
Citation: Deng, F.; Chen, Y.; Liu, W.;

Li, L.; Chen, X.; Tiwari, P.; Qin, K.

Satellite-Based Estimation of

Near-Surface NO2 Concentration in

Cloudy and Rainy Areas. Remote Sens.

2024, 16, 1785. https://doi.org/

10.3390/rs16101785

Academic Editor: Carmine Serio

Received: 20 March 2024

Revised: 13 May 2024

Accepted: 13 May 2024

Published: 17 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Satellite-Based Estimation of Near-Surface NO2 Concentration in
Cloudy and Rainy Areas
Fuliang Deng 1, Yijian Chen 1, Wenfeng Liu 1, Lanhui Li 1 , Xiaojuan Chen 2, Pravash Tiwari 2 and Kai Qin 2,*

1 School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China;
2222031137@s.xmut.edu.cn (W.L.); lilh@xmut.edu.cn (L.L.)

2 School of Environment and Spatial Informatics, China University of Mining and Technology,
Xuzhou 221116, China

* Correspondence: qinkai@cumt.edu.cn

Abstract: Satellite-based remote sensing enables the quantification of tropospheric NO2 concen-
trations, offering insights into their environmental and health impacts. However, remote sensing
measurements are often impeded by extensive cloud cover and precipitation. The scarcity of valid
NO2 observations in such meteorological conditions increases data gaps and thus hinders accurate
characterization and variability of concentration across geographical regions. This study utilizes the
Empirical Orthogonal Function interpolation in conjunction with the Extreme Gradient Boosting
(XGBoost) algorithm and dense urban atmospheric observed station data to reconstruct continuous
daily tropospheric NO2 column concentration data in cloudy and rainy areas and thereby improve the
accuracy of NO2 concentration mapping in meteorologically obscured regions. Using Chengdu City
as a case study, multiple datasets from satellite observations (TROPOspheric Monitoring Instrument,
TROPOMI), near-surface NO2 measurements, meteorology, and ancillary data are leveraged to train
models. The results showed that the integration of reconstructed satellite observations with provincial
and municipal control surface measurements enables the XGBoost model to achieve heightened
predictive accuracy (R2 = 0.87) and precision (RMSE = 5.36 µg/m3). Spatially, this approach effec-
tively mitigates the problem of missing values in estimation results due to absent satellite data while
simultaneously ensuring increased consistency with ground monitoring station data, yielding images
with more continuous and refined details. These results underscore the potential for reconstructing
satellite remote sensing information and combining it with dense ground observations to greatly
improve NO2 mapping in cloudy and rainy areas.

Keywords: TROPOMI; near-surface NO2 concentration; municipal control surface measurements;
machine learning; data reconstruction

1. Introduction

Nitrogen dioxide (NO2), as a pivotal trace gas within the atmosphere [1], exerts a
significant impact on the ecological environment and climate change [2–4]. As an im-
portant indicator of local air quality, near-surface NO2 concentration exhibits spatial and
temporal heterogeneity associated with proximity to emission sources that can aggregate
into concentrated zones, posing health risks [5–7]. Currently, China has established over
1500 ground-level air quality monitoring stations to measure near-surface NO2 concentra-
tions, while uneven distributions of ground stations engender uncertainty in quantifying
exposure risks and associated health burdens, especially in sparsely sampled outlying
populations [8,9]. Hence, a more refined and accurate estimation of near-surface NO2
concentration is of critical importance for accurately delineating urban air quality patterns
to inform precise atmospheric environmental regulation.

The continual advancement of satellite remote sensing technology has enabled in-
creased spatial observation of NO2 concentration, compensating coverage gaps in the

Remote Sens. 2024, 16, 1785. https://doi.org/10.3390/rs16101785 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16101785
https://doi.org/10.3390/rs16101785
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5927-6891
https://doi.org/10.3390/rs16101785
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16101785?type=check_update&version=2


Remote Sens. 2024, 16, 1785 2 of 14

surface monitoring network [10], and at a lower expense than that associated with aircraft
surveys [11]. Chemical transport models that establish a relationship between surface
concentrations and satellite-based observations have traditionally been used to determine
ground-level NO2 concentrations. Initially, Lamsal et al. [12] employed scaling factors from
the global three-dimensional model (GEOS-CHEM) in conjunction with tropospheric NO2
column concentrations from the Ozone Monitoring Instrument (OMI) to derive near-surface
NO2 concentrations over North America. Their findings indicated a significant correlation
between these measurements. However, this method is constrained by its lower precision
and the limited spatial resolution of the derived NO2 concentration data. Furthermore,
diverse methodologies, spanning traditional regression models to machine learning tech-
niques, have been utilized in conjunction with satellite data for estimation purposes [10].
The Land Use Regression (LUR) model, in particular, has demonstrated notable success in
estimating near-surface NO2 concentrations across various countries, including the United
States, Canada [13], Australia [14], and the United Kingdom [15], and even on a global
scale [16].

Since the adoption and release of the new version of “Environmental Air Quality
Standards” (GB 3095-2012) [17] in 2012 and the proposal of the “Blue Sky Defense” plan
at the fifth session of the 12th National People’s Congress of the People’s Republic of
China in 2017, satellite-based estimation of near-surface NO2 concentrations has attracted
increasing attention. Scholars have been leveraging regression models to estimate near-
surface NO2 concentrations using satellite data in combination with ground monitoring
station data, and recent studies have demonstrated that the ground-level estimations of
near-surface NO2 concentrations achieved meaningful progress. Qin et al. [18] utilized
four methods—Geographically and Temporally Weighted Regression (GTWR), Ordinary
Least Squares (OLS), Geographically Weighted Regression (GWR), and Temporally Weighted
Regression (TWR)—to estimate the near-surface NO2 concentration in Eastern China based
on OMI satellite NO2 data and meteorological data, with GTWR demonstrating the highest
estimation accuracy (R2 = 0.60). With the evolving applications of artificial intelligence,
machine learning methods have shown superior predictive capabilities in estimating near-
surface NO2 concentrations [19]. Araki et al. [20] estimated the concentration of near-surface
NO2 in Japan using a Land Use Random Forest model (LURF) (R2 = 0.79), outperforming
traditional LUR models. You et al. [21] conducted estimations of China’s near-surface
NO2 concentration based on the random forest algorithm and multi-source geospatial data,
achieving a monthly scale model (R2 = 0.84), which surpassed the estimation using the
LUR model. Chi et al. [22] employed the Extreme Gradient Boosting (XGBoost) machine
learning model, integrating the TROPOspheric Monitoring Instrument (TROPOMI) obser-
vations offering enhanced spatiotemporal tropospheric NO2 quantification with surface
measurements across China’s national monitoring network. This data fusion yielded im-
proved daily predictions of near-surface NO2 concentrations from 2018–2021 (R2 = 0.73).
Wei et al. [5] integrated spatiotemporally weighted information into the missing extra-trees
and deep forest models to derive daily 1 km surface NO2 concentrations over mainland
China for the period 2019–2020.

Numerous studies demonstrate meaningful progress in advancing retrieved ground-
level estimations of near-surface NO2 concentrations. Nevertheless, these studies generally
focus on large-scale remote sensing estimations of near-surface NO2 concentration, either
globally or nationally, providing insufficient intra-urban resolutions to direct regional
mitigation strategies. Furthermore, satellite retrieval effectiveness is hampered by China’s
monsoonal domains with frequent meteorological obscurations such as clouds and rain,
resulting in significant spatial gaps [18,23,24], further limiting the process of local govern-
ments in refining air quality management.

Against this backdrop, this study takes Chengdu, a city in the subtropical region
of China, as a case study. While previous studies have focused on large-scale regional
estimation of near-surface NO2 [2,3,8], our work distinguishes itself by demonstrating
an adaptive and flexible integrated approach to derive high-resolution intra-urban NO2
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maps that are crucial for informing locally tailored air quality strategies. While spatial–
temporal patterns from Empirical Orthogonal Function (EOF) estimate the missing data,
the dense ground observations help to provide a reliability constraint on the interpolated
values. Due to its unbiased nature and robustness, combining an EOF field with ground
observations allows for an estimate of the concentration fields to be made even though there
are limitations on remotely sensed data due to extreme meteorological conditions including,
clouds and rain [25]. As this investigation incorporates EOF interpolation with dense urban
atmospheric observation station data to reconstruct continuous daily tropospheric NO2
column concentration data, it leverages the strengths of both techniques synergistically. By
comparison, traditional and widely used approaches, including LUR and GTWR models,
heavily rely upon ground observation and surrounding nearby regions, which are well
represented by their observations [14,18]. Hence, they do not allow direct or unbiased ways
to interpolate the data into regions that are different and obscured from remotely sensed
observations. Additionally, in areas with sparse or unevenly distributed monitoring sites,
these traditional modeling approaches tend to suffer from spatial sampling biases.

The integrated approach used in this work bypasses these issues by using satellite
data as a starting point, applying pattern recognition both spatially and temporally, and
constraining these patterns using available dense networks of ground-based data when and
where it is available. This proves advantageous when compared with modern gap-filling
methods like EOF combined with ensemble empirical mode decomposition (EEMD), which,
while powerful, may lead to biases since these data-driven techniques solely rely on the
patterns obtained from the original satellite data, which may allow errors to propagate
and are too computationally expensive to readily update. Additionally, the assimilation of
ancillary geographic data such as meteorological and demographic information facilitates
the comparative assessment of multiple predictive models for ground-level NO2 concen-
trations. The high-resolution mapping methodology demonstrated in this representative
subtropical case study has broader applicability as a template for urban air quality char-
acterization in other meteorologically obscured regions globally, facilitating more precise
environmental regulations and public health exposure assessments. Thus, the result aims
to support the formulation of targeted air quality management policies and environmental
regulations for local governments.

2. Data and Methods
2.1. Data Source

To estimate near-surface NO2 concentrations, TROPOMI Tropospheric NO2 data,
ground monitoring station NO2 data, and a wide range of auxiliary data known to have a
physical or geographical connection with surface NO2 concentrations were selected in this
study. The auxiliary data include meteorological conditions, land cover type, topography,
population distribution density, and vegetation productivity. All of the different types of
data were resampled to a common spatial grid with a spatial resolution of 0.05◦ × 0.05◦

using a bilinear interpolation algorithm. Subsequently, all datasets were projected in an
Albers equal-area projection (Table 1).

Table 1. Summary of the datasets used in this study.

Name Elements/Abbreviation Spatial Resolutions Temporal Resolutions Source

Ground Monitoring Station data NO2 -- Hourly CNEMC
TROPOMI NO2 3.5 × 5.5 km Daily Sentinel-5p

Meteorological data U10, V10, T2m
SP, BLH, TP 0.25◦ × 0.25◦ Hourly ERA5

Population data POP 0.01◦ × 0.01◦ Yearly WorldPop
Digital elevation data DEM 30 × 30 m -- GSCLOUD
Land use data LCT 0.05◦ × 0.05◦ Yearly Globeland
NDVI data NDVI 0.01◦ × 0.01◦ Yearly RESDC
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2.1.1. TROPOMI Tropospheric NO2 Data

NO2 measurements from TROPOMI are widely utilized for estimating near-surface
concentrations [26,27]. The TROPOMI is an advanced spectrometer aboard the Sentinel-5
Precursor satellite, launched in October 2017 by the European Space Agency (ESA) [28]. It
measures spectra across the ultraviolet–visible (270–500 nm), near-infrared (710–770 nm), and
short-wave infrared (2314–2382 nm) ranges [29]. TROPOMI facilitates global monitoring of
gaseous pollutants like NO2, which is particularly beneficial in regions with limited ground-
level air quality monitoring stations. TROPOMI offers data on the tropospheric vertical
column density with a spatial resolution of 3.5 km × 7 km, enhanced to 5.5 km × 3.5 km post-
August 2019. Such high spatial resolution enables detailed analysis of local near-surface NO2
distributions. Users can access imaging data for a specific region within four hours of satellite
scanning, enabling timely analysis of pollutant concentration distribution characteristics. This
study utilizes the TROPOMI Level-2 offline products (S5P_OFFL_L2_NO2) for the year 2021
across China. These products are filtered to ensure data quality (qa_value > 0.75).

2.1.2. Ground Monitoring Station NO2 Data

Figure 1 shows the spatial distribution of Chengdu’s air quality monitoring stations,
comprising 14 national air quality monitoring stations, 22 provincial air quality monitoring
stations, and 19 municipal air quality monitoring stations. National air quality monitoring
stations are unevenly distributed, primarily clustered in densely populated urban areas
like the Jinjiang District. In contrast, provincial and municipal air quality monitoring
stations are distributed across every county or district. The provincial and municipal air
quality monitoring stations in Chengdu report daily 24-h averages for eight air pollutants,
including SO2, NO2, and PM10, along with the air quality index (AQI) and air quality levels,
in accordance with the “Environmental Air Quality Standards” (GB3095-2012) [17]. The
daily 24-h average concentrations of NO2 for the year 2021 were used as the ground-level
daily values for modeling.

Figure 1. Spatial distribution of ground-based air quality monitoring stations in Chengdu City.
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2.1.3. Auxiliary Data

Incorporating meteorological data, land cover type, topography, population distri-
bution, and other geographic covariates into modeling can enhance the accuracy of NO2
concentration estimates [3,5]. Meteorological variables have been proven to have significant
and diverse impacts on air pollutants such as NO2 and PM2.5 [30]. The hourly meteorologi-
cal dataset from ECMWF’s ERA5, encompassing data from 1979 to the present, provides
high-quality, high-resolution, and global coverage of various elements, including tempera-
ture, wind speed and direction, precipitation, and humidity [31]. According to findings of
previous studies [3,5], this study selected six meteorological variables, including tempera-
ture at 10 m above the sea surface (T2m), u-component and v-component of winds at 10 m
above the sea surface (V10 and U10), boundary layer height (BLH), total precipitation (TP),
and surface pressure (SP) for modeling.

Additionally, population distribution density (POP) and land cover type (LCP) are closely
related to the amounts of NO2 emissions. Furthermore, topography, such as the digital ele-
vation model (DEM), and vegetation factors, such as the normalized difference vegetation
index (NDVI), indirectly influence the rates of uptake and transport of NO2 [3,32]. These
geographic factors were incorporated as auxiliary variables to model NO2 concentrations.
Population distribution density was obtained from the 2020 gridded population distribu-
tion data (WorldPop, https://wopr.worldpop.org/, accessed on 1 May 2024). DEM data
was downloaded from the Geospatial Data Cloud (GSCLOUD). Land cover type data was
acquired from Global Land Cover Data (Globeland, http://www.geodata.cn, accessed on
1 May 2024), covering types like cropland, water bodies, wetlands, and forests [33]. NDVI
data is derived from the Annual Vegetation Index spatial grid distribution dataset by the
Resource and Environmental Science and Data Center of the Chinese Academy of Sciences
(RESDC, http://www.geodata.cn, accessed on 1 May 2024).

2.2. Methodology

The remote sensing estimation of near-surface NO2 concentration using the integration
of EOF interpolation, the XGBoost algorithm, and dense urban atmospheric observation
station data consists of three principal technical approaches used in tandem, as illustrated
in Figure 2. The first approach involves data collection, where auxiliary data such as
TROPOMI satellite tropospheric NO2 column concentration data, population grids, and
ERA5 meteorological data are selected as independent variables, while ground-based
monitoring of NO2 concentration data at the national, provincial, and municipal stations
is used as the dependent variables. The second approach is the derivation of the model
and its validation. To accomplish this, first, the data was filtered and underwent quality
control. Next, the DINEOF method was used to reconstruct gaps within the tropospheric
NO2 column concentration data from TROPOMI, with a particular interest in areas with
high cloud cover. Standard matching was then performed on the temporal and spatial
dimensions of all datasets. Finally, in this step, the XGBoost algorithm was employed
to train and optimize the datasets, with model validation performed using metrics such
as R2 and RMSE derived from ten-fold cross-validation. The third component approach
involves employing the just-formed model to compute estimations, thereby mapping near-
surface spatial–temporal NO2 concentration at 0.05◦ × 0.05◦. Comparisons of predicted
and mapped NO2 are made with published datasets, including differences between normal
days and holidays as well as between urban and rural areas.

https://wopr.worldpop.org/
http://www.geodata.cn
http://www.geodata.cn
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Figure 2. Flowchart of the methodology.

2.2.1. Reconstruction of Missing Remote Sensing Data

EOF analysis is widely employed to objectively quantify signals in space and time,
which account for the majority of the variability of an observed dataset [25]. Within the
context of this work, it is specifically used to fill gaps in long-term satellite remote sens-
ing datasets, with an emphasis on obstructions like cloud cover [34]. This method was
further developed into the Data-Interpolating Empirical Orthogonal Functions (DINEOF)
by Alvera-Azcarate et al. [35]. DINEOF does not require a priori knowledge and is com-
putationally efficient, making it well suited for reconstructing large-area remote sensing
data. It is predicted that all EOF models must conduct cross-validation to ensure that
the mathematical signal and the physical signal show consistency [36]. This specific ap-
proach herein utilizes iterative Singular Value Decomposition (SVD) to decompose and
synthesize two data variables simultaneously, thereby obtaining an optimal set of EOF
modes to reconstruct the missing NO2 column data [37]. The new TROPOMI products
(S5P_HighCoverage_NO2) were reconstructed based on the underlying TROPOMI Level-2
offline product (S5P_OFFL_L2_NO2).

The DINEOF used to reconstruct the TROPOMI tropospheric NO2 data operates
on a Windows platform, with Python scripts calling the dineof executable. The specific
parameter settings are as follows: Firstly, the maximum number of EOF modes calculated is
set to 20, while the minimum is set to 1. The size of the Krylov subspace is then set, which
must be at least greater than the maximum number of EOF modes plus five, and less than
or equal to the size of the data in time, with Krylov = 25 set accordingly. Additionally, the
maximum number of iterations for each EOF calculation is set to 300. The iteration stops
when the ratio of continuous reconstruction (RMS) to existing data (STD) drops below a
threshold of 1 × 10−3. The convergence threshold for the Lanczos method is set to 1 × 10−8

the core of the Lanczos algorithm involves using a tridiagonal matrix to find all eigenvalues
within the Krylov subspace. To prevent excessive iterations, this Lanczos convergence
threshold is crucial.
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2.2.2. Remote Sensing Estimation of Near-Surface NO2 Concentration

After correcting for vertical sensitivity, remote sensing measurements provide an inte-
grated tropospheric NO2 column amount [38], which has become one of the most effective
methods for estimating NO2 concentrations. Increasingly, studies have observed a certain
correlation between tropospheric NO2 column concentrations and ground-monitored NO2
concentrations. However, various factors, such as traffic and industrial emissions sinks
like chemical reactions, atmospheric mixing processes, and co-emitted heat, can cause
significant changes in NO2 concentrations with altitude [27]. Additionally, atmospheric
conditions significantly affect the diffusion, transport, and chemical transformation of
NO2 [39]. Therefore, the relationship between tropospheric NO2 column concentration
data and near-surface NO2 concentration is characterized by a complex nonlinearity that is
hard to delineate through simplistic mathematical models [40].

Machine learning shows superior efficacy in handling these multi-factor nonlinear re-
lationships [41]. After comparing performances between Random Forest (RF) and Extreme
Gradient Boosting (XGBoost) model, XGBoost is selected for modeling and estimating
near-surface NO2 concentrations. XGBoost is an advanced ensemble machine learning al-
gorithm that refines traditional gradient boosting by introducing robust regularization [42].
XGBoost builds upon the foundation of Gradient Boosted Regression Trees (GBRT) by
incorporating advanced regularizations. Unlike GBRT, XGBoost includes both L1 and L2
regularization terms, which help reduce model overfitting and improve model generaliz-
ability. XGBoost differentiates itself by utilizing the second-order gradient, leveraging the
Taylor expansion of the loss function’s second derivative for more accurate approximation
and effective weight updates. This method handles missing data intrinsically through
a sparsity-aware split finding algorithm, facilitating optimal imputation during training.
Compatible with single-machine and distributed computing frameworks, XGBoost is both
scalable and efficient, suited for varied computational environments.

Recently, XGBoost has been successfully applied in remote sensing to inverse model
atmospheric pollutants, demonstrating significant capability in analyzing complex environ-
mental data sets [40–42]. Its robust predictive performance makes it ideal for such applications,
combining numerous weak learners into a powerful aggregated model that provides superior
predictive accuracy across various domains. The XGBoost algorithm process primarily con-
sists of two major parts: the first part involves constructing weak learners, and the second
part entails aggregating multiple weak learners to form a strong learner.

2.2.3. Experimental Grouping

To evaluate the potential of near-surface NO2 concentration estimations by integrating
reconstructed TROPOMI tropospheric NO2 column data and denser municipal monitor-
ing station data, this study has constructed three sets of estimation training datasets, as
described in Table 2. To evaluate the above effectiveness, it is important to note that the
sources and processing procedures for auxiliary covariates within these three training
datasets are the same, including meteorological condition, land cover type, topography,
population distribution density, and vegetation productivity.

Table 2. Experimental grouping in this study.

Experimental Grouping Experimental Areas TROPOMI Data Ground NO2 Monitoring Station Data

Group A China S5P_OFFL_L2_NO2
(No reconstruction) National stations

Group B Chengdu S5P_OFFL_L2_NO2
(No reconstruction)

National, provincial, and
municipal stations

Group C Chengdu S5P_HighCoverage_NO2
(Reconstructing data)

National, provincial, and
municipal stations
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This study also conducted a comparative analysis to evaluate the enhanced capabil-
ity of estimating NO2 concentrations using EOF interpolation combined with data from
densely located urban atmospheric observation stations. It compared these results with the
high-resolution and high-quality ground-level NO2 dataset for China (ChinaHighNO2) [3,5],
which covers daily, seamless, and nationwide ground-level NO2 data with a spatial resolu-
tion of 1 × 1 km from 2008 to 2022. This dataset was modeled by multiple sources of datasets,
including ground-based NO2 observations, satellite remote sensing products, atmospheric
reanalysis, and model simulations. The products from the year 2021 were selected and then
resampled to a spatial resolution of 0.05◦ × 0.05◦ using the bilinear algorithm.

3. Results and Discussion
3.1. Results of Reconstructing Remote Sensing Products

To understand the differences in the percentage of annual coverage of valid data before
and after the reconstruction of missing data of TROPOMI NO2 column concentration in
Chengdu City, this study analyzes and evaluates the coverage by comparing the percentage
of valid data days in each grid cell to the total number of days in 2021 (365 days). Figure 3a
shows that the original TROPOMI NO2 column concentration data coverage is relatively
low, with an average value of 29%. Following the DINEOF reconstruction, as shown in
Figure 3b, the average coverage rate of the TROPOMI tropospheric NO2 column concentra-
tion data is elevated to 99.2%. Figure 3c is obtained by computing the difference between
the coverage in each effective grid cell after reconstruction and before, which spatially
reveals that the increase in coverage in the northwestern regions of Chengdu City is higher
than in other regions.

Figure 3. Comparison of the spatial pattern of annual coverage of available data before (a) and after
(b) the reconstruction of tropospheric NO2 column concentration in TROPOMI in 2021. (c) denotes
the difference in the coverage of available data between before and after the reconstruction.

3.2. Evaluation of Model Performance

We employed the XGBoost model to estimate the near-surface NO2 concentration,
evaluated the performance of the model using high-density ground-based NO2 measure-
ments, and reconstructed the TROPOMI dataset through mathematical indexes, as shown
in Table 3 and Figure 4. The model performance of Group B (R2 = 0.87, RMSE = 5.80 µg/m3)
surpassed that of Group A (R2 = 0.812, RMSE = 7.14 µg/m3), signifying that incorporating
denser monitoring station data can enhance the precision of the XGBoost model in esti-
mating near-surface NO2 concentration. Moreover, the model performance of Group C
(R2 = 0.87, RMSE = 5.36 µg/m3) uses reconstructed satellite data. The performance
of Group C not only exceeds that of Groups A and B, but also shows better perfor-
mance than that of Zhan and Luo et al. [32] (R2 = 0.62, RMSE = 13.3 µg/m3) using the
(RF-STK) to estimate regional near-surface daily NO2 concentration in China, and that of
Chi and Fan et al. [22] (R2 = 0.73, RMSE = 5.63 µg/m3) in estimating near-surface NO2
concentration in China.
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Table 3. The performance of the XGBoost model in each group of experiments.

Experimental Grouping R2 RMSE MAE

Group A Test Set 0.81 7.14 5.25
Training set 0.84 6.60 4.87

Group B Test Set 0.87 5.80 4.33
Training set 0.98 2.12 1.58

Group C Test Set 0.87 5.36 3.96
Training set 0.94 3.57 2.68

Figure 4. The performance of the XGBoost model for each group of experiments. (a–c) denote the
results of Group A, Group B, and Group C.

3.3. Analysis of Mapping Results
3.3.1. Comparison of Daily Spatial Distribution of Near-Surface NO2 Concentration

The near-surface NO2 concentration estimated with dense air quality observed station
data (including province and municipal monitoring stations) is closer to the measured
NO2 concentration of the ground-based stations when there are no missing values from
the satellites, as shown in Figure 5a–f. Substantial data gaps in Chengdu were observed
due to satellite omissions caused by cloud and fog cover during 21–23 March. Spatially,
valid data was available in the middle part of Chengdu City on 21 March, and in small
areas of the northern and western regions on 23 March. Consequently, significant missing
values were evident in the spatial distribution of near-surface NO2 estimates for Groups
A and B. Compared with Groups A and B, Group C has successfully filled the areas with
missing measurements (Figure 5g–i). Group C achieved a high level of fit, in some cases
consistent with ChinaHighNO2 produced by Wei et al. [3], and in some cases even closer
to the observed surface monitoring stations. Group C results in particular show a better
match under medium and medium–high pollution conditions (Figure 5g–o).

3.3.2. Comparison of Urban–Rural Spatial Distribution of Near-Surface NO2 Concentration

In urban centers of Chengdu City, such as Jinniu District, Wenjiang District, and
Wuhou District, the near-surface NO2 concentrations are maintained at relatively high
levels. Figure 5 indicates that the utilization of reconstructed satellite data in these regions
has exacerbated the underestimation of NO2 concentration. This may be attributed to the
city’s consistent presence in an area of high NO2 values and the potential underestimation
by TROPOMI tropospheric data in these highly polluted regions of Chengdu City. The
disparity in the underestimation phenomena for estimated near-surface NO2 concentration
is relatively minor in suburban counties like Pujiang County and Dayi County.

While both our estimations and ChinaHighNO2 effectively mirror the spatial distribu-
tion of near-surface NO2 concentration across Chengdu City, our version does better at not
overestimating the highest pixels while capturing a more realistic distribution of medium
pollution level pixels. The ChinaHighNO2 presents a nuanced portrayal of cartographic
distinctions due to its superior spatial resolution of 1 × 1 km. However, the estimations
from this study show superior alignment with actual monitoring station data in certain
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areas (Figure 5g–o), likely due to the fact that there is less overfitting when transforming
the data from the observed grid to the 0.05◦ × 0.05◦ grid, as compared to a 1 × 1 km grid,
which is further from the originally observed data.

Figure 5. Comparison of near-ground NO2 concentration estimation on 21–23 March for each group
as well as the ChinaHighNO2 produced by Wei et al. [3]. (a–c) belong to Group A; (d–f) belong to
Group B; (g–i) belong to Group C; (j–l) belong to the ChinaHighNO2 data; and (m–o) belong to the
observed value of ground station. (a,d,g,j,m), (b,e,h,k,n), and (c,f,i,l,o) denote NO2 concentration
estimation on 21–23 March, respectively.

The performance is particularly improved in areas with significant urban–rural transi-
tion zones, such as Wenjiang District and Chongzhou City, where there is a large disparity
between high and low values. This improvement is largely attributable to the inclusion of
a denser network of monitoring stations in the estimation process. As shown in Figure 1,
national air quality monitoring stations are primarily clustered in densely populated urban
areas, such as Jinjiang District, while provincial and municipal air quality monitoring
stations are distributed across every county or district.
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3.3.3. Comparison of Holiday Spatial Distribution of Near-Surface NO2 Concentration

To demonstrate the importance of using reconstructed satellite data and integrating
denser ground monitoring station data in estimating near-surface NO2 concentration, this
study also conducted a comparative analysis of the spatial distribution data of near-surface
NO2 concentration and the measured ground station data during the Spring Festival hol-
iday period of 2021 (Figure 6). As shown in Figure 6, Groups A and B, which did not
incorporate reconstructed data, display evident gaps and relatively poor spatial conti-
nuity. At the relatively high NO2 concentration on 10 February and 11 February 2021,
the overestimation is more pronounced in the high-value areas in the city center. In
contrast, the estimation results of Group C align closely with the actual measured NO2
concentration distribution, showcasing enhanced image continuity and smoothness. Addi-
tionally, there was a notable decrease in NO2 concentration in Chengdu around Chinese
New Year’s Eve (10 February 2021) and Spring Festival (11 February 2021), possibly at-
tributed to the heightened emissions just before and rapid decrease in industrial activities
and transportation during the festive period, consistent with Li et al. [43]. During this
special time, the NO2 concentration estimated in this study is close to that from mon-
itoring stations in the central and southern regions of Chengdu on 11 February, with
values of around 35 µg/m3, including the Jinniu District and Shuangliu District, while the
ChinaHighNO2 overestimated NO2 concentration in these areas, with a value of around
45 µg/m3 (Figures 6j,n,r and S1).

Figure 6. Comparison of near-ground NO2 concentration estimation during the Spring
Festival holiday period in 2021 (10–13 February) for each group as well as the ChinaHighNO2

produced by Wei et al. [3]. (a–d) belong to Group A; (e–h) belong to Group B; (i–l) belong to Group C;
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(m–p) belong to the ChinaHighNO2 data; and (q–t) belong to the observed value of ground station.
(a,e,i,m,q), (b,f,j,n,r), (c,g,k,o,s), and (d,h,l,p,t) denote near-ground NO2 concentration estimation on
10–13 February, respectively.

4. Conclusions

This study presents a novel approach that integrates EOF interpolation, the XGBoost
algorithm, and dense urban atmospheric observation station data to estimate near-surface
NO2 concentrations in regions plagued by frequent cloud cover and precipitation, using
Chengdu as a case study area. The key conclusions derived from the research are as follows:

(1) The DINEOF method was successfully employed to reconstruct the tropospheric
NO2 column concentration data from TROPOMI for Chengdu. The reconstruction process
increased the original data coverage from a mere 29% to an impressive 99.2% by optimally
retaining EOF modes and iterating the process. Spatially, the reconstructed data closely
matched the distribution of observed data, effectively filling in gaps caused by clouds and
fog, thereby providing a comprehensive foundation for subsequent refined NO2 estimation.

(2) Based on the findings in (1), comparative experiments were conducted using the
XGBoost machine learning model with various training and estimation datasets. The
results demonstrated that the model accuracy achieved by incorporating reconstructed
satellite data and dense province and municipal ground station measurements (R2 = 0.87,
RMSE = 5.364 µg/m3) was superior to models relying solely on national control site data
and original satellite data (R2 = 0.81, RMSE = 7.14 µg/m3).

(3) In analyzing the daily, holiday-based, and urban–rural spatial distribution vari-
ability of near-surface NO2 concentration, the integration of dense ground monitoring
station data and reconstructed satellite data proved instrumental. This approach effectively
reduced overestimation in low-value locations, enhancing the continuity and smoothness
of the spatial distribution. Consequently, the resulting estimates provided a more realistic
representation of the fluctuations in near-surface NO2 concentrations.

In conclusion, this study presents a robust methodology for estimating near-surface NO2
concentrations in areas prone to frequent cloud cover and precipitation by synergistically
combining reconstructed satellite data, ground-based measurements, and advanced machine
learning techniques. The findings underscore the importance of data reconstruction and
multi-source data integration in overcoming the limitations of traditional remote sensing
approaches, paving the way for improved air quality monitoring and management strategies.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/rs16101785/s1. Figure S1: Comparison of newly near-
ground NO2 concentration estimation on 11 February with the ChinaHighNO2 produced by
Wei et al. [3]. (a,b) denote our new results and ChinaHighNO2, respectively.
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