case, the impact
of vegetation on the SITD is not negligible. The process of MBC and ITD estimation is
badly time-consuming. Extracting the potential wind erosion area can significantly reduce
the target area and effectively reduce the amount of calculation. Numerous studies have
shown that wind erosion is almost impossible in these areas when the soil moisture exceeds
10%, or VFC is higher than 40% [36–42]. When vegetation coverage exceeds 40%, the
volumetric soil moisture is usually higher than 10%. Our survey results also show that
when vegetation coverage exceeds 40%, the soil volumetric water content is usually higher
than 10% [34]. Therefore, these areas can be removed from the study area to effectively
reduce the calculation amount. In the following section, we obtained soil moisture data. Soil
moisture and vegetation coverage data were used to extract potential wind erosion areas.

4.2. Potential Wind Erosion Areas

We used GIS 10.2 software to label the areas with vegetation coverage higher than
0.4 or volumetric soil moisture higher than 0.1 in the study area. Then, we obtained the
potential wind erosion area, and the result is shown in Figure 8. It should be noted that
since the volumetric soil moisture (VSM) of only one pixel in area B exceeds 10%, we have
ignored this area. Figure 8 shows that except for areas B, E, and F, the rest of the lakebed is
vulnerable to wind erosion.

1 
 

 
 

Figure 8. The potential wind erosion regions in the study area. The red line labeled as “AralSea1973”
represents the boundary of the Aral Sea in 1973, which was manually delineated using optical
remote sensing imagery from 1973 on Google Earth. Considering the presence of artificial forests,
the estimated SMBC in regions A–F may be unreliable. Nevertheless, the presence of vegetation
effectively mitigates the occurrence of wind erosion within these areas.
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4.3. InSAR Temporal Decorrelation of Soil

We calculated the SITD of all regions except regions A, B, D, E, and F based on
Equation (16). According to Equation (8), estimating the SMBC and VMBC is necessary
prior to calculating the SITD. However, the estimation of SMBC and VMBC requires
constraining the VFC differences between pixels within the buffer zone. This constraint is
necessary because such differences are likely to introduce significant errors in the estimation
of the SMBC and VMBC, subsequently affecting the estimation of the SITD. Significant
changes in vegetation cover are likely to result in notable variations in soil roughness, soil
moisture, and soil salinity (which affect backscattering coefficients). This, in turn, leads
to the violation of the assumption that “buffer zone pixels have the same backscattering
coefficients for soil and vegetation.” Consequently, we are unable to utilize the buffer zone
pixels to estimate the backscattering coefficients of soil and vegetation for the target point.
Furthermore, when the VFC difference between any two pixels within the buffer zone
becomes too small, the computation process encounters singular matrices, resulting in
significant computational errors. The upper bound for the VFC difference is derived from
our field observations in the Aral Sea region. The upper bound for the VFC difference
is determined based on our field observations in the Aral Sea region. By observing the
variations in soil surface roughness (which affects soil backscattering coefficients) and soil
surface moisture (which also affects soil backscattering coefficients) in relation to changes
in vegetation cover, we set the upper bound for VFC at 0.2. The lower bound for the VFC
difference is derived from practical computations of soil and vegetation backscattering
coefficients. We have determined that when the VFC difference is set above 0.05, there are
no further instances of matrix singularity issues during the computation process. Therefore,
we set the lower bound for VFC at 0.05. The calculation process is still quite time-consuming.
Therefore, we resampled the ITD weights of soil and vegetation and the total ITD to 50 m
to further reduce the amount of calculation. The estimated result of the SITD is shown
in Figure 9. Figure 9 shows that the areas with severe temporal decorrelation are mainly
distributed in the bare lands of the middle, northeast, and southeast of the South Aral Sea.
In addition, the coastal areas of the North Aral Sea are also areas with severe soil InSAR
temporal decorrelation. Beyond the boundaries of the water body of the Aral Sea in 1973,
the soil InSAR temporal decorrelation in most areas is very slight. This significant contrast
indicates that the dry lakebed is highly susceptible to wind erosion.

Quantitative validation of the SITD estimation results is extremely challenging be-
cause it is nearly impossible to accurately measure the wind erosion intensity of a single
pixel of soil during the monitoring period. However, fortunately, we captured landscape
photographs of the sampling points during our investigation of desertification in the Aral
Sea. These landscape photos provide a means to assess the susceptibility of the soil to wind
erosion. Regions that are prone to wind erosion experience more severe erosion during the
monitoring period, and, therefore, they should exhibit lower SITD values. Conversely, areas
that are less susceptible to wind erosion, such as regions with higher soil moisture content,
sparse vegetation cover, or a significant presence of larger particles on the ground, undergo
minimal erosion during the monitoring period. Consequently, these areas should have
higher SITD values. Based on these observations, we can qualitatively validate the model.
Therefore, we magnified the SITD values corresponding to the sampling points in Figure 9
to the pixel scale and combined them with the corresponding landscape photographs,
resulting in Figure 10.

The landscape photos in Figure 10 clearly show the soil’s actual condition near the
sampling points, which can be used to judge the degree of soil susceptibility to wind
erosion visually. The SITD will be used to describe the spatial distribution of wind erosion
of different degrees. As in the description in Section 3.3, because the waters and wetland
cannot be the potential place where wind erosion will happen, the SITD was not estimated
for these two land types. In the next section, the SITD will be used to describe the WEI of
the study area.
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Figure 9. The SITD map of the Aral Sea. The legend in the bottom-right corner of Figure 9 denotes the
areas where SITD calculations are unnecessary. These areas include water bodies, wetlands, regions
with vegetation cover greater than 0.4, or areas where soil volumetric moisture content exceeds 0.1.
This is because soil erosion is typically not expected to occur in these regions.
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4.4. Wind Erosion at the Dry Bottom of the Aral Sea
4.4.1. The Calculating Process and Results of Wind Erosion Intensity

If we carry out an inverse transform according to Equation (7), then we can convert
the SITD to WEI. Furthermore, we divided WEI into eight levels, and the results are shown
in Figure 11. Figure 11 shows that the wind erosion in the study area mainly occurs on the
lakebed. These things considered, our previous field survey showed that the dry lakebed is
rich in salt and toxic substances [34]. Therefore, the fine particles produced in the wind
erosion process should also be rich in these materials.
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Figure 11. WEI of the Aral Sea. When computing WEI, we still excluded regions encompassing water
bodies, wetlands, VSM greater than or equal to 0.1, as well as areas with VFC greater than or equal to
0.4 (refer to the legend in the bottom-right corner of Figure 11). Subsequently, we categorized WEI
into eight classes to enhance the contrasting effect among regions exposed to varying intensities of
wind erosion (refer to the legend in the top-left corner of Figure 11).

Salt storms that carry fine particles rich in salt and toxic substances will badly threaten
the surrounding ecosystems and human health. Therefore, we counted the wind erosion
area of the dry lakebed. We used GIS 10.2 software to remove areas with VFC greater than
or equal to 0.4, areas with VSM greater than or equal to 0.1, wetlands, and water bodies
from the Aral Sea water surface in 1973. Then, we used this vector to extract the WEI map
of the potential wind erosion area on the dry bottom of the Aral Sea. At last, we performed
simple statistics on the wind erosion intensity, and the results are shown in Table 2.
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Table 2. Sample statistics of the WEI at the dry bottom of the Aral Sea.

Interval Number SITD Interval SITD Interval Percent (%)

1 0.9832 ≤ SITD ≤ 1.0000 0.0 ≤ WEI ≤ 0.1 0.1736
2 0.9346 ≤ SITD ≤ 0.9832 0.1 ≤ WEI ≤ 0.2 3.7238
3 0.8589 ≤ SITD ≤ 0.9346 0.2 ≤ WEI ≤ 0.3 27.2261
4 0.7631 ≤ SITD ≤ 0.8589 0.3 ≤ WEI ≤ 0.4 15.4784
5 0.6554 ≤ SITD ≤ 0.7631 0.4 ≤ WEI ≤ 0.5 15.3211
6 0.1846 ≤ SITD ≤ 0.6554 0.5 ≤ WEI ≤ 1.0 35.5420
7 0.0223 ≤ SITD ≤ 0.1846 1.0 ≤ WEI ≤ 1.5 2.2560
8 0.0000 ≤ SITD ≤ 0.0223 WEI ≥ 1.5 0.2790

total 100

4.4.2. Overview of Wind Erosion in the Aral Sea

We conducted a simple statistic of different degrees of WEI according to Figure 9,
and the results showed that the dry lakebed is suffering from different degrees of wind
erosion. The area with wind erosion intensity greater than 1.5 cm accounts for 0.2790% of
the lakebed, which is about 176 km². The area with wind erosion intensity ranging from
1 to 1.5 cm accounts for 2.2560%, approximately 1426 km². The site with a wind erosion
intensity of 0.5 to 1 cm accounts for 35.5420%, approximately 22,471 km². The area with
a wind erosion intensity of 0.4 to 0.5 cm accounts for 15.3211%, approximately 9687 km².
The site with wind erosion intensity between 0.3 and 0.4 cm accounts for 15.4784%, about
9786 km². The area with a wind erosion intensity of 0.2 to 0.3 cm accounts for 27.2261%,
approximately 17,214 km². The site with wind erosion intensity ranging from 0.1 to 0.2 cm
accounts for 3.723%, about 2354 km². The area with wind erosion intensity between 0 and
0.1 cm occupies 0.1736%, approximately 110 km².

4.4.3. Spatial Distribution of Wind Erosion

According to the WEI of the study area, the severe wind erosion areas (WEI ≥ 1 cm)
are mainly distributed in bare lands of the middle, northeast, and southeast of the South
Aral Sea. The spatial distribution of the moderate wind erosion area (0.3 cm ≤ WEI ≤ 1 cm)
is the same as that of the severe wind erosion area. The moderate and severe wind erosion
areas coincide well with the area of sand and dust activities, and these areas can be treated
as the focus areas for people to intervene in sand and dust activities [43]. The severe wind
erosion areas within the dry lakebed are most probably where salt dust storms occur.

5. Discussion

Due to the harsh natural environmental conditions of the Aral Sea, it is a challenge
to verify the accuracy of dust activity intensity described by soil temporal decorrelation
through the measurement of dust activity intensity. The sampling data for validation is
from a joint desertification survey referring to the Aral Sea in 2018 by China and Uzbekistan.
However, the survey was not designed specifically for this research, so we can only provide
limited validation by analyzing the partial sampling data. Nevertheless, through rigorous
theoretical derivation, few sampling points, and the supporting literature, we can still prove
the accuracy of the spatiotemporal distribution results of dust activity intensity described in
this paper. The accuracy of the spatiotemporal distribution results of dust activity intensity
in the Aral Sea depends on three aspects:

1. Can soil temporal decorrelation accurately describe dust activity intensity?
2. Whether soil temporal decorrelation only depends on the mathematical expectation

of phase random variation within the pixel resolution unit and whether other factors,
such as variation in soil dielectric constant and soil roughness, will affect soil temporal
decorrelation.

3. Are the estimation results of soil temporal decorrelation accurate?

For the first question, we have provided a comprehensive argumentation through the
proposal of dust activity intensity in Section 3.5.2 and the derivation of the relationship
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between dust activity intensity and soil temporal decorrelation in Section 3.5.3, which
demonstrates the feasibility of using soil temporal decorrelation to describe dust activity
intensity. Next, we will discuss the impact of the other two factors.

5.1. The Impact of Non-Phase Factors on Soil Temporal Decorrelation

According to the definition of soil temporal decorrelation, it mainly depends on
variations in the backscattering coefficient and the phase during the interferometric period.
Significant changes in soil roughness, moisture content, and salinity can all lead to notable
variations in backscattering levels. Through an investigation of precipitation during the
interferometric period, no significant rainfall was observed in these regions within 1–2 days
before the second imaging (in June and July, the temperature in the Aral Sea is high, and
any small amount of rainfall occurring a few days before the second imaging would quickly
evaporate). This survey indicates that the soil moisture content in most areas is unlikely to
undergo significant changes, thus not significantly influencing the backscattering coefficient.
The soil salinity of the Aral Sea primarily comes from the evaporated seawater, and after the
seawater dries up, the salt deposits in the soil at the bottom of the dried-up lake. Therefore,
soil salinity is unlikely to undergo significant changes over a relatively short time interval
(12 days), and thus, it cannot cause drastic variations in the backscattering coefficient. The
spatial continuity of soil types within the pixel resolution unit and similar wind conditions
within the unit ensure slight variation in erosion levels among different regions within the
unit. Consequently, the surface roughness variation is relatively minor. Therefore, the soil
temporal decorrelation of a pixel resolution unit primarily depends on the mathematical
expectation of phase random variations at different locations within this pixel resolution
unit, representing dust activity intensity, and these phase variations are mainly caused by
wind erosion.

5.2. The Results of SITD Estimation Assessment

The accuracy of soil temporal decorrelation estimation primarily depends on the
assumptions made during decomposition and estimation. According to Wegmuller’s
research, two assumptions regarding the soil temporal decorrelation decomposition model
are often valid for bare soil and sparse low-vegetation regions in arid and semi-arid areas.
The estimation was based on the assumption that “spatial adjacent pixel resolution units
have the same soil and vegetation temporal decorrelation.” Soil and vegetation’s temporal
decorrelation primarily depend on all scatterers’ root mean square displacement within a
pixel resolution unit. Spatial adjacent pixel resolution units have similar vegetation types
and structures, soil types and structures, and highly similar wind conditions. Therefore, the
root mean square of soil random erosion of a pixel resolution unit is almost the same as that
of an adjacent pixel resolution unit. Similarly, a pixel resolution unit’s vegetation temporal
decorrelation is nearly the same as that of an adjoining pixel resolution unit. Hence, the
assumption that a pixel resolution unit’s soil or vegetation temporal decorrelation is almost
the same as that of a spatial adjacent pixel resolution unit is reasonable.

The differences in the backscattering coefficients of soil and vegetation among adjacent
pixel resolution units are the prerequisite for estimating the soil and vegetation temporal
decorrelation. Because of the slight differences in soil dielectric constant (due to spatial
variations in soil moisture and salinity), soil roughness (due to the spatial difference in wind
erosion depth within pixel resolution units), vegetation dielectric constant (due to spatial
variations in vegetation moisture content, vegetation type, vegetation density, health, and
condition), and vegetation roughness (due to the spatial distribution variations in leaf
structure, branching patterns, vegetation canopy height and density, vegetation growth
stage, and environmental factors.), the backscattering coefficients of soil and vegetation in
adjacent pixel resolution units often exhibit differences. The statement seems to contradict
our previous assumption made during the estimation of the VMBC and SMBC within a
pixel, where adjacent pixels are assumed to have the same VMBC and SMBC. However,
it is commonly observed that the estimated results for the VMBC and SMBC of adjacent
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pixels are usually different. In the following, we will illustrate this issue by considering the
process of VMBC and SMBC estimation, as shown in Figure 12.
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As shown in Figure 12, let us assume that buffer M, consisting of K pixels, is used
to estimate the SMBC and VMBC at pixel A. Within these K pixels, the areas of soil
and vegetation within each pixel are different, but all pixels have the same SMBC and
VMBC. Furthermore, we assume that the backscattering coefficient for soil is denoted as
σs, the backscattering coefficient for vegetation is denoted as σv, the area of soil within
the ith pixel is si

s, the area of vegetation is si
v, and the total area of soil and vegetation is

si. The soil- and vegetation-weighted average backscattering coefficient is denoted as σi
(Equation (9)). Based on the principles of energy conservation and the definition of radar
backscattering coefficients, we can derive the following relationship (pt denotes the radar’s
transmit power):

σs pt∑K
i=1 si

s + σv pt∑K
i=1 si

v = ∑K
i=1 σi ptsi, (19)

Therefore, σs can be regarded as the average scattering power from soil within the
buffer, σv can be regarded as the average scattering power from vegetation within the buffer,
∑K

i=1 si
s can be interpreted as the scattering area of soil, and ∑K

i=1 si
v can be interpreted as

the scattering area of vegetation. Therefore, the left-hand side of the equation represents
the total energy scattered within the entire buffer. Additionally, σi can be regarded as the
average scattering power from pixel i, so the right-hand side of the equation represents
the sum of the scattered energy from each pixel within the buffer. Thus, the left-hand
side and the right-hand side should be equal, which is consistent with the principle of
energy conservation. Therefore, the estimated SMBC for pixel A is actually the average
scattering power from all the soil within the buffer, while the estimated VMBC for pixel
A is the average scattering power from all the vegetation within the buffer. Theoretically,
this represents the optimal estimation of the SMBC and VMBC for pixel A. It is evident
that the buffer N used for estimating the SMBC and VMBC for pixel B is different from
buffer M. Therefore, although we assume that the SMBC and VMBC are the same for the
pixels within the buffer in the estimation of the backscattering coefficients, their optimal
estimations are typically different.

As described in Section 4.3, we use the SITD maps (SITDMs) and the corresponding
landscape photos to verify the estimation results of the SITD. As is shown in landscape
photos of L5, L6, and L15, some parts of arid soil are covered by relatively dense vegetation
(VFC ≥ 0.4), while some are covered by very sparse vegetation (VFC ≤ 0.1). These
things considered, these landscape photos also showed that the soil is relatively loose
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here. According to the study by Bagnold, the ground surface wind speed will significantly
decrease when vegetation exists, and the degree of wind erosion will also decline [4]. So,
the wind erosion of soils around L5, L6, and L15 with little vegetation coverage is severe
but is relatively slight for soils around L5, L6, and L15 with relatively dense vegetation
coverage, and the wind erosion of soils shown in the SITDMs coincides well with the
actual soil property shown in the corresponding landscape photos. Although there is little
vegetation at site L7, the soil was very stable according to the ITDM of L7. Precipitation
around L7 between 22 June 2020 and 5 July 2020 is a possible cause of the stable status
of soils. (The precipitation data from the NASA_GPM_L3_IMERG_V06 dataset, sourced
from the Google Earth Engine (GEE) platform, reveals the occurrence of a small amount
of precipitation during this period. Specifically, on June 25th, the precipitation exceeded
2 mm.) The relatively stable status of L8, L9, and L11 shown in their corresponding SITDMs
is most probably the result of dense vegetation coverage shown in their corresponding
landscape photos. The relatively slight wind erosion of L10 (SITDM of L10) may be due
to the soil’s high-water content, which is most probably the result of the short distance
between L10 and water. As shown in the landscape photos of site L12, the desertification
trend is severe. However, the SITDM of L12 indicates the soil here is very stable, and the
relatively stable status of the soil is most probably due to the rain between 23 June 2020
and 5 July 2020, which can reduce wind erosion significantly [33]. In Figure 10, the soil
property of L13 is just the same as that of L12, and the corresponding SITDM indicates
the wind erosion here is very severe, so the actual soil property shown in the landscape
photo is also in good agreement with the wind erosion degree shown in the corresponding
SITDM. The landscape photos of L14 and U7 show that there is little vegetation in these
places, but these places are rich in relatively large stones. The large stones are hard to move
by wind; meanwhile, they can reduce the wind speed on the ground surface, which makes
these places remarkably stable. For L16, as is shown in the landscape photos of L16, there
are many artificial buildings and roads here, the SITD and backscattering coefficient of
which are much higher than those of vegetation [32]. Therefore, the SITD should be very
high for the pixel resolution unit with buildings in it according to Formula (9). The high
SITD of L16, as shown in its SITDM, coincides nicely with the soil property shown in the
landscape photo of L16. Large areas of bare soil were found around U5 and U6, and there
are few large stones here, so U5 and U6 are very vulnerable to soil erosion. The analysis
above is consistent with the severity of wind erosion shown in the SITDMs of U5 and U6.
In conclusion, the SITDMs, except for some influenced by precipitation, are all consistent
with the actual soil property shown in the corresponding landscape photos, and this result
indicates that the SITD can be used to describe the severity of wind erosion.

Based on the aerosol data derived from the MODIS/061/MCD19A2_GRANULES
dataset, it is observed that wind erosion is primarily concentrated in the bare land between
the two branches of the South Aral Sea and along the eastern coast of the South Aral Sea
(Figure 13). These areas spatially coincide well with the results of this study.

These things considered, the aerosol optical thickness in the Aral Sea (from 23 June
2020 to 5 July 2020) also indicates that the northeastern and southeastern parts of the South
Aral Sea are the right places where dust storms often occur [43]. Although sandstorm
events also happened in the bare land between the two branches of the South Aral Sea,
the frequency is much lower than that of the northeast and southeast of the South Aral
Sea. Therefore, the locations of dust emission identified in this study, except for the bare
land between the two branches of the South Aral Sea, are consistent with the investigation
results. A plausible explanation is that desertification had already occurred in the bare
land between the two branches of the South Aral Sea in 2008 or even before, but the
desertification was mild. After about 12 years of desertification, this region’s desertification
became severe.

Furthermore, the dust activity intensity of this region described in this paper is con-
firmed by the landscape photographs of the three sampling points falling in this area
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(Figure 14). Therefore, it is highly likely that the bare land between the two branches of the
South Aral Sea has developed into a new outbreak area for salt and dust storms.

Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 23 
 

 

 
Figure 13. The aerosol optical thickness over the Aral Sea during the period from 23 June 2020 to 5 
July 2020. 

These things considered, the aerosol optical thickness in the Aral Sea (from 23 June 
2020 to 5 July 2020) also indicates that the northeastern and southeastern parts of the South 
Aral Sea are the right places where dust storms often occur [43]. Although sandstorm 
events also happened in the bare land between the two branches of the South Aral Sea, 
the frequency is much lower than that of the northeast and southeast of the South Aral 
Sea. Therefore, the locations of dust emission identified in this study, except for the bare 
land between the two branches of the South Aral Sea, are consistent with the investigation 
results. A plausible explanation is that desertification had already occurred in the bare 
land between the two branches of the South Aral Sea in 2008 or even before, but the des-
ertification was mild. After about 12 years of desertification, this region’s desertification 
became severe. 

Furthermore, the dust activity intensity of this region described in this paper is con-
firmed by the landscape photographs of the three sampling points falling in this area (Fig-
ure 14). Therefore, it is highly likely that the bare land between the two branches of the 
South Aral Sea has developed into a new outbreak area for salt and dust storms. 

Figure 13. The aerosol optical thickness over the Aral Sea during the period from 23 June 2020 to 5
July 2020.

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 23 
 

 

 
Figure 14. Soil temporal decorrelation with landscape photos of sampling sites in the bare land be-
tween the two branches of the South Aral Sea. (a) Soil temporal decorrelation, (b) Landscape photo 
of L16, (c) Landscape photo of L14, and (d) Landscape photo of L15. The value of soil time decorre-
lation is between 0 and 1. The smaller the value, the darker the corresponding pixel, and the larger 
the value, the brighter the corresponding pixel. 

6. Conclusions 
For areas where desertification is not severe, since the backscattering coefficient of 

rough topsoil is much higher than that of vegetation, the ITD weight of the soil is far 
higher than that of the vegetation. Therefore, in these areas, the soil ITD can be approxi-
mately replaced by the total ITD of the pixel resolution unit. However, for areas with des-
ertification, the backscattering coefficient of smooth topsoil is very close to the backscat-
tering coefficient of vegetation, so the ITD weights of soil and vegetation should also be 
very close to each other. In this case, the influence of vegetation on the SITD cannot be 
ignored. The consistency between the SITDM of the sampling points and the actual soil 
property shown in the corresponding landscape photos indicates that the ITDDM and the 
corresponding estimation method can accurately estimate the SITD in the pixel resolution 
unit. The wind erosion areas are mainly distributed in bare lands of the middle, northeast, 
and southeast of the South Aral Sea. The severe wind erosion areas within the range of 
the dry lakebed are the most possible places where salt dust storms occur. 

InSAR technology can provide technical support for human intervention in salt dust 
storms in the Aral Sea. The desiccation and desertification of the Aral Sea provide a sub-
stantial material foundation for the occurrence of salt dust storms, which are closely asso-
ciated with surface wind erosion. By InSAR technology, it is possible to promptly and 
accurately locate areas with severe wind erosion. This, in turn, offers valuable information 
support for subsequent large-scale vegetation planting endeavors aimed at mitigating 
wind erosion. 

Author Contributions: Conceptualization, H.Z. and Y.S.; methodology, Y.S.; software, Q.G.; vali-
dation, Y.S., H.Z. and X.X.; formal analysis, G.L.; investigation, W.X.; resources, Y.L. and H.Z.; data 
curation, O.H.; writing—original draft preparation, Y.S.; writing—review and editing, H.Z.; visual-
ization, T.L.; supervision, A.B. and X.C.; project administration, J.L. and X.C.; funding acquisition, 
Y.L. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the Key R&D Program of Xinjiang Uygur Autonomous Re-
gion (2022B03021-1, 2022B03001); the National Natural Science Foundation of China (E0130105 and 
42230708, 41877012); the “Western Light” Talents Training Program of CAS (grant number 2021-
XBQNXZ-012); the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region 

Figure 14. Soil temporal decorrelation with landscape photos of sampling sites in the bare land
between the two branches of the South Aral Sea. (a) Soil temporal decorrelation, (b) Landscape
photo of L16, (c) Landscape photo of L14, and (d) Landscape photo of L15. The value of soil time
decorrelation is between 0 and 1. The smaller the value, the darker the corresponding pixel, and the
larger the value, the brighter the corresponding pixel.

6. Conclusions

For areas where desertification is not severe, since the backscattering coefficient of
rough topsoil is much higher than that of vegetation, the ITD weight of the soil is far higher
than that of the vegetation. Therefore, in these areas, the soil ITD can be approximately
replaced by the total ITD of the pixel resolution unit. However, for areas with desertification,
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the backscattering coefficient of smooth topsoil is very close to the backscattering coefficient
of vegetation, so the ITD weights of soil and vegetation should also be very close to
each other. In this case, the influence of vegetation on the SITD cannot be ignored. The
consistency between the SITDM of the sampling points and the actual soil property shown
in the corresponding landscape photos indicates that the ITDDM and the corresponding
estimation method can accurately estimate the SITD in the pixel resolution unit. The wind
erosion areas are mainly distributed in bare lands of the middle, northeast, and southeast
of the South Aral Sea. The severe wind erosion areas within the range of the dry lakebed
are the most possible places where salt dust storms occur.

InSAR technology can provide technical support for human intervention in salt dust
storms in the Aral Sea. The desiccation and desertification of the Aral Sea provide a
substantial material foundation for the occurrence of salt dust storms, which are closely
associated with surface wind erosion. By InSAR technology, it is possible to promptly and
accurately locate areas with severe wind erosion. This, in turn, offers valuable information
support for subsequent large-scale vegetation planting endeavors aimed at mitigating
wind erosion.
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