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Abstract: The fusion of infrared and visible images aims to leverage the strengths of both modalities,
thereby generating fused images with enhanced visible perception and discrimination capabilities.
However, current image fusion methods frequently treat common features between modalities
(modality-commonality) and unique features from each modality (modality-distinctiveness) equally
during processing, neglecting their distinct characteristics. Therefore, we propose a DDFNet-A for
infrared and visible image fusion. DDFNet-A addresses this limitation by decomposing infrared
and visible input images into low-frequency features depicting modality-commonality and high-
frequency features representing modality-distinctiveness. The extracted low and high features were
then fused using distinct methods. In particular, we propose a hybrid attention block (HAB) to
improve high-frequency feature extraction ability and a base feature fusion (BFF) module to enhance
low-frequency feature fusion ability. Experiments were conducted on public infrared and visible
image fusion datasets MSRS, TNO, and VIFB to validate the performance of the proposed network.
DDFNet-A achieved competitive results on three datasets, with EN, MI, VIFF, QAB/F, FMI, and Qs

metrics reaching the best performance on the TNO dataset, achieving 7.1217, 2.1620, 0.7739, 0.5426,
0.8129, and 0.9079, respectively. These values are 2.06%, 11.95%, 21.04%, 21.52%, 1.04%, and 0.09%
higher than those of the second-best methods, respectively. The experimental results confirm that our
DDFNet-A achieves better fusion performance than state-of-the-art (SOTA) methods.

Keywords: infrared image; visible image; image fusion; multi-modality; attention

1. Introduction

Infrared and visible imaging sensors offer distinctive modalities for targets, and their
fusion is a crucial research topic in the fields of computer vision and image processing [1,2].
Infrared images highlight the thermal radiation emitted by objects through pixel intensity.
However, they often have lower resolution and lack detailed texture information. However,
visible images present rich textual detailed features through gradients and edges. However,
they face challenges in providing valuable information about objects under weak light
conditions. The fusion of complementary features from infrared and visible modalities into
a fused image can provide a more accurate scene depiction than any single modality image,
thus further supporting advanced visual tasks. The fusion of infrared and visible images
plays a crucial role in various fields such as remote sensing [3,4], object tracking [5,6], object
detection [7], and other fields requiring comprehensive scene understanding. He et al.
proposed a multi-level fusion algorithm [8] that enhances target visibility by integrating
both pixel- and feature-level fusion, effectively addressing the relationship between low-
and high-frequency components. Similarly, Stephen et al. introduced an improved target
tracking method [9] through infrared–visible image fusion, employing a PCA-weighted
fusing rule. Surveillance systems capitalize on the complementary properties of infrared
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and visible images, employing fusion techniques such as framelet transform [10], NSCT
decomposition [11], and hybrid fusion algorithms [12] for enhanced object detection. In the
domain of remote sensing, Li et al. proposed a medium-altitude unmanned aerial vehicle
remote sensing system [13] integrating image registration and fusion. Additionally, fusion
techniques have been applied to geostationary meteorological satellite image fusion [14].

The challenge in designing an effective fusion algorithm lies in its ability to extract
and retain useful information from both modalities, while simultaneously eliminating re-
dundancy and noise. This process requires a delicate balancing act to enhance the valuable
attributes of the images without introducing unnecessary information or distortion. Accord-
ing to the variances in fusion theory and strategy, infrared and visible image fusion (IVIF)
techniques can be divided into two types: traditional and deep learning-based methods.
Traditional IVIF methods follow a three-stage pipeline: feature extraction employing hand-
crafted models, feature fusion using specific strategies, and image reconstruction using an
inverse feature extractor. These methods are categorized into multi-scale transformation-
based methods, sparse representation-based methods, saliency detection-based methods,
and spatial transformation-based methods. Multi-scale transform-based fusion methods
can improve visual attention expression, thereby achieving better fusion results [15,16].
Sparse representation is applied in image fusion [17,18] because it can fully preserve the
information of the source images in the fusion result by using the learning ability of the over-
complete dictionary. Saliency-based fusion methods extract important features (saliency
maps) from source images and integrate them with the transformed source data to gener-
ate fused images. Spatial transformation-based fusion methods project high-dimensional
source images into a lower-dimensional space for feature analysis, facilitating effective
fusion [19]. Although traditional methods have achieved good results in the IVIF task, they
also exhibit some limitations. First, traditional methods often use identical transformations
for feature extraction from diverse source images, neglecting their unique characteristics
and limiting the feature representation. Second, manually designed fusion strategies in
traditional methods often face challenges when adapting to the increasing complexity of
fusion tasks, thereby limiting their overall performance.

Recently, advancements in deep learning have partially addressed the limitations of
traditional methods in IVIF tasks [20]. First, deep learning-based methods can harness
dual-branch network architectures to achieve distinct feature extraction for each source
image, thereby capturing more focused and informative features. Second, deep learn-
ing excels in image fusion by leveraging networks for adaptive feature integration and
continually refining the results through suitable loss functions. Deep learning-based frame-
works for infrared and visible image fusion can be broadly categorized into three types:
autoencoders (AEs), convolutional neural networks (CNNs), and generative adversar-
ial networks (GANs). In addition, transformer-based architectures have emerged as a
promising approach for image fusion tasks, gaining increasing attention in recent times.
AE-based frameworks leverage an encoder–decoder architecture. The encoder extracts an
informative feature representation of the input image pairs, and the decoder then utilizes
these extracted features to reconstruct the fused images [21]. CNN-based fusion methods
introduce convolutional neural networks into image fusion tasks, leveraging end-to-end
feature extraction, fusion, and image reconstruction [22]. GAN-based fusion methods use a
competitive training process in which a generator creates fused images, and a discriminator
tries to identify real source images from the generated images [23].

However, current IVIF methods have two limitations. First, they often treat common
features between modalities (modality-commonality) and unique features from each modal-
ity (modality-distinctiveness) equally during feature extraction and fusion, neglecting
their distinct characteristics. Second, these methods are limited to effectively extracting
modality-distinctiveness features and fusing modality-commonality features. These short-
comings hinder the performance of IVIF tasks [24]. From a frequency domain perspective,
to consider the modality characteristics, modality-commonality features are reflected by
global low-frequency information, while modality-distinctiveness features are reflected
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by local high-frequency information. These features, which have different characteristics,
require different fusion strategies. Low-frequency feature fusion prioritizes the interaction
between features from infrared and visible images. In contrast, high-frequency feature
fusion enhances the representation of local detail information.

Therefore, we propose an attention-based dual-branch feature decomposition fusion
network (DDFNet-A) for IVIF tasks. This novel framework decomposes infrared and visible
images into low-frequency features, capturing the commonalities across modalities, and
high-frequency features, representing the distinctiveness of each modality. These features
are then fused and used to reconstruct the final fused images. Our contributions can be
summarized in three aspects:

• We propose a novel attention-based dual-branch framework for IVIF. This frame-
work considers the characteristics of each modality during the feature processing
phase, enhancing the extraction and fusion capabilities specific to these modality
characteristic features.

• We propose a hybrid attention block (HAB) to extract high-frequency features. This
block can dynamically adjust the weights of the feature maps across the channel,
frequency, and spatial dimensions based on their significance to the task.

• We propose a base feature fusion (BFF) module to fuse low-frequency features. This
module utilizes three-stage fusion strategies to integrate the features of the cross-
modality global dependencies.

• Experiments on the MSRS [25], TNO [26], and VIFB [27] datasets demonstrated that
DDFNet-A achieved superior results in both visual quality and quantitative evaluation.

2. Related Work
2.1. Deep Learning Based IVIF Methods

AE-based IVIF methods typically employ an encoder–decoder architecture. The
encoder extracts informative features from infrared and visible source images, whereas the
decoder reconstructs the fused images. Xu et al. [28] used two encoder–decoder networks
for feature extraction and decomposition. The extracted features are then fused using
weighted averaging and max-pooling strategies. Wang et al. [29] addressed the limitations
of missing multi-scale features and weak capture of global dependencies by incorporating
dense connections within their network architecture. Zhao et al. [30] decomposed an
image into background and detailed features within the encoder. L1-norm attention is
employed for weight allocation during this decomposition. The decoder then reconstructs
the final image. Li et al. [31] proposed a cross attention mechanism (CAM) for image fusion,
employing a two-stage training strategy with auto-encoders for each modality and a CAM
decoder to integrate features and enhance fused images. Ji et al. [32] proposed MRANet,
a fusion network combining convolutional residual structures with an attention-based
multi-scale fusion strategy to effectively extract local and global features from images.
Luo et al. [33] proposed a hierarchical fusion network with triple fusion and a cascading
edge-prior branch for infrared and visible image fusion, along with a novel loss function
for improved edge representation. Wang et al. [34] proposed a two-stream auto-encoder
for image fusion, using wavelet decomposition and structural feature map decomposition
(SFMD) for enhanced feature fusion with carefully crafted rules.

CNN-based IVIF methods involve end-to-end network modeling for feature extraction,
fusion, and image reconstruction. Hou et al. [35] improved the loss function to preserve
the local features from the source images to the fused images based on saliency features.
STDFusionNet [36] uses saliency information from the source images in the loss function
to guide the fusion process. This approach ensures that the fused images retain important
information from the infrared images. Tang et al. [25,37] proposed a real-time image fusion
network called semantic-aware fusion (SeAFusion) and a progressive image fusion network
based on illumination perception (PIAFusion). Li et al. [38] introduced an unsupervised
fusion model for infrared and visible images. It employs residual dense blocks for feature
extraction and gradient loss to enhance texture detail expression. Pan et al. [39] introduced
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an efficient VIF model based on CNN, preserving details and integrating feature infor-
mation adaptively guided by source images within the learning model. Yang et al. [40]
introduced a fusion framework merging multi-scale CNNs with saliency weight maps. Ini-
tial weights from source features are refined, processed by CNNs, and adjusted adaptively
using saliency. Tang et al. [41] proposed EdgeFusion, a method combining weighted least
squares decomposition, sub-window variance filtering, and visual saliency mapping for
infrared and visible image fusion.

The GAN framework consists of a generator and a discriminator. FusionGAN [42]
proposed an adversarial training scheme for the IVIF problem; however, it exhibited
limitations in simultaneously preserving crucial information from infrared images and
detailed textures from visible images. Ma et al. [43] proposed improvements to address
the shortcomings in preserving image details during fusion by incorporating new loss
functions into their network. Ma et al. [23] proposed an end-to-end fusion model using a
conditional GAN with a dual-discriminator to fuse source images of varying resolutions.
Rao et al. [44] proposed AT-GAN, a method for multi-modal image feature extraction
using intensity attention, semantic transition, and quality assessment modules to preserve
key features and filter noise. Huang et al. [45] proposed MAGAN for fusing infrared and
visible images, employing a multiattention generator and two discriminators to preserve
salient targets and texture information. Li et al. [46] proposed DANT-GAN, which uses
dual attention mechanisms for feature extraction and fusion at local and global levels to
preserve information and compensate for feature extraction loss.

2.2. Vision Attention Methods

Vision attention mechanisms selectively emphasize important information while sup-
pressing irrelevant details. Methods include channel attention mechanisms, spatial atten-
tion mechanisms, and transformer-based approaches.

The channel attention mechanism enhances focus on important channels and reduces
focus on unimportant channels by calculating the weight of each channel. SENet [47] uti-
lizes squeeze-and-excitation (SE) blocks to capture global image information and improve
the feature representation for object classification tasks. To improve its ability to capture
complex features, Gao et al. [48] proposed an enhancement of the SENet architecture by
incorporating global second-order pooling (GSoP) within the squeeze module.

The spatial attention mechanism highlights important regions in the feature maps
while suppressing the background noise. Mnih et al. [49] proposed a recurrent atten-
tion model (RAM), that combined recurrent neural networks (RNNs) with reinforcement
learning. This approach allows RAM to focus on informative regions within CNN feature
maps, thereby optimizing computational efficiency. Jaderberg et al. [50] proposed a spatial
transformer network (STN), that utilizes a sub-network to predict affine transformations,
allowing it to focus on important regions within an image.

Furthermore, some methods combine both channel and spatial attention mechanisms
to achieve more effective attention. Woo et al. [51] proposed the CBAM module, which
sequentially calculates the channel-wise and spatial attention. These attentions are then
combined to generate a final attention map, which refines the original feature map by
applying weighted adjustments.

The transformer model utilizes self-attention mechanisms to capture global feature
dependencies, demonstrating effectiveness particularly in natural language processing
(NLP) tasks [52]. Recently, the transformer model has demonstrated potential in computer
vision [53,54]. Wu et al. [55] designed a lite transformer (LT) model specifically for mobile
devices used in NLP tasks. Their approach reduces the computational load without
sacrificing the performance by employing a special group of attention mechanisms that
focus on both the local context and long-range dependencies within the text. Restormer [56]
combined multi-Dconv head transposed attention (MDTA) and gated-Dconv feed-forward
network (GDFN) modules to efficiently capture both local and non-local pixel interactions.
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This allows high-resolution images to be handled and achieves excellent performance in
image restoration tasks.

Building on the aforementioned research, we propose DDFNet-A, which integrates
a hybrid attention mechanism, combining channel, frequency, and spatial attention to
extract high-frequency local features. Additionally, our model adopts the LT and Restormer
modules to capture global features and generate high-quality fused images.

3. Methodology
3.1. Overview

The DDFNet-A consists of three components: (1) an encoder for feature extraction,
(2) a fusion network for integrating cross-modality features, and (3) a decoder for generating
the fused images. The overall framework of the DDFNet-A is illustrated in Figure 1. For
simplicity, low-frequency features are referred to as base features, and high-frequency
features are referred to as detail features in the subsequent discussion.

Figure 1. The architecture of the DDFNet-A.

3.2. Encoder

The encoder in Figure 1 comprises three components: a share feature encoder (SFE),
base feature encoder (BFE), and detail feature encoder (DFE). SFE, BFE, and DFE are
denoted as S(·),B(·), and D(·), respectively.

3.2.1. Share Feature Encoder

SFE is employed to extract complementary and shared shallow features {φS
IR, φS

VI}
from the input infrared and visible images {IR, VI}, i.e.,

φS
IR = S(IR), φS

VI = S(VI). (1)

The Restormer block [56] was selected as the foundational unit of the SFE to derive
global context features from input images through self-attention across feature dimen-
sions. This facilitates the extraction of shallow cross-modality features without imposing a
significant increase in the computational burden.

3.2.2. Base Feature Encoder

To extract the base features {φB
IR, φB

VI} from shallow features {φS
IR, φS

VI}, a lite trans-
former (LT) block [55] is selected as the foundational unit of the BFE, i.e.,

φB
IR = B(φS

IR), φB
IR = B(φS

VI). (2)

The LT block efficiently manages long-range spatial dependencies and captures overall
structural and global background information. Additionally, it reduces the size of the
embedding layer while maintaining the performance and computational efficiency by
replacing the feedforward neural network with a broader attention layer.
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3.2.3. Detail Feature Encoder

In contrast to the BTE, the DFE is employed to extract detail features {φD
IR, φD

VI} from
shallow features {φS

IR, φS
VI}, i.e.,

φD
IR = D(φS

IR), φD
VI = D(φS

VI). (3)

Similar to RevNets [57], the DFE divides the detail features {φD
IR, φD

VI} channels into
two parts, treating them separately and then combining them through a channel concate-
nation operation. The DFE architecture is shown in Figure 2. This strategy substantially
reduces the computational load of the model, while minimally affecting its performance.
Moreover, it enhances the ability to capture critical feature information during propaga-
tion, thereby improving the detail feature representation for image reconstruction. The
calculation process for DFE is as follows:

φD
I,n+1[c + 1 : C] = φD

I,n[c + 1 : C] +HAB1(φ
D
I,n+1[1 : c]),

φD
I,n+1[1 : c] = φD

I,n[1 : c]� exp(HAB2(φ
D
I,n+1[c + 1 : C])) +HAB3(φ

D
I,n+1[c + 1 : C]),

φD
I,n+1 = CAT {φD

I,n+1[1 : c], φD
I,n+1[c + 1 : C]}.

(4)

where I denotes the input image pairs {IR, VI}, φD
I,n[1 : C] ∈ Rh×w×C is the features

from 1st to the Cth channels of the input features for the nth layer of the DFE. The �
denotes the Hadamard product, and CAT (·) denotes a channel concatenation operation.
HABi( i = 1, 2, 3)(·) is a hybrid attention block (HAB).

The HAB was proposed to serve as the computing unit within the DFE to extract
local detail features. The HAB integrates a channel attention block (CAB) with a frequency
channel attention block (FCAB) and a spatial attention block (SAB) to enhance detail
features and suppress noise. The HAB can learn the importance of features across channels,
frequencies, and spatial dimensions. This allows the extraction of more informative feature
representations. The structure of the HAB is illustrated in Figure 2.

3.3. Fusion Network

The fusion network shown in Figure 1 comprises a base feature fusion (BFF) layer
and detail feature fusion (DFF) layer. The BFF and DFF are denoted by F B(·) and
FD(·), respectively.

3.3.1. Base Feature Fusion

The BFF is proposed to fuse the base features {φB
IR, φB

VI} to generate fused base
features φB

F , i.e.,

φB
F = F B(φB

IR, φB
VI). (5)

The BFF adopts a three-stage fusion strategy to ensure the comprehensive fusion of
multi-modality base features. The structure of the BFF is shown in Figure 3. The first stage
leverages both addition and concatenation operations to generate the preliminary fused
features. Subsequently, an LT block with self-attention was employed in the second stage to
capture the global dependencies within the fused features. Finally, the third stage utilizes
another LT block with cross-attention to further enrich and enhance the robustness of the
fused feature representations. The BFF was calculated as follows:

Fusion stage 1 : φB
Add = φB

IR + φB
VI , φB

Concat = CAT (φB
IR, φB

VI);

Fusion stage 2 : φB
F

′
= LTSel f−Attention(φ

B
Add + φB

Concat);

Fusion stage 3 : φB
F = LTCross−Attention((φ

B
F

′
⊗ φB

Add + φB
F

′
⊗ φB

Concat), (φB
Add + φB

Concat)).

(6)
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(a)

Detail Feature Encoder (DFE)

HAB HAB

[1:c]

[c+1:C]

[1:c]

[c+1:C]

HAB

(b)

Hybrid Attention Block (HAB)

SAB

CAB

FCAB

BatchNorm

7x7 Conv 2d

1-Sigmoid

Sigmoid

Symbols

Spatial Attention
Block (SAB)

7x7 Conv

Global Pooling

Frequency Channel 
Attention Block (FCAB)

IFFT

1x1 Conv, Relu,
1x1 Conv

Global Pooling

FFT

Channel Attention
Block (CAB)

1x1 Conv, Relu,
1x1 Conv

Global Pooling

Element-wise 
Multiplication

Sigmoid 
Function

Element-wise
Addition

Figure 2. The architecture of the DFE and HAB.

In the calculation of cross-attention in the third stage of fusion, (φB
F

′
⊗ φB

Add + φB
F

′
⊗ φB

Concat)
serves as the query, while (φB

Add + φB
Concat) serves as both the key and the value. A residual

structure is employed to prevent information loss.
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Figure 3. The architecture of the BFF.

3.3.2. Detail Feature Fusion

The DFF is employed to fuse the detail features {φD
IR, φD

VI} to generate fused detail
features φD

F , i.e.,

φD
F = FD(φD

IR, φD
VI). (7)

Considering that the inductive bias for DFF should be similar to that of DFE, we employed
a DFE-like network for the DFF layer.

3.4. Decoder

The fused base features and detail features are concatenated along the channel di-
mension to form the input of decoder DR(·) in Figure 1, which then outputs the fused
images F.

F = DR(CAT (φB
F , φD

F )). (8)

Considering the characteristics of the fused base and detail features, similar to SFE,
we selected the Restormer module as the foundational unit for the decoder.

3.5. Loss Function

In the image fusion task, ground truth is not available for supervision. For im-
age decomposition and reconstruction, a loss function for model training was proposed
as follows:

Loss = L1 + α1L2 + α2L3. (9)

where L1 is the reconstruction loss, which measures the difference between input images I
and fused images F. L2 is the decomposition loss used for decomposing the input images
into base and detail features. L3 is the gradient loss used to preserve the texture details.
Hyperparameters α1 and α2 are used to adjust the weights of L2 and L3. L1 comprises the
Charbonnier loss [58] and SSIM loss [59]. Charbonnier loss is used for detail reconstruction,
whereas SSIM loss measures the difference in structure between the input and fused images.

L1 = LCharbonnier + βLSSIM

L1 =
√
||max(IR, VI)− F||2 + ε1

2 + β(1− SSIM(I, F)).
(10)

where β is used to adjust the weights of LSSIM and ε1 = 10−3 is a small constant, following
Lai and Huang [58]. CC loss [24] is adopted for feature decomposition, leveraging its ability
to decompose the input images based on modality correlation.
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L2 =
(LD

cc)
2

LB
cc

=
(cc(φD

IR, φD
VI))

2

cc(φB
IR, φB

VI) + ε2
. (11)

where cc(·) denotes the correlation coefficient, and ε2 is set to 1.01 to ensure that this term
remains positive at all times, following Zhao and Bai [24]. Gradient loss L3 aggregates the
brightness and edge information of the input images, preserving the texture details.

L3 =
1

HW
|| |∇F| −max(|∇IR|, |∇VI |)||1. (12)

where ∇ represents the Sobel gradient operator, H and W are the height and width of
the images.

4. Experimental Results and Analysis

To verify the performance of the DDFNet-A, we conducted extensive experiments on
the public datasets. First, we introduce experimental settings, datasets, and evaluation
metrics. Then, we conducted an ablation study and comparative experiments to validate
the method proposed in this paper. The experimental details are outlined below.

4.1. Experiment Setup

Experiments were conducted on a machine equipped with eight NVIDIA V100 GPUs.
During the preprocessing stage, each training sample was randomly cropped into patches
of size 128 × 128. Training was performed for 30 epochs, with a batch size of 32. The
Adam optimizer was employed with a learning rate of 10−4. For the loss functions in
Equations (9) and (10), the values of α1, α2, and β were set to 2, 1, and 5, respectively,
determined through a grid search for optimal performance. For the network hyperpa-
rameters setting, the number of Restormer blocks in SFE is 4, with 8 attention heads and
64 dimensions. The dimension of the LT block in BTE is also 64 with 8 attention heads. The
configuration of the decoder is the same as the encoder.

4.2. Dataset

IVIF experiments were conducted using three widely recognized datasets, i.e., MSRS,
TNO, and VIFB. DDFNet-A was trained on the MSRS training set consisting of 1083 pairs
of infrared and visible images. The MSRS test set with 361 pairs, TNO with 25 pairs, and
VIFB with 18 pairs were used as test datasets to evaluate the fusion performance.

The MSRS dataset describes traffic scenes, including various objects such as cars,
pedestrians, and bicycles, in diverse environments including daytime and nighttime. It
comprises 1444 pairs of high-quality aligned infrared and visible images with a resolution
of 480× 640. Additionally, an image enhancement algorithm based on dark channel prior
is utilized to optimize the contrast and signal-to-noise ratio of the infrared images.

The TNO dataset comprises 63 pairs of infrared and visible images captured in diverse
military and surveillance scenarios, with varying resolutions preserved. These images
encompass enhanced visual, near-infrared, and long-wave infrared spectra, showcasing
different objects and targets against backgrounds such as rural and urban areas.

The VIFB dataset is a test set comprising 21 pairs of visible and infrared images with
varying resolutions. These image pairs are sourced from the Internet and various tracking
datasets, encompassing diverse environments and conditions like indoor, outdoor, low illu-
mination, and over-exposure. As a result, the dataset serves to evaluate the generalization
capability of image fusion algorithms.

4.3. Evaluation Metrics

To evaluate the image fusion capability of the model, eight metrics were selected:
entropy (EN) [60], mutual information (MI) [61], visual information fidelity for fusion
(VIFF) [62], gradient-based fusion metric (QAB/F) [63], average gradient (AG) [64], feature
mutual information (FMI) [65], salient feature information (Qs) [66], and structural sim-
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ilarity index measure (SSIM) [59]. Higher values of these metrics generally correspond
to superior image fusion quality. These metrics evaluate various aspects of the fused
images, including the information content, preservation of source image information, and
visual quality.

EN measures the information content and uncertainty within an image based on the
distribution of pixel values. The EN is defined as follows:

EN = −
L−1

∑
i=0

pilog2 pi. (13)

where L denote the number of gray levels, and pi represent the normalized histogram of the
corresponding gray level in the fused image. A higher entropy value generally indicates a
richer information content, though it is essential to consider any noise introduced during
the fusion process.

MI quantifies the correlation between the fused images and original images, indicating
how well the fused images capture information from both sources.

MI = MIA,F + MIB,F. (14)

where MIA,F and MIB,F represent the amount of information transferred from the infrared
and visible images to the fused image, respectively. Mutual information (MI) between
two random variables can be calculated using the Kullback–Leibler measure, defined
as follows:

MIX,F = ∑
x, f

PX,F(x, f ) log
PX,F(x, f )

PX(x)PF( f )
. (15)

where PX(x) and PF( f ) represent the marginal histograms of the source image X and the
fused image F, respectively. PX,F(x, f ) denotes the joint histogram of the source image X
and the fused image F. A high MI metric suggests significant transfer of information from
the source images to the fused image, indicating effective fusion performance.

VIFF evaluates the preservation of visual information in the fused images compared
with the source images by considering brightness, contrast, structure, and texture. VIFF is
defined as follows:

VIFFVI
X,F =

∑
i∈subbands

I(~C,~F|RS,i)

∑
i∈subbands

I(~C, ~X|RS,i)
(16)

where I(~C,~F|RS,i) and I(~C, ~X|RS,i) represent the ideal information extracted by the human
brain from the source image and the fusion image, respectively. A higher VIFF indicates
better visual quality.

QAB/F estimates the performance of salient information from the inputs within the
fused images using local gradient measurements. QAB/F is defined as follows:

QAB/F =
∑ N

i=1 ∑ M
j=1QAF(i, j)ωA(i, j) + QBF(i, j)ωB(i, j)

∑ N
i=1 ∑ M

j=1(ω
A(i, j) + ωB(i, j))

. (17)

where QXF(i, j) = QXF
g (i, j)QXF

a (i, j), where QXF
g (i, j) and QXF

a (i, j) represent the edge
strength and orientation values at location (i, j), respectively. ωX signifies the weight
expressing the importance of each source image to the fused image. A high QAB/F suggests
significant transfer of edge information to the fused image.
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AG calculates the average gradient value across all pixels, representing the overall
spatial variation (sharpness) in the images.

AG =
1

MN

M

∑
i=1

N

∑
j=1

√
∇F2

x (i, j) +∇F2
y (i, j)

2
. (18)

where ∇Fx(i, j) = F(i, j)− F(i + 1, j) and ∇Fy(i, j) = F(i, j)− F(i, j + 1). A higher AG
metric suggests a greater presence of gradient information in the fused image, indicating
improved performance of the fusion algorithm.

FMI quantifies the shared information between the features extracted from the fused
images and the original images, assessing the preservation of relevant details. The AG is
defined as

FMI = MIA′ ,F′ + MIB′ ,F′ . (19)

where A′, B′, and F′ represent the feature maps of the infrared, visible, and fused images,
respectively. A significant FMI metric typically suggests substantial transfer of feature
information from the source images to the fused image.

Qs analyzes the preservation of salient information from the original images in the
fused images using local measures.

Qs(a, b, f ) =
1
|W| ∑

w∈W
(λ(w)QO(a, f |w) + (1− λ(w))QO(b, f |w)). (20)

where W is the family of all windows and |W| is the cardinality of W. λ indicates the
relative importance of image a compared to image b. QO is the overall image quality index.
A higher Qs indicates better overall quality.

SSIM compares the structural similarity between two images by considering local
patterns, contrast, and luminance. SSIM is defined as follows:

SSIMX,F = ∑
x, f

2µxµ f + C1

µ2
x + µ2

f + C1
·

2σxσf + C2

σ2
x + σ2

f + C2
·

σx f + C3

σxσf + C3
. (21)

where SSIMX,F denotes the structural similarity between source image X and fused image
F; x and f denote the image patches of source and fused images in a sliding window,
respectively; σx f denotes the covariance of source and fused images; σx and σf denote
the standard deviation; µx and µ f denote the mean values of source and fused images,
respectively. C1, C2, and C3 are the parameters used to make the algorithm stable; when
C1 = C2 = C3 = 0, the SSIM is reduced to the universal image quality index. Thus,
the structural similarities between all source images and the fused image can be written
as follows:

SSIM = SSIMA,F + SSIMB,F (22)

where SSIMA,F and SSIMB,F denote the structural similarities between infrared/visible
and fused images. A higher SSIM indicates a greater similarity between the images.

4.4. Ablation Study

In this paper, we propose a hybrid attention block (HAB) module as the fundamental
computational unit for extracting detail features, and a base feature fusion (BFF) module
for integrating cross-modality base features. To evaluate the impact of our proposed HAB
and BFF modules on the overall model performance, we conducted ablation experiments
and employed quantitative metrics for the analysis. In the ablation study of the HAB
module, we substituted it with a simple 1 × 1 CNN layer to evaluate the impact of its
attention mechanism on the feature extraction. Similarly, to validate the effectiveness of
the BFF module, the BFF module was replaced with a standalone LT module. The ablation
experiments were conducted using the MSRS dataset.
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The results of the ablation experiments are summarized in Table 1. Models without the
HAB or BFF modules exhibited a decrease in average performance compared with DDFNet-
A, indicating the effectiveness of both the proposed HAB and BFF modules. Notably, the
model without the HAB demonstrated a significant drop in performance compared to
the model without the BFF. This indicate that the proposed HAB module has a relatively
greater impact on the fusion results.

Table 1. Quantitative results of ablation experiments on the MSRS dataset. Bold indicates the best value.

EN MI VIFF QAB/F AG FMI Qs SSIM

w/o HAB 6.6047 2.7698 0.9791 0.6623 3.6369 0.8564 0.9288 1.4446
w/o BFF 6.5675 2.9265 0.9821 06729 3.6299 0.8629 0.9301 1.4548

DDFNet-A 6.6169 3.0101 1.0098 0.6804 3.6803 0.8742 0.9313 1.4497
“ w/o HAB” refers to the proposed model without the HAB module, while “w/o BFF” indicates the proposed
model without the BFF module.

4.5. Comparative Experiments and Analysis

To validate the effectiveness of the proposed method, we compared its fusion per-
formance with twelve state-of-the-art (SOTA) methods: DeFusion [67], DenseFuse [68],
FusionGAN [42], ReCoNet [69], SwinFuse [70], SDNet [71], RFN-Nest [72], TarDAL [73],
U2Fusion [74], FSFusion [33], MPCFusion [75], and BTSFusion [76]. To ensure a fair compar-
ison, we employed the default parameters provided by the original authors for all twelve
methods. These comparative experiments were conducted on three datasets: MSRS, TNO,
and VIFB. Comparisons included both qualitative and quantitative evaluations. Qualitative
evaluations involved visual inspection of the fused images, with specific targets and details
of interest highlighted using red and green boxes.

4.5.1. Results on the MSRS Dataset

Qualitative comparison: Figure 4 shows fused images generated by different algo-
rithms across diverse scenes. The fused images generated by SDNet, RFN-Nest, U2Fusion,
FSFustion, and MPCFusion in Figure 4a,b lack detail. The tree branches are blurry and the
building textures are unclear. The images generated by FusionGAN are of poor quality,
characterized by blurriness, unclear boundaries of targets, the presence of artifacts, and
insufficient description of detailed textures. The fused images generated by SwinFuse in
Figure 4b,c retain the intensity information of the infrared targets; however, the contrast
and brightness are excessively low. This leads to the loss of detailed information and makes
it challenging to distinguish background buildings and walls. DeFusion, DenseFuse, Re-
CoNet, TarDAL, and BTSFusion achieved a commendable balance in all scenes, effectively
preserving both significant target information and light information. However, they are not
without their shortcomings, as some loss of fine texture details and image noise persists. In
contrast, the proposed DDFNet-A achieved the best visual results, with clear visibility of
pedestrians, ground markers, and building details. Both the target saliency information
and fine texture details are well preserved.

Quantitative comparison: Figure 5 presents a quantitative comparison between the
proposed method and the twelve SOTA methods on the 20 pairs of images selected from
the MSRS dataset. The average experimental results on the MSRS dataset are presented
in Table 2, and the fusion performance of DDFNet-A was compared against twelve SOTA
methods. This evaluation employs eight metrics to assess the quality of the fused images
generated by various methods. DDFNet-A demonstrated outstanding performance in
metrics such as EN, MI, VIFF, QAB/F, FMI, and Qs, while achieving the third-best result
in AG and SSIM. The highest EN values indicate that the fused images contain more
information content and richer details. The highest values in the VIFF suggest better visual
quality of the fused images. The highest values of MI and FMI indicate the model’s ability
to fuse more source image information into the fused image. The highest values of QAB/F,
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and Qs signify the model’s superior capability to capture salient features and generate
images without noise.

SDNet

DenseFuse FusionGAN

RFN-Nest TarDAL

Proposed

DeFusion DenseFuse FusionGANInfrared Visible

ReCoNet SDNetSwinFuse TarDAL

U2Fusion Proposed

Proposed

Infrared Visible DeFusion DenseFuse FusionGAN

ReCoNet SwinFuse

U2Fusion

(a)

(b)

(c)

TarDALRFN-Nest

RFN-Nest

DeFusionVisibleInfrared

SDNetSwinFuseReCoNet

U2Fusion BTSFusion

BTSFusion

BTSFusionFSFusion

FSFusion

FSFusion MPCFusion

MPCFusion

MPCFusion

Figure 4. Qualitative comparison of selected images from the MSRS dataset: (a) 00196D; (b) 00131D;
and (c) 00770N. Some targets and details are annotated with red and green boxes to highlight
noteworthy information.
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Figure 5. Object comparisons of 20 pairs of images selected from the MSRS dataset.
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Table 2. Quantitative results of comparative experiments on the MSRS dataset. Bold indicates the
best value, red indicates the second-best value, blue indicates the third-best value.

EN MI VIFF QAB/F AG FMI Qs SSIM

DeFusion 6.3508 2.1585 0.7475 0.5149 2.5959 0.8496 0.9191 1.4709
DenseFuse 6.1895 1.8692 0.7713 0.4988 2.5033 0.8230 0.9232 1.4559

FusionGAN 5.4314 1.3084 0.4422 0.1401 1.4463 0.6280 0.9098 1.2248
ReCoNet 4.2337 1.5821 0.4902 0.4039 2.9897 0.3705 0.9116 0.6120
SwinFuse 4.2364 1.2340 0.3599 0.1790 1.9313 0.2649 0.9150 0.6393

SDNet 5.2450 1.1835 0.4984 0.3768 2.6720 0.6858 0.9097 1.2180
RFN-Nest 6.1958 1.7010 0.6558 0.3904 2.1074 0.7591 0.9199 1.4031
TarDAL 6.2079 1.8307 0.6264 0.4116 2.9350 0.6622 0.9079 1.0784

U2Fusion 5.2131 1.3781 0.5161 0.3856 2.5062 0.7537 0.9128 1.3556
FSFusion 6.4183 1.9874 0.6533 0.3978 2.4405 0.8155 0.9101 1.4411

MPCFusion 6.6015 1.6065 0.6849 0.5207 4.5313 0.8230 0.9157 1.3699
BTSFusion 6.2913 1.5767 0.5675 0.4899 4.4716 0.7854 0.9096 1.2907
DDFNet-A 6.6169 3.0101 1.0098 0.6804 3.6803 0.8742 0.9313 1.4497

4.5.2. Results on the TNO Dataset

Qualitative comparison: DeFusion, FusionGAN, TarDAL, SDNet, and FSFusion exhibit
limitations in preserving the detailed textures in their images. In Figure 6a, the fused images
from FusionGAN and SDNet display blurry branch edges. In Figure 6b, the text on the
billboard appears unclear in the image generated by TarDAL. In Figure 6c, the building
facades in the image generated by DeFusion exhibit a noticeable absence of textural detail.
In Figure 6b,c, the images generated by ReCoNet, RFN-Nest, and MPCFusion displays
low-intensity, unclear edges of the pedestrian. In Figure 6a,c, SwinFuse effectively balances
the intensity information and detailed texture, displaying clear pedestrian features and
rich details in branches and buildings. However, in Figure 6b, the image generated by
SwinFuse appears darker with a low intensity. Furthermore, the images generated by
DenseFuse, U2Fusion, BTSFusion, and DDFNet-A achieve superior fusion results. In
particular, DDFNet-A stands out for its exceptional ability to capture fine details without
introducing noise.

Quantitative comparison: Figure 7 presents a quantitative comparison between the
proposed method and the twelve SOTA methods on the TNO dataset. The average experi-
mental results are listed in Table 3. DDFNet-A demonstrated exceptional performance in
metrics such as EN, MI, VIFF,QAB/F, FMI, and Qs, demonstrating minimal information loss
during the fusion process, superior visual results, and leading fusion performance.

Table 3. Quantitative results of comparative experiments on the TNO dataset. Bold indicates the best
value, red indicates the second-best value, blue indicates the third-best value.

EN MI VIFF QAB/F AG FMI Qs SSIM

DeFusion 6.5821 1.7573 0.5528 0.3590 2.6747 0.7871 0.9025 1.4698
DenseFuse 6.7783 1.6345 0.6309 0.4449 3.4395 0.8045 0.9071 1.4574

FusionGAN 6.4803 1.6277 0.4182 0.2244 2.3625 0.6539 0.8893 1.2785
ReCoNet 6.6775 1.7181 0.5307 0.3728 3.3534 0.7182 0.8944 1.3202
SwinFuse 6.9037 1.6749 0.6394 0.4275 4.7493 0.6851 0.8921 1.2621

SDNet 6.6401 1.5157 0.5569 0.4374 4.6379 0.7803 0.8997 1.3794
RFN-Nest 6.8919 1.5043 0.5414 0.3363 2.6452 0.7417 0.9035 1.3849
TarDAL 6.7409 1.9312 0.5522 0.4051 3.9971 0.7551 0.8775 1.3681

U2Fusion 6.6527 1.3600 0.5633 0.4465 4.1954 0.7976 0.8918 1.4169
FSFusion 6.9534 1.8630 0.5531 0.3256 2.8183 0.7315 0.8978 1.3615

MPCFusion 6.9778 1.4407 0.5226 0.4249 6.0147 0.7727 0.8927 1.3103
BTSFusion 6.8489 1.2582 0.5008 0.4167 6.0484 0.7707 0.8838 1.3054
DDFNet-A 7.1217 2.1620 0.7739 0.5426 4.8858 0.8129 0.9079 1.3894
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Figure 6. Qualitative comparison of selected images from the TNO dataset: (a) Kaptein 1123;
(b) Street; and (c) Nato camp. Some targets and details are annotated with red and green boxes to
highlight noteworthy information.



Remote Sens. 2024, 16, 1795 17 of 25

Figure 7. Object comparisons of 25 pairs of images selected from the TNO dataset.
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4.5.3. Results on the VIFB Dataset

Qualitative comparison: The images generated by SDNet and TarDAL lack detail, with
blurry buildings and tree branches in Figure 8b,c. FusionGAN and BTSFusion produced
fused images with significant artifacts, making it difficult to distinguish details of pedestri-
ans and backgrounds in Figure 8. In the images from DenseFuse, RFN-Nest, and U2Fusion,
target intensity information is lost. In Figure 8a, pedestrians blend with shadows in the
image from RFN-Nest. In Figure 8b,c, pedestrian features are not prominent enough, and
details are blurred in the images from DenseFuse, U2Fusion, FSFusion and MPCFusion.
The images generated by SwinFuse lack contrast. In Figure 8a, it is difficult to distinguish
pedestrians from shadows, resulting in poor visual effects. In Figure 8c, the details of the
branches are lost, disrupted by noise from the sky. DenseFuse, ReCoNet, and DDFNet-A
demonstrate strong fusion capabilities. Their fused images retain key information from
the source images, such as pedestrians, vehicles, and buildings. Among them, DDFNet-A
preserves both significant target information and scene details while presenting superior
visual effects.

Quantitative comparison: Figure 9 presents a quantitative comparison on the VIFB
dataset. The average experimental results are presented in Table 4. DDFNet-A outper-
formed twelve SOTA methods on the VIFB dataset across eight metrics, showing excep-
tional performance in MI, VIFF, QAB/F, FMI, and Qs, and ranking third in EN, AG, and
SSIM. High scores in all of these metrics indicate that DDFNet-A effectively combines
information from source images while preserving visual quality, removing noise, and
capturing important features.

Table 4. Quantitative results of comparative experiments on the VIFB dataset. Bold indicates the best
value, red indicates the second-best value, blue indicates the third-best value.

EN MI VIFF QAB/F AG FMI Qs SSIM

DeFusion 6.5712 2.0439 0.5787 0.3682 3.1811 0.7697 0.8996 1.4831
DenseFuse 6.9296 2.0730 0.6406 0.4794 4.0765 0.7994 0.8991 1.4572

FusionGAN 6.2852 1.6805 0.4352 0.2348 2.7183 0.6738 0.8911 1.3499
ReCoNet 7.0985 2.2150 0.6187 0.4861 4.5147 0.7842 0.8933 1.3841
SwinFuse 7.0740 2.4317 0.7428 0.5702 5.4986 0.7829 0.8988 1.3411

SDNet 6.5485 1.6131 0.5380 0.5132 5.2860 0.8019 0.8917 1.4379
RFN-Nest 7.0950 2.0691 0.5941 0.4030 3.4578 0.7766 0.8969 1.4195
TarDAL 6.8719 2.3674 0.5782 0.4302 4.0870 0.7762 0.8788 1.4267

U2Fusion 6.8950 1.8828 0.6270 0.5422 4.9646 0.8195 0.8906 1.4350
FSFusion 6.8351 2.1459 0.5816 0.3803 3.3717 0.7604 0.8967 1.4549

MPCFusion 7.0837 1.7712 0.5859 0.5553 6.8123 0.7979 0.8932 1.3536
BTSFusion 6.9426 1.7026 0.5133 0.5042 7.1100 0.7818 0.8775 1.3430
DDFNet-A 7.0925 2.4334 0.7701 0.6423 5.6351 0.8376 0.9095 1.4538

4.6. Computational Efficiency Analysis

To compare computational efficiency, we conducted ten runs of all image fusion
methods on the TNO dataset and calculated the average inference time. It is important to
note that the experimental setups for these methods vary. DenseFuse, FusionGAN, SDNet,
and U2Fusion methods utilize TensorFlow (GPU version), while DeFusion, ReCoNet,
SwinFuse, RFN-Nest, TarDAL, FSFusion, MPCFusion, BTSFusion, and DDFNet-A methods
use PyTorch (GPU version). Parameters for all compared algorithms are set to their default
values as provided by their respective authors. Table 5 presents the average inference
time across the ten runs, with BTSFusion achieving the fastest average inference time at
5.8000 s. Our method ranks eighth among the algorithms, trailing BTSFusion, SDNet, RFN-
Nest, FSFusion, SwinFuse, DenseFuse, and TarDAL. Despite our algorithm’s eighth-place
ranking in terms of inference time, our fusion performance remains state-of-the-art.
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Figure 8. Qualitative comparison of selected images from the VIFB dataset: (a) fight; (b) people
shallow; and (c) running. Some targets and details are annotated with red and green boxes to
highlight noteworthy information.
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Figure 9. Object comparisons of 18 pairs of images selected from the VIFB dataset.
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Table 5. The average inference time across various methods on the TNO dataset. Bold indicates the
best value.

Method DeFusion DenseFuse FusionGAN ReCoNet SwinFuse SDNet
(unit: seconds) 15.5950 14.2975 16.9250 68.5425 9.8625 7.2975

RFN-Nest TarDAL U2Fusion FSFusion MPCFusion BTSFusion DDFNet-A
7.5425 14.7625 18.7800 9.4050 16.3950 5.8000 14.9650

5. Discussion

In general, DDFNet-A outperforms 12 comparison methods in terms of fusion perfor-
mance on three datasets, demonstrating the effectiveness and robustness of the proposed
method. While the proposed method does not significantly outperform other methods in
some individual metrics, it is able to balance the quality of fused images across multiple
aspects, leading to superior performance in most metrics. This highlights the advancement
of the proposed method in various aspects such as information content, preservation of
source image information, and visual quality, showcasing its versatility.

6. Generalization Experiments on Multi-Focus Image Fusion

Multi-focus image fusion can generate clear images of both distant and near scenes,
and there are already some solutions available [67,70,74,77–79]. In order to verify the
generalization of the proposed method, extensive experiments were conducted on multi-
focus images in this section. The Lytro dataset of color multi-focus images and the Grayscale
dataset of gray multi-focus images were selected. Figure 10 shows the remote sensing
fusion images obtained using this method. Figure 10a–c, respectively, represent far-focus
images, near-focus images, and fusion images.

(a)

(b)

(c)

Figure 10. Qualitative comparison of selected images from the Lytro and Grayscale dataset: (a) far-focus
images; (b) near-focus images; and (c) fused images.

The fusion results show that the fusion image simultaneously retains the image details
of distant- and near-focus scenes. This significantly improves the richness of information
and the clarity of the fusion image, verifying the robust generalization ability of the
proposed method for multi-focus image fusion tasks.
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7. Conclusions

This study proposes DDFNet-A, a novel attention-based dual-branch feature decom-
position fusion network for infrared and visible image fusion. DDFNet-A considers the
inherent modality characteristics of infrared and visible images by decomposing them
into modality-commonality (base) features and modality-distinctiveness (detail) features.
DDFNet-A then performs different fusion strategies on these base and detail features
extracted from infrared and visible images. The fused base and detail features were concate-
nated to generate the fused images. The proposed hybrid attention block (HAB) enhances
the extraction ability of detail features across various dimensions, including the channel,
frequency, and spatial aspects. Additionally, the proposed base feature fusion (BFF) module
utilizes a multi-stage strategy to integrates the base features extracted from the infrared and
visible images. The results of the ablation experiment results validated the effectiveness of
these modules.

The effectiveness of DDFNet-A was validated on three infrared and visible image
datasets, demonstrating its strong performance in complex IVIF scenes. Compared to
twelve state-of-the-art methods, DDFNet-A achieved superior fusion quality and efficiency
across eight metrics, showcasing its advantages.

Our experiments on multi-focus images confirm that DDFNet-A can be effectively
applied to multi-focus fusion scenarios. In our future work, we will extend the evaluation
of DDFNet-A’s performance across various potential application scenarios, including
medical image fusion and multi-exposure image fusion. Furthermore, we will explore the
utilization of fused image techniques to enhance the efficacy of other visual tasks, such as
object detection and image segmentation.
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