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Abstract: Accurate and comprehensive detection of pavement cracks is important for maintaining
road quality and ensuring traffic safety. However, the complexity of road surfaces and the diversity
of cracks make it difficult for existing methods to accomplish this challenging task. This paper
proposes a novel network named the global graph multiscale network (GGMNet) for automated
pixel-level detection of pavement cracks. The GGMNet network has several innovations compared
with the mainstream road crack detection network: (1) a global contextual Res-block (GC-Resblock) is
proposed to guide the network to emphasize the identities of cracks while suppressing background
noises; (2) a graph pyramid pooling module (GPPM) is designed to aggregate the multi-scale features
and capture the long-range dependencies of cracks; (3) a multi-scale features fusion module (MFF) is
established to efficiently represent and deeply fuse multi-scale features. We carried out extensive
experiments on three pavement crack datasets. These were DeepCrack dataset, with complex back-
ground noises; the CrackTree260 dataset, with various crack structures; and the Aerial Track Detection
dataset, with a drone’s perspective. The experimental results demonstrate that GGMNet has excellent
performance, high accuracy, and strong robustness. In conclusion, this paper provides support
for accurate and timely road maintenance and has important reference values and enlightening
implications for further linear feature extraction research.

Keywords: pavement cracks; deep learning; attention mechanism; graph reasoning; multi-scale
features fusion

1. Introduction

Roads serve as the foundation of contemporary economic growth and sustainability.
The operational and structural status of roads are pivotal factors in shaping the economic
landscape of a nation and are deemed essential criteria by the World Bank for assessing
the competitiveness of national economies [1]. However, due to traffic loads, construction
defects, and environmental conditions, road surfaces are susceptible to a variety of defects,
the most prevalent of which are cracks. If these defects are not professionally repaired
promptly, they can seriously affect the driving quality and safety of traffic. Therefore,
it has become imperative to monitor and assess pavement conditions more frequently.
Nevertheless, the departments and agencies of pavement management face the challenges
of traditional inspection based on manual detection, which is not only inefficient and costly,
but also relies heavily on human subjective factors. When the inspection staff are fatigued,
they tend to misidentify or overlook crack information during detection, which could
significantly impact the accuracy of crack detection. Therefore, there is an urgent need
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for a high-efficiency and automated crack-detection method to support refined pavement
maintenance operations.

For many years, crack detection has mostly relied on traditional image-processing
methods, such as threshold segmentation [2–5], morphological method [6], wavelet trans-
form [7,8], and artificial feature engineering [9,10]. However, these traditional techniques
have many drawbacks, resulting in pavement-crack detection algorithms relying on tra-
ditional image-processing techniques have not been effectively applied in engineering
practice. For example, threshold segmentation is highly susceptible to road surface back-
ground information and expert knowledge [2], and the detection results depend largely
on the set hyperparameters and can only extract crack information that is significantly
different from the background lightness. Compared to threshold segmentation, although
the semi-automatic method based on morphology maintains the structure of the cracks
and enhances the quality of the segmented image, it is still difficult to completely extract
crack features with complex structure, and it remains sensitive to noise information [6].
The wavelet transform can effectively strike a balance between suppressing noise and
portraying edge details [7], but it is less effective in extracting cracks with uneven signal
strength. The artificial feature engineering techniques have improved the accuracy of crack
extraction, and they are time-consuming and labor-intensive because of the requirement for
manual feature design and exhibit poor robustness [9]. In conclusion, although traditional
image-processing techniques can detect cracks, these methods demonstrate poor robustness
and low accuracy and encounter difficulties in meeting the demand for high-precision and
fully automatic intelligent detection of pavement cracks.

Deep learning has exhibited exceptional performance in various tasks both upstream
and downstream of computer vision in recent years, such as image-level classification [11],
object-level detection [12], and pixel-level segmentation [13,14]. Built upon these achieve-
ments, deep learning has been widely employed for pavement-crack detection and attained
satisfactory results. Some researchers have embedded CNNs into edge detectors to enhance
the accuracy of crack edge detection. For example, the HED [15] for extracting edges of
images, consisting of CNNs combined with edge detectors, has achieved better results
than have traditional edge detectors. The model named RCF [16], with deeper convolu-
tional layers, obtains better performance on pavement-crack detection compared to HED.
More recently, to achieve more robust results and superior performance, research on crack
detection has increasingly shifted toward the end-to-end and pixel level. The FCN [17]
introduced to crack detection effectively alleviates the issue of low efficiency in crack de-
tection. The use of symmetrical encoder–decoder models, exemplified by U-Net [18] and
SegNet [19], has led to further improvement in detection accuracy. Due to the complexity
of road-surface backgrounds, segmentation models with larger receptive fields such as
PSPNet [20], Deeplabv3+ [21], TransUNet [22], and SwinUNet [23] have been employed for
crack detection. Additionally, some specialized deep neural networks for crack extraction
have been designed. Zou et al. [24] constructed a multi-level fusion structure based on
SegNet for crack segmentation. Liu et al. [25] proposed a network with CNNs and Trans-
former, which significantly enhanced the extraction effectiveness of cracks. Bai et al. [26]
designed a dual-path crack extraction network, enhancing the ability to describe complex
crack features. Zhang et al. [27] proposed a network based on deformable convolution
to adapt to the morphology of cracks. However, the following issues are still common:
(1) insufficient global contextual awareness—due to the diversity and complexity of road
scenes, simple convolutions with inadequate global contextual awareness fail to capture the
spatial correlations of crack features, resulting in significant impact from background noise
on crack detection; (2) inadequate capability to integrate multi-scale features—on account
of the diversity of crack structures, the results from a single scale often fail to accurately
and comprehensively represent crack information, limiting the performance of the model.

In addressing these aforementioned issues, this paper introduces a pixel-level crack
detection network (GGMNet). The results from experiments conducted on three public
datasets demonstrate the excellent performance, high accuracy, and strong robustness of
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GGMNet. Specifically, the DeepCrack dataset was utilized to evaluate the ability of GGM-
Net in extracting cracks within complex scenarios, the CrackTree260 dataset was employed
to demonstrate our model’s proficiency in recognizing various types of crack information,
and the Aerial Track Detection dataset was employed to assess the generalization capability
of the GGMNet under different viewpoints. The primary contributions of this paper can be
outlined as follows:

(1) A novel network for pavement-crack detection with excellent accuracy and strong
robustness was constructed.

(2) In the context of complex backgrounds, the GC-Resblock was constructed to
guide the model to focus more on crack-information extraction. Specialized for intricate
crack structures, the GPPM was innovatively designed to effectively aggregate features of
various sizes and shapes. Moreover, the MFF was constructed to reduce the probability of
missing detection.

2. Methods

This Section provides a comprehensive explanation of the proposed GGMNet ar-
chitecture, the details of each model component, and the employed deep supervision
training strategy.

2.1. Model Overview

The proposed GGMNet is presented in Figure 1 and comprises the encoder, decoder,
and multi-scale feature fusion module. Firstly, the network takes crack images as input into
the encoder, which utilizes GC-Resblock to obtain the local spatial and global contextual
information of cracks. Continuously, GPPM processes features from the encoder using
graph reasoning operators and a pooling pyramid structure, enriching them with higher-
dimensional and higher-order feature representations. Finally, the decoder gradually
restores crack features to the original resolution and employs MFF to integrate feature
information from different levels, thereby obtaining output results with rich spatial and
semantic information.
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2.2. Global Contextual Res-Block

Realistic scenes of crack images frequently contain complex backgrounds, such as
shadows, oil stains, debris, and garbage. If these types of noise are not suppressed, the
performance of the model will be weakened. Therefore, a global contextual Res-block
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(GC-Resblock) is proposed as the basic module of the encoder to guide the network to
emphasize the identities of cracks. The structure is depicted in Figure 2.

Remote Sens. 2024, 16, 1797 4 of 19 
 

 

2.2. Global Contextual Res-Block 
Realistic scenes of crack images frequently contain complex backgrounds, such as 

shadows, oil stains, debris, and garbage. If these types of noise are not suppressed, the 
performance of the model will be weakened. Therefore, a global contextual Res-block (GC-
Resblock) is proposed as the basic module of the encoder to guide the network to empha-
size the identities of cracks. The structure is depicted in Figure 2. 

 
Figure 2. Architecture of the proposed GC-Resblock. 

As indicated in Figure 2, GC-Resblock incorporates two components: a residual block 
[28] and a global contextual unit [29]. The residual block extracts local spatial information 
of crack features through convolutional operations and utilizes an identity mapping 
mechanism to aid in model training. The global semantic unit is utilized to grasp the over-
all information of the image, adaptively enhancing the output feature representation from 
the residual block. 

(1) Residual block: The residual block consists mainly of two 3 × 3 convolutions and 
a residual connection. Batch normalization and rectified linear unit are employed subse-
quent to every convolutional layer to normalize hidden features and address the issue of 
non-linear activation. The success of this module lies in its ability to preserve original fea-
tures to a certain extent, thereby providing some guarantee for gradient backpropagation. 

= ⊕ ( ( ))cbr cbry x f f x  (1)

δ=( ) ( ( ( )))cbr r bn convf x f f x  (2)

where convf  represents 3 × 3 convolution, bnf  represents batch normalization, and δr  
represents the relu activation function. 

(2) Global contextual unit: The features outputted by the residual block can represent 
shallow information but often contain significant noise that requires further processing. 
Therefore, this paper introduces the global contextual unit following the residual block. 
Initially, this module employs 1 × 1 convolution and the sigmoid activation function to 
produce pixel attention weights, where the highlighted regions denote cracks and low-
lighted regions represent the background. Subsequently, the input maps are multiplied 
by the generated attention weights to obtain redistributed results. Further, convolutional 
operations are applied to recalibrate inter-channel relationships, yielding output results 
that incorporate spatial and channel attention processing. 

Figure 2. Architecture of the proposed GC-Resblock.

As indicated in Figure 2, GC-Resblock incorporates two components: a residual
block [28] and a global contextual unit [29]. The residual block extracts local spatial infor-
mation of crack features through convolutional operations and utilizes an identity mapping
mechanism to aid in model training. The global semantic unit is utilized to grasp the overall
information of the image, adaptively enhancing the output feature representation from the
residual block.

(1) Residual block: The residual block consists mainly of two 3 × 3 convolutions and a
residual connection. Batch normalization and rectified linear unit are employed subsequent
to every convolutional layer to normalize hidden features and address the issue of non-
linear activation. The success of this module lies in its ability to preserve original features
to a certain extent, thereby providing some guarantee for gradient backpropagation.

y = x ⊕ fcbr( fcbr(x)) (1)

fcbr(x) = δr( fbn( fconv(x))) (2)

where fconv represents 3 × 3 convolution, fbn represents batch normalization, and δr repre-
sents the relu activation function.

(2) Global contextual unit: The features outputted by the residual block can represent
shallow information but often contain significant noise that requires further processing.
Therefore, this paper introduces the global contextual unit following the residual block.
Initially, this module employs 1 × 1 convolution and the sigmoid activation function
to produce pixel attention weights, where the highlighted regions denote cracks and
lowlighted regions represent the background. Subsequently, the input maps are multiplied
by the generated attention weights to obtain redistributed results. Further, convolutional
operations are applied to recalibrate inter-channel relationships, yielding output results
that incorporate spatial and channel attention processing.

y′ = y ⊕ fcw( fpw(y)⊙ y) (3)

fcw(x) = fconv(δr( fln( fconv(x)))) (4)

fpw(x) = δs( fconv(x)) (5)

where y and y′ denote the features from the residual block and final features, respectively;
fpw and fcw represent pixel operation and channel operation, respectively; fconv represents
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1 × 1 convolution; fln is layer normalization; and δs and δr denote sigmoid activation
function and relu activation function, respectively.

2.3. Graph Pyramid Pooling Module

The use of GC-Resblock effectively mitigates the expression of irrelevant information
and enhances the performance of the model in complex backgrounds. However, due to the
uneven force strength on road surface, the cracks exhibit diverse structures. The network
faces challenges in learning crack features of varying shapes and sizes. Therefore, to meet
the requirement of extracting complex crack structures, this paper establishes the graph
pyramid pooling module (GPPM), as depicted in Figure 3.
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As illustrated in Figure 3, the GPPM comprises two components: a pooling pyramid
module [30] and a graph reasoning unit [31]. The pooling pyramid module operates multi-
scale features by pooling layers of different sizes, thereby aggregating crack information of
different sizes. The graph reason block aims at perceiving global contextual information,
capturing the relationships between disjoint regions with irregularly shaped relationships.

(1) Pooling pyramid module: The feature map undergoes average-pooling operations
using various kernel sizes, followed by a 1 × 1 convolution. To preserve the original feature,
one path is not pooled. Then, these feature maps are introduced into the graph reasoning
unit to gain more contextual information, which is followed by elementwise addition and
1 × 1 convolution to obtain the output feature.

(2) Graph reasoning unit: The traditional convolutions can only handle pixels in the
neighborhood, and they often struggle to effectively capture long-range global relationships
between distant regions and require the use of multiple stacked convolutional layers. The
advantage of graph convolutions is the ability to directly capture the contextual information
of the entire graph. Thus, the graph reasoning unit is embedded in the pooling pyramid
module for establishing the relationship of distant regions. As shown in Figure 3, the
detailed operation is described below.

Projection: Before engaging in comprehensive graph-based relational inference, a
prerequisite involves the transformation of features from the coordinate space, facilitating
their projection and mapping onto the graph space. As shown in Figure 4, in contrast to
feature map g ∈ RC×H×W in the coordinate space, the projected feature map G ∈ RC×N in
the graph space stores the features through the nodes. The projection function is learned by
two 1 × 1 convolutions followed by elementwise multiplication.

G = fconv1(g)⊙ fconv2(g) (6)

where fconv1 and fconv2 both represent 1 × 1 convolution.
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Graph reasoning: The nodes denote the semantics of the original feature and facilitate
the identification of relationships in distant and irregular regions. To grasp the attributes of
the related nodes, the contextual relationship between each pair of nodes is represented
and reasoned through the application of graph convolutions.

G′ = fg(G)⊙ A (7)

where fg denotes the state update function of nodes in graph convolution, A represents the
node adjacency matrix, and these two parameters are both learnable.

Reverse projection: The final step involves mapping the output features to return to
the original coordinate space following the reasoning of relationships. Reverse projection is
very similar to the projection.

G′′ = G ⊕ ( fconv3(G)⊙ G′) (8)

where fconv2 and fconv3 are mutually inverse matrices.
In conclusion, the GPPM aggregates multi-scale features by a pooling pyramid module

and captures the relationship of arbitrarily shaped cracks with a graph reasoning unit. This
module enhances the ability of GGMNet to identify various sizes and shapes of cracks.

2.4. Multi-Scale Feature Fusion

To reduce the probability of missing detection and to ensure the accuracy of detecting
pavement cracks, the multi-scale feature fusion (MFF) is constructed to assemble the feature
maps of layers and avoid missing contextual and spatial information. As depicted in
Figure 1, the feature maps of each layer are upsampled to the scale of 256 × 256 and
subsequently introduced into the channel-weighting fusion unit (CWF), which is designed
to learn and assign the weights of each channel. Compared to previous studies [32,33],
we presume that the importance of each feature is different, and the relationship of these
maps is not explored, the effective complementary knowledge will be overlooked, but
redundant information will be retained. As shown in Figure 5, the channel-weighting
fusion unit is composed of convolution, pooling and sigmoid activation function. The
specific computational formula for this unit is as follows:

z′ = z ⊙ fpcs(z) (9)

fpcs(x) = δs( fconv( fp(x))) (10)

where z and z′ represent input maps and output maps, respectively; fconv represents
1 × 1 convolution; fp represents global average pooling operation; and δs denotes sigmoid
activation function.

Through the channel-weighting fusion unit, the same weight is shared among various
spatial positions within the feature channel, while feature weights for different channels are
redistributed. The useless channel information will be suppressed, and important channel
information will be prominently expressed.
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2.5. Loss Function

The BCE loss function exhibits superior efficacy in image segmentation missions,
indicating the disparities between ground truth and the predicted result [34]. However,
the issue of significant imbalance between positive and negative samples exists in crack
detection, and if only the BCE loss function is chosen, the model may fail to obtain the
global optimal effect. Thus, the Dice loss function [35], which is designed to lighten the
imbalance issues, is introduced into the training process.

l(Y,Y∗) = lBCE + lDice (11)

lBCE =
1
n

n

∑
i=1

(Y∗· log Yp + (1 − Y∗
p )· log(1 − Yp)) (12)

lDice = 1 − 2 × TP
2 × TP + FP + FN

(13)

where l(Y,Y∗), lBCE and lDice denote the total loss function, BCE, and Dice loss function,
respectively; N denotes the total number of pixels in the image; Y∗

p , Yp represent true and
predicted values at pixel P, respectively; TP denotes the true-positive samples predicted as
positive by the network; FP represents the negative samples predicted as positive by the
network; and FN is the positive samples predicted as negative by the network.

In addition, a deep supervision mechanism [36] is separately applied to each output
layer, which aims at enhancing the network’s segmentation accuracy and accelerating the
convergence speed of segmentation.

L =
M

∑
m

αmLside(Y∗
m, Ym) + L f use(Y∗, Y) (14)

where M represents the count of output layers; αm denotes the weight of each output layer;
and Lside and L f use represent the loss of each output layer and the fused predicted result,
respectively.

3. Experimental Dataset and Setup
3.1. Datasets

(1) DeepCrack: The DeepCrack dataset was collected by Y. Liu et al. [24], and it
contains 537 images of concrete pavement cracks with different scenes and light conditions.
All crack images in the dataset are 544 × 384 pixels. In particular, a substantial amount of
noise exists in this dataset in the form of such imagery as shadows, oil stains, and different
shapes of road debris.

(2) CrackTree260: The CrackTree260 dataset was collected by Q. Zou et al. [37] This
dataset comprises 260 pavement crack images of size 800 × 600 pixels, with multiple crack
types, such as transverse, longitudinal, mesh, and block. The cracks in this dataset show
various sizes and shapes, and it contains a number of relatively narrow cracks.

(3) Aerial Track Detection: The Aerial Track Detection dataset was collected by Z.
Hong et al. [38]. In contrast to the images in both of the above datasets, the crack images
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acquired under the unmanned aerial vehicle perspective for this dataset include 4118
post-earthquake pavement cracks with each image size being 512 × 512 pixels. This dataset
is applied for training and testing to verify the robustness of our network.

3.2. Parameter Setting

The GGMNet proposed relied on the PyTorch framework, and the NVIDIA RTX A5000
was employed to expedite the training of the model. The specific parameters of the training
process are presented in Table 1. In this study, the datasets were partitioned into training
sets, validation sets, and testing sets with a division ratio of 6:2:2. To mitigate the risk of
overfitting, data augmentation techniques, including random horizontal–vertical flipping,
random cropping, and random color mapping, were used during training.

Table 1. The parameter settings.

Item Setting

Epoch 100
Batch size 4
Optimizer Adam [39–41]

Initial learning rate 1 × 10−4 [39,41,42]
Minimum learning rate 1 × 10−6 [39,41,42]

Momentum 0.9 [39,41,42]
Learning rate decay type cos [39]

GPU memory 24 GB
Image size 256 × 256

Loss function BCE + Dice [39–42]

Data augmentation Random horizontal–vertical flipping, random
cropping, and random color mapping [39,41]

3.3. Evaluation Metrics

To objectively assess the performance of GGMNet, we applied four common semantic
segmentation evaluation metrics, precision (P), recall (R), F1 score (F1), and intersection
over union value (IOU), based on previous studies [32,33,42].

R =
TP

TP + FP
(15)

P =
TP

TP + FN
(16)

F1 =
2 × P × R

P + R
(17)

IOU =
TP

TP + FP + FN
(18)

4. Experimental Results

To evaluate the effectiveness of GGMNet, we combined the DeepCrack, CrackTree260,
and Aerial Track Detection datasets to conduct comparison experiments. Four evaluation
metrics were employed to conduct precise quantitative analysis. Additionally, visualization
of the results was conducted to qualitatively analyze the detection performance of both
GGMNet and other mainstream networks.

4.1. Results for DeepCrack

Table 2 shows the quantitative crack detection results of GGMNet. To evaluate the
accuracy and performance of GGMNet, we utilized several mainstream models. The results
indicate that GGMNet exhibited outstanding performance compared to current mainstream
networks for the DeepCrack dataset, with a precision of 83.63%, a recall of 90.93%, an F1



Remote Sens. 2024, 16, 1797 9 of 17

score of 87.13%, and an IOU value of 77.19%. Except for a slightly lower recall, all other
metrics were at their optimal values.

Table 2. Comparison of the methods’ P, R, F1, and IOU for DeepCrack/%.

Method Code (accessed on 16 May 2024) P R F1 IOU

HED [15] https://github.com/s9xie/hed 78.78 88.12 83.19 71.21
RCF [16] https://github.com/yun-liu/RCF 79.36 89.14 83.97 72.37

DeepCrack [24] https://github.com/qinnzou/DeepCrack 79.63 87.92 83.57 71.77
U-Net [18] https://github.com/milesial/Pytorch-UNet 79.15 90.29 84.35 72.94
SegNet [19] https://github.com/vinceecws/SegNet_PyTorch 79.43 88.31 83.63 71.88
PSPNet [20] https://github.com/hszhao/PSPNet 69.50 82.87 75.60 60.77

Deeplabv3+ [21] https://github.com/VainF/DeepLabV3Plus-Pytorch 75.80 91.21 82.79 70.64
TransUNet [22] https://github.com/Beckschen/TransUNet 78.04 91.00 84.02 72.45
SegFormer [43] https://github.com/NVlabs/SegFormer 73.58 86.11 79.35 65.78
DMFNet [26] https://github.com/Bsl1/DMFNet 76.71 90.56 83.06 71.03

CrackFormer [25] https://github.com/LouisNUST/CrackFormer-II 81.15 91.81 86.15 75.68
GGMNet https://github.com/hzlsdxx/GGMNet 83.63 90.93 87.13 77.19

Figure 6 shows the visualization of the qualitative results of each model. GGMNet
obtained the superior visual performance compared with the other models. As we can
see in the top row in Figure 6, all models could acquire acceptable detection results when
the interference of the background was weak and the structure of the crack was simple.
However, in addition to the GGMNet, HED, and DeepCrack, the other networks all omitted
some details of cracks (see the red rectangular box). As seen in the second and third rows,
only the GGMNet detected the crack information completely and without the problem of
misdetection, but there is still a considerable number of results with missed crack detection
(see the red rectangular box) and background error recognition (see the yellow rectangular
box) for the other models. This is mainly because the proposed GGMNet uses the GC-
Resblock in the encoder to suppress the background noises and highlight the crack feature
expression, reduces the probability of misdetection of background information, and obtains
coherent crack information. As observed from the fourth and fifth rows, only GGMNet had
a satisfactory crack-detection performance when the structure of cracks was complex and
the background noises interference was strong. Taking a closer look at the red rectangular
box in fifth row, we can see that GGMNet alone extracted the cracks unlabeled, which is
because GGMNet applies both the GPPM and MFF, enabling awareness of global semantic
information and the spatial relationships of the microcrack. In conclusion, GGMNet
obtained outstanding experimental results for different scenes and cracks of diverse scales
and could effectively distinguish between the crack and background even though the
interference of the background was strong.

4.2. Results for CrackTree260

To further validate the validity and generalizability of the GGMNet, we also performed
experimental investigations using the CrackTree260 dataset. This dataset contains all crack
types, and the structure of the cracks is more complex compared with the DeepCrack
dataset. Specifically, this dataset incorporates some thin cracks. Table 3 exhibits the
quantitative comparison results of each model. The precision, recall, F1 score, and IOU
value of GGMNet were the highest, and these metrics of GGMNet significantly exceeded
those of the others.

https://github.com/s9xie/hed
https://github.com/yun-liu/RCF
https://github.com/qinnzou/DeepCrack
https://github.com/milesial/Pytorch-UNet
https://github.com/vinceecws/SegNet_PyTorch
https://github.com/hszhao/PSPNet
https://github.com/VainF/DeepLabV3Plus-Pytorch
https://github.com/Beckschen/TransUNet
https://github.com/NVlabs/SegFormer
https://github.com/Bsl1/DMFNet
https://github.com/LouisNUST/CrackFormer-II
https://github.com/hzlsdxx/GGMNet
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Table 3. Comparison of the methods’ P, R, F1, and IOU for the CrackTree260 dataset/%.

Method P R F1 IOU

HED 74.10 73.85 73.97 58.70
RCF 73.72 72.45 73.08 57.58

DeepCrack 80.28 76.44 78.31 64.42
U-Net 85.21 81.68 83.41 71.54
SegNet 80.41 75.58 77.92 63.83
PSPNet 18.15 20.23 19.13 10.58

Deeplabv3+ 40.81 72.07 52.11 40.81
GGMNet 88.48 85.08 86.75 76.59

Figure 7 shows the visualization of the qualitative results of each model. The outcomes
of the proposed GGMNet were more accurate and complete. As we can see from the first
and second rows in Figure 7, the other models except for GGMNet all missed detections
when the structure of cracks was intricate (see the red rectangular box). Compared with
that of additional labels, the visual performance of GGMNet was remarkably improved.
This is because GGMNet with the GPPM and MFF can effectively aggregate multi-scale
crack features and successfully capture the relationships of cracks across different regions
and shapes. The third row shows that GGMNet displayed exceptional extraction abilities
in microcracks and overcame the interference of background noises. In contrast, the
other models all exhibited error in detection and omissions in extraction, and their visual
performance was markedly inferior to that of GGMNet. In addition, we can find from
the fourth and fifth rows that the GGMNet demonstrated robust performance even under
uneven lighting conditions. This can be attributed to the fact that the GC-Resblock of the
GGMNet guide network concentrates on the cracks and suppresses the other noises. In
summary, the GGMNet showed excellent detection performance for the cracks of various
sizes and shapes.
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4.3. Results for Aerial Track Detection

In contrast to the aforementioned two datasets, this dataset was acquired from the
aerial viewpoint of drones. Due to the origin of the images from post-earthquake highway
crack formations, where the cracks exhibit significant severity and the scene is relatively
homogeneous, the crack information can be easily identified and extracted. The quantitative
experimental findings of diverse segmentation models on the Aerial Track Detection dataset
are shown in Table 4. As depicted in Table 4, the proposed GGMNet achieved 94.13%
precision, 91.37% recall, 92.73% F1 score, and 86.45% IOU values. Compared to the other
models, the GGMNet exhibited superior performance in the all evaluation metrics except
for the recall. For recall, the GGMNet achieved suboptimal results, but this was only 0.01%
lower than the result for DeepCrack.

Table 4. Comparison of the methods’ P, R, F1, and IOU for the Aerial Track Detection dataset/%.

Method P R F1 IOU

HED 86.34 85.88 86.11 75.61
RCF 91.44 88.67 90.03 81.87

DeepCrack 93.46 91.38 92.41 85.89
U-Net 91.23 89.10 90.15 82.07
SegNet 93.62 90.74 92.16 85.46
PSPNet 84.26 87.50 85.85 75.20

Deeplabv3+ 89.16 87.19 88.16 78.83
GGMNet 94.13 91.37 92.73 86.45

Figure 8 qualitatively displays the visualization results of each model. All models
achieved satisfactory performance, but except for GGMNet, the models still had some
misdetection (the red rectangular box in the first row) and omissions in extraction (the red
rectangular box in other rows). As depicted in Figure 8, it is evident that the crack-detection
results of GGMNet were remarkably similar to the labels.
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4.4. Experimental Conclusions

The results of the experiments on three publicly available datasets indicate that GGM-
Net achieved the best performance. The results obtained on the DeepCrack dataset provide
evidence that GGMNet exhibits excellent performance even in the presence of complex
background information. The experiments on CrackTree260 demonstrate that GGMNet
is effective in extracting cracks of various shapes and sizes, particularly thin cracks. The
results for the Aerial Track Detection prove that the proposed GGMNet is capable of adapt-
ing to different perspectives and fields of view for crack detection. In conclusion, GGMNet
is characterized by outstanding performance and strong robustness.

5. Discussions
5.1. Comparison of Effectiveness among Different Levels of GC-Resblock

To showcase the effectiveness of varying tiers of GC-Resblock, we conducted addi-
tional investigations into the functionality of this module using ablation experiments and
feature visualization techniques on the DeepCrack dataset.

Table 5 displays the assessment findings for different levels of GC-Block for the
DeepCrack testing sets. Compared with the No. 1 model, No. 5 acquired the optimal
results, with the F1 score and IOU value improving by 1.43% and 2.22%, respectively. As
we can see, the chosen evaluation metrics consistently exhibited incremental improvements
from the No. 1 to the No. 5 model, indicating the effectiveness of incorporating GC-
Resblock across different stages. Meanwhile, it can be observed that more significant
improvements were obtained by incorporating this module in stage 1 and stage 4, resulting
in increases of 0.57% and 0.81% for IOU value, respectively.

To further investigate the role of GC-Resblock, the feature maps were visualized before
and after the GC-Resblock was applied at different levels. Figure 9 shows the visualized
results, where different brightness levels indicate the model’s attention to different regions.
As shown in Figure 9, the feature maps all exhibited varying levels of luminosity changes
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before and after the addition of GC-Resblock. To be more specific, a-b, c-d, and e-f show the
brightness of cracks increased while the brightness of the background regions decreased.
The top row in Figure 9 shows that the semantic information of cracks in f was more
extensive compared to that in a. In conclusion, the evaluation metrics and visualizations all
demonstrate that the GC-block guides the network to emphasize the identities of cracks
while attenuating background interference.

Table 5. Assessment findings for different levels of GC-Resblock for DeepCrack/%.

No. Stage1 Stage2 Stage3 Stage4 F1 IOU

1 85.70 74.97
2 ! 86.07 75.54
3 ! ! 86.33 75.95
4 ! ! ! 86.61 76.38
5 ! ! ! ! 87.13 77.19
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5.2. Comparison of the Effectiveness among Different Multi-Scale Aggregation Schemes

Multi-scale aggregation approaches have been widely applied in tasks such as ob-
ject detection and semantic segmentation, with related studies confirming their effective-
ness [44–48]. In this study, the proposed GPPM enabled our network to perceive distant
multi-scale crack features, resulting in a better representation of complex multidimensional
crack features. To further demonstrate the superiority of this module, we compared it with
other mainstream multi-scale aggregation approaches, and the comparative results are
presented in Table 6, which indicate our module is more suitable for extracting complex
crack features.

Table 6. F1 score and IOU value of the different multi-scale aggregation schemes for DeepCrack/%.

No. Method F1 IOU

1 ASPP [49] 86.09 75.58
2 DRB [46] 86.31 75.93
3 MFEM [44] 85.44 74.58
4 DCI [46] 86.90 76.82
5 GPPM 87.13 77.19
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5.3. Comparison of Effectiveness among Various Feature Fusion Methods

To affirm the superiority of the CWF, we conducted a comprehensive comparison
of various feature fusion methods on the DeepCrack testing set. As shown in Figure 10,
the proposed CWF obtained the optimal F1 score and IOU value compared to the other
methods. This is because features at different layers contain complementary and redundant
information. If there are only output features from a single dimension, the results are often
incomplete. If these features are concatenated without processing from different layers, this
will lead to feature redundancy, and satisfactory results will not be acquired. Therefore,
considering the contributions of features from different layers is of paramount importance.
We devised a channel-weighting fusion module (CWF) that adaptively captures the weights
of each channel, facilitating the propagation of informative features. The CWF proposed is
more adaptive to crack detection in contrast to the SE module [50].
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5.4. Ablation Experiments

To showcase the effectiveness of each component we proposed, the effects of removing
GC-Resblock, GPPM, and MFF on the model performance are discussed, respectively. The
findings from the performed ablation experiments on the DeepCrack dataset are displayed
in Table 7.

Table 7. Ablation experiments for DeepCrack/%.

No. Method F1 IOU

1 Baseline 84.35 72.94
2 w/o GC-Resblock 85.70 74.97
3 w/o GPPM 86.64 76.42
4 w/o GRB(GPPM) 86.86 76.78
5 w/o MFF 86.57 76.33
6 GGMNet 87.13 77.19

The F1 score and IOU value of the model decreased significantly after removal of
the GC-Resblock, which indicates that focusing on essential information and suppressing
background noise is of paramount importance. The two metrics of GGMNet decreased to
some extent after removal of the GPPM and MFF, respectively, which indicates that the
aggregation and interaction of multi-scale information are also of great importance. In
addition, for the GPPM module, discarding the graph reasoning unit negatively impacted
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the model’s performance, which indicates that capturing the relationships among different
regions and extracting irregular spatial information is crucial for crack detection.

6. Conclusions

This paper introduces a novel pavement-crack detection network named GGMNet.
Combined with three crack datasets, the experimental findings from quantitative assess-
ment and qualitative analysis demonstrate that GGMNet exhibits excellent performance
and strong robustness. This method will facilitate accurate and comprehensive pavement-
crack detection, providing significant engineering significance for digital highway manage-
ment and maintenance. Below are the specific contributions of this paper:

(1) An accurate and robust network, named GGMNet, is proposed for pavement-crack
detection.

(2) A GC-Resblock was developed to guide the network to emphasize the identities of
cracks while suppressing the background noises effectively.

(3) A GPPM was constructed to support the model to aggregate multi-scale features
and capture the long-range dependencies of cracks.

(4) A MFF structure was designed to facilitate channel interaction and achieve feature
complementarity across different layers.

Although the proposed GGMNet shows optimal detection performance, it has certain
limitations. The model’s parameter and computational complexity are slightly higher.
Consequently, our future focus will be on simultaneously improving the model’s accuracy
and addressing speed considerations.
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